

Student Number

2014

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

** July 2014

General Instructions

- Reading time 5 minutes
- Working time –3 hours
- Write using blue or black pen Black pen is preferred
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16 show relevant mathematical reasoning and/or calculations
- Start a new booklet for each question

Total Marks – 100

Section I - Pages 2 - 6

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II - Pages 6 - 12

- 90 marks
- Attempt Questions 11 16
- Allow about 2 hour and 45 minutes for this section

Question	Marks
1 - 10	/10
11	/15
12	/15
13	/15
14	/15
15	/15
16	/15

THIS QUESTION PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

This assessment task constitutes 40% of the Higher School Certificate Course Assessment

Section I

10 marks Attempt Question 1 – 10 Allow about 15 minutes for this section

Use the multiple – choice answer sheet for Questions 1 - 10

7	A bag contains the numbers $1 - 20$. A single number is drawn. What is the		
	probability that it is a multiple of 2 OR a multiple of 5?		
	(A)	$\frac{3}{5}$	
	(B)	$\frac{9}{10}$	
	(C)	$\frac{1}{2}$	
	(D)	$\frac{8}{25}$	
8	The domain of the function $y = \log_e(2x-1)$ is:		
	(E)	all real x , $x \neq \frac{1}{2}$	
	(F)	all real x , $x \ge \frac{1}{2}$	
	(G)	all real x , $x \le \frac{1}{2}$	
	(H)	all real x , $x > \frac{1}{2}$	

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11(15 marks) Use a SEPARATE writing booklet

(a)	Consider the line $x + 2y - 4 = 0$	2
	Sketch this line showing clearly the intercepts on both axes.	
(b)	Solve $\frac{5}{2a} - \frac{3}{2a} = \frac{1}{2}$	2
(c)	Solve $ x-6 = 11$	2
(d)	Find the equation of the tangent to the curve $x^2 = 4y$ at the point (6, 9)	2
(e)	Solve for θ where $0 \le \theta \le \pi$, $3\tan^2 \theta = 1$	2
(f)	Solve $\log_2 7 = x$ giving your answer to 3 significant figures	1
(g)	Differentiate	
	(i) $4x\sin\frac{x}{4}$	2
	(ii) $\frac{4xe^x + 3x^2}{x}$	2

Question 12(15 marks) Use a SEPARATE writing booklet

(a)	(iii) Find $\int \pi dx$.	1	
	(iv) Find $\int \frac{6}{3x+1} dx$.	2	
	(v) Find $\int_0^1 (\sqrt{x} - \sqrt[3]{x}) dx$	2	
(b)	In the diagram, <i>OABC</i> is a trapezium with <i>OA</i> <i>CB</i> . The coordinates of <i>O</i> , <i>A</i> and <i>B</i> . The coordinates of <i>O</i> , <i>A</i> , and <i>B</i> are (0, 0), (-1, 1) and (4, 6) respectively. A (-1, 1) A (-1, 1)		
	(i) Calculate the distance of <i>OA</i> .		
	(ii) Find the equation of the line <i>BC</i> , and hence find the coordinates of <i>C</i> .		
	(iii) Show that the norman disular distance from Q to the line BC is $5\sqrt{2}$		
	(iii) Show that the perpendicular distance from 0 to the fille <i>BC</i> is 372.		
(c)	Shade the region in the plane defined by $y < 3$ and $y \ge x^2 - 4x + 3$.		
(d)	 The diagram shows the land that Jane bought near a lake. Image: Second Sec	2	
	End of Question 12		

(c)	Find the exact area bounded by $y = sin(2x)$ and the x-axis between $x = 0$	3
	and $x = \pi$	
(d)	A new species of super ant from the Black Sea (Lasius Neglectus) is spreading throughout the world's ports. It rapidly supplants local ant populations and takes over, hosting 10 to 100 times the number of worker ants as local species. New queens often stay with colony making yet more workers.	
	A small colony was found in a backyard in Sydney, estimated at only 10 queens. After 3 years the nest covers an entire suburb involving an estimated 800 queens.	
	Their growth takes the form $P = P_0 e^{kt}$ where k is a positive constant and P_0 is the original population discovered at time $t = 0$ years.	
	(i) Find the value of k .	
	(ii) The largest colony ever found had 35000 queens. How long until the	2
	Sydney colony reaches that many queens?	2
	(iii)What could limit the accuracy of this formula for large values of <i>t</i> ?	
		1
	End of Question 14	

