

Centre Number

Student Number

2019
 Mathematics

Trial Examination

General • Reading time -5 minutes
Instructions • Working time -3 hours

- Write using blue or black pen
- NESA approved calculators may be used
- Show relevant mathematical reasoning and/or calculations

Total Marks: Section I-10 marks

- Allow about 15 minutes for this section

Section II - 90 marks

- Allow about 2 hours and 45 minutes for this section

Section I (10 marks)	Multiple Choice	$/ 10$
Section II (90 marks)	Question 11	$/ 15$
	Question 12	$/ 15$
	Question 13	$/ 15$
	Question 14	$/ 15$
	Question 15	$/ 15$
	Question 16	$/ 15$
		Total

This question paper must not be removed from the examination room.
This assessment task constitutes 30\% of the course.

Section I

10 marks

Allow about 15 minutes for this section
Use the multiple-choice sheet for Question 1-10

1 George Worthylake is watching from his lighthouse 113 m above sea-level. He sees a boat heading straight towards him. He initially calculates the angle of depression to be 3°, a short while later he measures the angle of depression to be 8°. Which diagram most faithfully represents this information?
(A)

(B)

(C)

(D)

2 In a raffle 30 tickets are sold, how many tickets would you need to have purchased to have at least a 6% chance of winning.
(A) 2
(B) 5
(C) 1.8
(D) 1

Section I continues on next page

3 Which of the following is an odd function?
(A)

(B)

(C)

(D)

4 Which of the following graphs best represents $f(x)=\frac{1}{x+5} ?$
(A)

(B)

(C)

(D)

5 Differentiate $\log _{\mathrm{e}}(2 x+16)^{2}$.
(A) $\frac{1}{2 x+16}$
(B) $\quad \log _{e} 2(2 x+16)$
(C) $\frac{2(2 x+16)}{(2 x+16)^{2}}$
(D) $\frac{2}{x+8}$

6 The function f is shown in the diagram below. The area bounded by the curve and the x-axis are labelled. The area of A is 3 square units, the area of B is 1.5 square units, and the area of C is 1 . Evaluate $\int_{0}^{5} f(x) d x$.

(A) 3.5 square units
(B) 4.5 square units
(C) 5.5 square units
(D) 6.5 square units
$7 \quad$ Find the area bounded by $y=|x+7|$, the x-axis and the lines $x=-9$ and $x=1$.
(A) 30 square units
(B) 32 square units
(C) 34 square units
(D) 36 square units

8 Differentiate $x^{2} \sin \left(x^{2}\right)$.
(A) $2 x \sin (2 x)$
(B) $2 x \sin \left(x^{2}\right)-2 x^{3} \cos \left(x^{2}\right)$
(C) $2 x \sin \left(x^{2}\right)+2 x^{3} \cos \left(x^{2}\right)$
(D) $2 x \sin \left(x^{2}\right)+x^{2} \cos (2 x)$

9 How many solutions are there to $\sin (x)=\frac{1}{2} x$ given $-\pi<x<\pi$?
(A) 1
(B) 2
(C) 3
(D) 4

10 What are the values a and b for which $\int_{a}^{b} \sin (x) d x<\int_{a}^{b} \cos (x) d x$ is true?
(A) $\quad a=0$ and $b=2 \pi$
(B) $\quad a=0$ and $b=\pi$
(C) $\quad a=\frac{\pi}{2}$ and $b=\frac{3 \pi}{2}$
(D) $\quad a=\pi$ and $b=2 \pi$

End of Section I

Section II

In Questions 11-16, your response should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet.
(a) Sketch the graph with equation:

$$
(x-3)^{2}+(y+5)^{2}=16
$$

(b) Simplify the following:

$$
\frac{3 x^{2}-3 x+3}{x^{2}-4 x+3} \times \frac{x^{2}-1}{x^{3}+1}
$$

(c) Differentiate the following with respect to x :

$$
\frac{3 x}{x-5}
$$

(d) Solve $|x-3|<4 x$.
(e) Find the points of intersection between $y=2 x^{2}+5 x-12$ and $y=-x-4$.
(f) Find the equation of the tangent to $f(x)=\cos 2 x$ at $x=\frac{\pi}{4}$.
(g) Solve $\sin (\theta)=\frac{-\sqrt{3}}{2}$ for $0 \leq \theta \leq 2 \pi$.