	End of Question 14			
	(iii) Find the maximum volume of water in the pond during the filtering cycle. Leave your answer in terms of π .	2		
	of water in the pond after t minutes.	•		
	(ii) If the pond is initially empty find an expression for the volume, V.	2		
	(i) If the pump started at 8.55pm, what is the first time after 8.55 pm			
	$\frac{dV}{dt} = 20\sin\frac{\pi}{35}t \; .$			
	The flow rate of the volume of water that the filter pumps water into and out of a pond in litres per minute, is given by			
(e)	The equation below refers to the filtering cycle of a pump in Helen's garden.			
	(iv) Describe the motion of particle P as $t \to \infty$	1		
	(iii) Find an expression for the acceleration of the particle in terms of tis velocity.	2		
	(ii) Find the time at which the particle is stationary and hence find its displacement and acceleration at that time.	3		
	(i) Find the initial displacement, velocity and acceleration of the particle.	3		
	$x = 3e^{-5t} + 3t - 2$			
(d)	A point P moves in a straight line, so that its displacement from the origin after <i>t</i> seconds is given by:			

Question 16 (15 marks) Use a SEPARATE writing booklet

(g)	The a the fo	verage monthly temperature, $T^{0}C$, in Canberra can be modelled by rmula $T = 7\sin(nx+1.5)+13$,	
		where $n = a$ constant value and	
		x = the number of the month of the year (that is, January =1,	
		February =2)	
	(i)	According to the model, what are the maximum and minimum average monthly temperatures in Canberra?	2
	(ii) The period of the function is 12. Determine the value of n correct to 2 decimal places.		1
	(iii)	Which month has the lowest average monthly temperature?	2

1/12 Mathematics Trial 2014 Answers.

2 A • **,** . 3 D 4. C

1 B

5 B **.** . . . 6 B 7 A ---8 D .

90 ----10 B 1.1

.

· · · · · **.** ····

· · · · ·

· ··· · ·

YRI 12 TRIAL HSC 2014 - MATHEMATICS SOLUTIONS COMMENTS QUES 11 a) 20+24-4=0 y=0, x - 4 = 0y=2y=0, x - 4 = 01) mark for showing intercepts algebraically (mark for sketch of decent size clearly showing intercepts. * Question well done. i) see below #) /=c-6/=11 O mark for each x-6=11 or x-6=-11 solution = 2 marks x = 17 or x = -5* Question generally well done d) $x^{2} = 4y(6,9)$ $y = \frac{x}{4}$ $y' = \frac{2x}{4} = \frac{x}{2}$ 1) mark for correct derivative /value for gradient $f'(6) = \frac{6}{2} = 3$ equation $y - y = m(x - x_{i})$ Cmark for equation of tangent y = q = 3(x - 6) y = q = 3x - 18 0 = 3x - y - 9* some students still not taking derivative and substituting correctly. $6)\frac{5}{2a}-\frac{3}{2a}=\frac{1}{2}$ () mark for simplification) mark for solution & well done. $\frac{2}{2a} = \frac{1}{2}$

Question	Answer	Mark
a. i)	$\int \pi dx = \pi x + C$	Thank to integrate the equation
ii)	$\int \frac{6}{3x+1} dx = 2 \int \frac{3}{3x+1} dx$	Dmark for working.
	$= 2\ln(3x+1) + C$	Duak for correct answer.
jii)	$\int_{0}^{1} (\sqrt{x} - \sqrt[3]{x}) dx = \left[\frac{2}{3}x^{\frac{3}{2}} - \frac{3}{4}x^{\frac{4}{3}}\right]_{0}^{1}$ $= \left(\frac{2}{3}(1)^{\frac{3}{2}} - \frac{3}{4}(1)^{\frac{4}{3}}\right) - \left(\frac{2}{3}(0)^{\frac{3}{2}} - \frac{3}{4}(0)^{\frac{4}{3}}\right)$	Driach for working.
	$ = \left(\frac{2}{3} - \frac{3}{4}\right) - (0 - 0) $ $= -\frac{1}{12} $	Duark for correct answer.
b. i)	$OA = \sqrt{(0+1)^2 + (0-1)^2}$ = $\sqrt{2}$ units	Dmark for working with correct answer
ii)	$BC\ AO \therefore m_{(BC)} = m_{(AO)} = -1 Equation of the line BC: y - y_1 = m(x - x_1), given B (4, 6) y - 6 = -1(x - 4) y - 6 = -x + 4$	Donate for finding equation of the line
	x + y - 10 = 0. When $y = 0, x = 10.$ $\therefore C(10, 0).$	Duak fa Juding point c (10,0).
iii)	$d = \frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}}.$	
	The equation of BC is $x + y - 10 = 0$ and (x_1, y_1) is $O(0, 0)$.	Durak for applying
	$\therefore d = \frac{ 1 \times 0 + 1 \times 0 - 10 }{\sqrt{1^2 + 1^2}} = \frac{10}{10}$	perpendienter distance Jormula
	$=\frac{\sqrt{2}}{\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}$	O marke for correct answer.
	$=5\sqrt{2}$ units	