Question 12 (15 marks) Use the Question 12 Writing Booklet.
(a) The diagram shows the points $\mathrm{A}(1,2), \mathrm{B}(3,6)$ and C . Point C lies on the x-axis and line AC has equation $x+2 y-5=0$.

(i) Find the coordinates of point C .
(ii) Find the exact length of segment AB .
(iii) Find the equation of line AB in general form.
(iv) Show that $\angle B A C=90^{\circ}$
(v) What is the size of the obtuse angle that AC makes with the x-axis? (to the nearest degree)
(b) Copy the diagram below into your answer booklet. Find the size of $\angle B A C$, giving

(c) The diagram shows $\triangle A C D$ with sides $\mathrm{AC}=11 \mathrm{~cm}, \mathrm{CD}=7 \mathrm{~cm}$ and $\mathrm{AD}=15 \mathrm{~cm}$. Point B lies on AD such that $\angle A B C=\frac{\pi}{3}$ and $\mathrm{BC}=x \mathrm{~cm}$.

Copy the diagram into your answer booklet.
(i) Show that $\cos A=\frac{9}{10}$.
(ii) By finding the exact value of $\sin A$, or otherwise, determine the exact length of BC.
(d) \quad Find $\frac{d}{d x}\left(e^{\sqrt{3} x^{2}}\right)$.
(e) (i) Differentiate $(6 x-5)^{3}$.
(ii) Hence evaluate $\int(6 x-5)^{2} d x$.

Question 13 (15 marks) Use the Question 13 Writing Booklet.
(a) For the curve $y=\frac{1}{3} x^{3}-9 x+2$,
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Sketch the curve labelling the stationary points (x-intercepts are NOT required).
(b) A parabola has equation $y^{2}-6 y-3=12 x$.
(i) Write the equation of the parabola in the form

$$
(y-k)^{2}=4 a(x-h)
$$

(ii) Determine the coordinates of the vertex.
(iii) Determine the coordinates of the focus.
(c) The graph shows the functions $y=\cos \left(\frac{\pi x}{2}\right)$ and the line $6 x-2 y-3=0$.

Calculate the shaded area as an exact value.

Question 13 continued

(d) The quokka population on the West Australian Mainland was decimated by a bushfire in 2015. The fire destroyed a significant amount of forest and the population on 1st February 2015 dropped to 39.

Recent surveys have shown that the quokka population is increasing according to the equation $P=A e^{k t}$ where A and k are constants and t is time measured in months after $1^{\text {st }}$ February 2015. On $1^{\text {st }}$ February 2018 the population had increased to 115.
(i) Calculate the value of A and show that the value of $k=0.03$ (to 2 decimal places).
(ii) If this trend continues, how many quokkas will be in Western Australia on $1^{\text {st }}$ February 2023?
(iii) What was the rate of increase on $1^{\text {st }}$ February 2019?

End of Question 13

Question 14 (15 marks) Use the Question 14 Writing Booklet.
(a) Given the graph of $y=\sqrt{x}$ below.

(i) Estimate the area under the curve from $x=0$ to $x=2$ using two applications of the trapezoidal rule.
(ii) Estimate the area under the curve from $x=0$ to $x=2$ using one application of Simpson's rule.
(iii) Which of these estimations will be more accurate, and why?
(b) A bacteria population grows according to the formula $T_{n}=3^{n}+2 n$, where T_{n} is the increase in the number of bacteria per day and n is the number of days since the bacteria appeared.
(i) How many bacteria were added to the population on each of the first 3 days?
(ii) Find the total number of bacteria in the population after 15 days?

Question 14 continued

(c) There are three red, four blue and seven green marbles in a bag.