Question 13(15 marks) Use a SEPARATE writing booklet

والفروان والمحالية المحالية	In XYZ $XZ = \sqrt{(XY^2 + YZ^2)}$ $= \sqrt{(9^2 + 12^2)}$ = 15 cm 1 mark correct answer In WXP and ZXW $\angle WPX = 90^{\circ}(given)$ $\angle ZWX = 90^{\circ}(WXYP \text{ is recatngle given})$ $\angle WXP = \angle ZXW (common angle)$ $\therefore WXP \parallel ZXW (two corresponding angles equal)$	}1 mark 2 }90° angle with reason	Done well An easy question if you redraw the triangles separately Must state that <zwx =90="" a<br="" because="">rectangle Must use 3 letters to name</zwx>
	(ii)	ark conclusion h reason	angles, <a acceptable.<br="" is="" not="">Using AA or AAA is not accepted reasoning for Similarity Diagonals in rectangles do not form 45 degree angles
	(iv) In <i>WXP</i> and <i>ZWX</i> $\frac{XP}{WX} = \frac{XW}{XZ}$ (corresponding sides in similar) $XP = \frac{12}{15} \times 12$ 1 mark correct lenger reason $\therefore XP = \frac{144}{15}$	s in same ratio) gth substituted wit	A reason must be given for 1 mark
	ABC and ACD are congruent isosceles triangles. Prove that $2b = a + 90^{\circ}$ A A B B C		 Some very long inefficient solutions. Reasoning was done poorly. Marks were not given for working without reasoning no 90° angle is given in the question it must be proved. ADCB is not given as a kite it must be proved Base angles isosceles triangle is not accented
		<u></u>	use "equal angles are opposite equal sides"

In ABC and ACD $\angle ABC = \angle ADC = b$ (equal side opposite e qual angles) $\angle ABD = \angle ABE = \angle ADE = a$ (equal sides oppos ite angles) $\therefore \angle EBC = \angle EDC = b - a$	1 mark correct reasoning 1 mark determining another angle	 Corresponding angles in congruent triangles are the matching angles, not just the equal ones Take care to name angles correctly
In BDC $\angle EBC + \angle EDC + \angle DCB = 180^{\circ}$ (angle $\therefore (b-a) + (b-a) + 2b = 180$ 4b-2a = 180	sum of a) 1 mark final angle	
2b = a + 90	sum	

(c)	The graph of the parabola $(x-3)^2 = 12(y-2)$ is shown below. a) Find the coordinates of the vertex	Done well no working required can be solved by inspection
	 Vertex is (3,2) 1 mark b) Find the coordinates of the focus and the equation of the directrix 	Mostly done well
	$(x-3)^{2} = 4(3)(y-2)$ $\therefore a = 3$ focus at (3,5) directrix at y = -1 1 mark each focus and directrix	
	c) Hence or otherwise show that the equation of the circle with centre at the focus passing through the vertex is: $x^2 - 6x + y^2 - 10y + 25 = 0$ $(x - 6x + 9) + (y^2 - 10y + 25) = 9$ $(x - 3)^2 + (y - 5)^2 = 9$ this is a circle centre at (3,5) radius=3 -1 mark for passes through (3,2) the vertex subsequent error	Mostly done well

Question 14 ISMarks (a)) $P(S good starb) = 0.85 \times 0.85 \times 0.85$ = 0.614125 (D consider. $\frac{4913}{5000}$. (i) $1 - 0.85^{\circ} = 0.75$. $0.85^{\circ} = 0.25$. h(0.25) = h(0.25). $n = \frac{h(0.33)}{h(0.23)} = \frac{h(0.23)}{h(0.83)} = \frac{h(0.23)}{h(0.83)} = \frac{h(0.23)}{h(0.83)} = \frac{h(0.83)}{h(0.83)} = \frac{h(0.23)}{h(0.83)} = \frac{h(0.23)}{h(0.23)} = \frac{h(0.23)}{h(0.2$ b)) OA = OB = 0.6 (Madii of same circle) . AAOB equilateral as all sides = 0.6. Defer . All argles equal & T/3 Dis equilatere . (AOB = T/3 前年 Area of table top = Area of sector + weg of 0.647 = TTr x /2TT. + 2x9651h C. Offer Stitum $= \pi \times (0.6)^2 \times \frac{577_3}{12} + \frac{1}{2}(0.6)^2 \sin(77_3)$ = 1.098362369. = 1.254246941 Oprosubstitution = 1.254246941= 1-3 m² (100) 1.1m² Offer arswer Segnent 2 12 (0-sind) /3 and ath rA.

i) 2 Jo SIN 2x dx O for breaking op integral to a account for Neg. gree. $= \lambda \left[-\frac{\cos 2\pi}{2} \right]_{0}^{T/2}$ $= \lambda x^{-1} \left[\cos 2x \right]_{0}^{T/2}$ O correct integration = - [cosT - coso] $= - \int -1 - i \int = -1 \times -2$ = 2 anib². OPer final solution $800 = 10e^{3h}$ $3h = 50^{3h}$ $3k = h(80)^{3h}$ $h = h(80)^{3h}$ d) i) O for substitution Ofer answer. 2 460675585. Offer substitution 35000 = 10 ekt. īι) $3500 = e^{kt}$. kt = h(3500). t = h(3500). kt = h(3500). = 5.586811031 yrs. Ofer answer. = 5.6 yrs (100) 7 Ofer answer. (ii) Limited availability of food resources Of for any valid reason.

914
$$2t=3e^{-9t}+3t=2$$

i) Initially $2t=0$
Deplacement $2t=3e^{+}3x0-2$
 $=1m$
Velocity $\dot{x}=-15e^{-5t}+3$ (D
 $t=0$ $\dot{x}=-15e^{-5t}+3=0$
 $e^{-5t}+3=0$
 $e^{-5t}+3=0$
 $e^{-5t}+3=0$
 $e^{-5t}=\frac{1}{5}$, $-5t=ln[\frac{5}{5}$
 $t=-0, u34m$
 $dt=-75e^{-5t}+3(\frac{5}{5}6h5)-2$
 $=15m/s^{2-2}$
 $ut) as $t \to \infty$, $e^{-5t} \to 0$
 $x \to 0$, $\dot{x}=v \to 3m/s$
 $x \to 0$, $\dot{x}=v \to 3m/s$
 $x \to 3ange politive value, that is
 t will continue maying in positive/
forward direction.
 $dt=add progress toward assure$$$

.

14 b)
$$\frac{dV}{dt} = 20 \sin \frac{\pi}{35}t$$

2) $\frac{dV}{dt} = 0$, $20 \sin \frac{\pi}{35}t = 0$
 $\sin \frac{\pi}{35}t = 0$, π
 $\frac{\pi}{35}t = \pi$
 $t = 35 \text{ minute}$
 $t = 35 \text{ minute}$
 $t = 365 \pm 35$
 $= 9130 \text{ pm}$
 $12) \frac{dV}{dt} = 20 \sin (\frac{\pi}{5}t)$
 $V = \int 20 \sin (\frac{\pi}{5}t) \frac{dV}{dt} = 0$ when
 $t = \frac{3}{2} \cos (\frac{\pi}{5}t)$
 $V = \int 20 \sin (\frac{\pi}{5}t) \frac{dV}{dt} = 1$
 $V = \frac{100}{35} \cos (\frac{\pi}{5}t) \frac{dV}{dt} = 1$
 $V = \frac{100}{10} \cos \frac{\pi}{5}t \frac{dV}{dt} \frac{dV}{dt} = 1$
 $V = \frac{100}{10} \cos \frac{\pi}{35} \cdot 35$
 $= \frac{100}{10} - \frac{100}{10} \cos \pi$
 $= \frac{100}{10} - \frac{100}{10} \cos \pi$

Aucstion 16

(*ă*) $(ost = (12 \times 600) + (29 \times 450)$ = \$20,250 (/)

(*ï*)

 $AB^{2} = 600^{2} + 450^{2}$ AB = 750M. $lost = 29 \times 750$ = \$21,750

(iii) $DB = \sqrt{y^2 + 450^2}$ AD = 600 - 9(ost = 27 12× (600-y)+29× Vy2+4502 je F = 12(600-y)+29/y2+4502

(iV) $F = 12(600 - y) + 29(y^2 + 450^2)^{\frac{1}{2}}$ $dF = -12 + \frac{29}{3} \left(\frac{y^2}{4} + 450^2 \right)^{\frac{1}{3}} \times 2y$ = -12 + 29y $\left(\frac{y^2}{4} + 450^2 \right)^{-\frac{1}{3}}$

 $\frac{dF}{dy} = 0$ when $\frac{29y}{(y^2 + 450^{02})^2} = 12$ $\frac{84/4^2}{4^2 + 450^2} = 144$

 $841 y^{2} = 144y^{2} + 29,160,000$ $691y^{2} = 29,160,000$ y = #2199-71056 41836 44 4 = 204.5 M

1 for ousides. (with war bury

1 for ous cel (with working)

1 for DB= 1 for AD=

1 for worken towards

dF=-12+29y/y+1

1 for workingtowards y = 204.5u

Testing y= 205.4 y 200 204.4 210 y = 204.5 is α Min Value dF dy -0.22 0 0.26 : Minimum Cost occurs when y = 20#.5 1 for cost $Cost = F = 12 \times (600 + 205) + 29 \times \sqrt{205^2 + 450^2}$ =\$19,080.34 V) F becomes $F = 12(600 - 4) + 15(4^{2} + 450^{2})^{\frac{1}{2}}$ It is not $\int \frac{dF}{dy} = -12y + \frac{15}{2}(y^2 + 450^2) \times 2y$ enough to show A to B is the $= -12y + 15y (y^2 + 450^2)^{-\frac{1}{2}}$ chargest of 3 Acenarios. $\frac{dF}{dy} = 0 \quad \text{when} \quad \frac{15y}{(y^2 + 450^2)^{4}} = 12$ Must show working that $225y^{2} = 144(y^{2}+450^{2})$ $81y^{2} = 29160000$ $y^{2} = 360,000$ ie y = 600 M 1 leads to AB being cheepest out of all possibilities . He will run the cable directly from A to B(y=600 means AC=0) (of AD=0) Minimum Cost = 15×(600²+450²) (farm () =\$11,250 and showing A is the Min pat

. (\$) (i) Max Value of sin(0.52x+1.5)=1:. Max $T = 7\times1+13$ $= 20^{\circ}C$ No marks for no working. (田) Min Value of sur (0.52x+1.5)=1 : Min T = 7x - 1 + 13= 6°C No marks for Wrong woshing but mastes (1) $T = 7 \sin(0.52x + 1.5) + 13$ answers come Min Temp 15 6° 1-20-6 i. 6 = 7.Su (0.52x+1.5)+13 (If done via a table $-\frac{1}{7} = Jm(0.52x+1.5)$ lout of 2. 0.52x = sur (-1) - 1.5 ii If read from table lootof $x = (\frac{3\pi}{2} - 1.5) \div 0.52$ 1 for washing towards V T=20 :. June has the lowest average temp 1 for was kin (iii) Find when the hottest month in Conferra is it when T = 20and note that this is the also the coldest month in Nav York in T= 6 /M. 6=75w/0.52x+1.5/ 1 for store solvent to x=6 and statig June has lowest av ill, I for showing stating - Asin) - A SM (0.5256+ 1.5) + B

Alterative ansider for biji 1/T = 7 sca(0.52x + 1.5) + 13 $T' = 7 \times 0.52 \cos(0.52 \times + 1.5)$ 7' = 3.64.605(0.52x+1.5) $T'' = -3.64 \times 0.52 \sin \left(0.52 \times + 1.5 \right)$ = -1.8928 sur (0.52 × + 1.5) T'=0 when 1055(0.521+1.5) = 1, 31 0.52x==-1-5, 0.52x=31-1.5 1 for both x'values ar $\begin{aligned} \chi &= \frac{\pi}{2} - \frac{1 \cdot 5}{0.52} & \chi &= \frac{3\pi}{2} - \frac{1 \cdot 5}{0.52} \\ &= 0.1361 & \chi &= 6.1777 \end{aligned}$ Showing they give Hax + Mir Values when x = 0,1361 when x = 6.1777 via T"or T"= 1.8928 T= -1.89 table. X = 0.1361 $I = 7.544 \left[0.52 \times 0.1361 + 1.5 \right] + 13$ $I = 7.544 \left[0.52 \times 0.1361 + 1.5 \right] + 13 = 0$ I = 0:. Hen Value is the MaxT il From part i x=6.1777 (Hen Value viet) gwes T=6 (Hin Theore) / Musti is June gwes the lowest. His Value Min Valee 1 has answer anly if itaen