Two marbles are drawn one after another from the bag, without replacement.
(i) What is the probability of drawing one red and one green marble in any order?
(ii) What is the probability that at least one green marble is drawn?
(d) The shaded region below is between the curve $y=x^{6}+2$, the y-axis and the line $y=8$.

Find the volume of the solid of revolution when the shaded region is rotated about the y-axis.

Question 14 continued

(e) Using the diagram below:

(i) Prove that $\triangle A D E \| \triangle A B C$. 2
(ii) Calculate the length DE.

Question 15 (15 marks) Use the Question 15 Writing Booklet.
(a) A closed cylindrical can of radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$ is to be made from a sheet of metal with area $300 \pi \mathrm{~cm}^{3}$. There is 10% wastage of the sheet in manufacturing the can.
(i) Show that $h=\frac{135-r^{2}}{r}$.
(ii) Find the value of r which maximises the volume of the can.
(b) Triangles $A B C$ and $C D E$ are equilateral triangles. $B E$ intersects $A D$ at P and $C D$ at R. A, C and E are collinear.

Copy the diagram into your writing booklet and prove that $\triangle A C D \equiv \triangle E C B$.
(c) A tank initially containing 18000 litres of water is to be drained. After t minutes, the rate at which the volume of water is decreasing is given by:
$\frac{d V}{d t}=-40(30-t)$
(i) Derive a formula for the volume of water remaining after t minutes.
(ii) How long will it take the tank to empty?
(iii) By using the expression for $\frac{d v}{d t}$ or otherwise, sketch the volume - time graph.

Question 15 continued

(d)

The diagram shows the area bounded by the parabola $y=6 x-x^{2}$ and the x axis.
Find the value of k such that $y=k x$ cuts this area in half.

End of Question 15

Question 16 (15 marks) Use the Question 16 Writing Booklet.
(a) Show that $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log _{e} a$
(b) Elliott deposits $\$ 300000$ in an account which earns interest of 6% p.a. compounded monthly.
At the end of the first month, immediately after the interest is calculated, Elliott withdraws $\$ 900$.
Each subsequent month, immediately after the interest is calculated, Elliott withdraws 2% more than what he did the previous month.
(i) Show that the amount in the account, immediately after the third withdrawal could be expressed as:
$A_{3}=\$ 300000 \times 1.005^{3}-\$ 900\left(1.005^{2}+1.005 \times 1.02+1.02^{2}\right)$
(ii) Show that the amount in Elliott's account after the $n^{\text {th }}$ withdrawal is:

$$
A_{n}=\$ 60000\left(6 \times 1.005^{n}-1.02^{n}\right)
$$

(iii) Find the time at which the amount A_{n} in Elliott's account is a maximum.
(You may use the result in (a))
(c) Consider a pair of identical biased coins. When tossed the coins land more often on heads than on tails. The probability that a biased coin lands heads up is p.
(i) Draw a tree diagram to show all possible outcomes when the pair of biased coins are tossed together. Write the probabilities on each branch of the tree.
(ii) When a specific pair of biased coins are tossed, 30% of the time they land showing a head and a tail in any order.
Determine the probability that, on the next toss of the pair of coins, they will land with at least one of the coins showing a head.
(iii) Let the probability that a pair of biased coins will land showing one head and one tail in any order be k.
Prove that it is impossible for the value of k to be greater than 50%.

End of paper

1	A	
2	A	$\begin{aligned} P(\text { win }) & =\frac{x}{30}=0.06 \\ x & =30 * 0.06 \\ x & \approx 1.8 \end{aligned}$ $\therefore 2$ tickets must be purchased in order to have at least a 6% chance of winning
3	D	The straight line is the only one with rotational symmetry centred on the origin. B is not a function and C is not centred at the origin.
4	A	Compared to $\mathrm{g}(x)=\frac{1}{x}, \frac{1}{x+5}$ is translated left 5
5	D	$\begin{aligned} & f(x)=(2 x+16)^{2} \\ & \begin{aligned} f^{\prime}(x) & =2(2 x+16) \times 2 \\ & =4(2 x+16) \\ \therefore \frac{d}{d x} & \ln (2 x+16)^{2}=\frac{4(2 x+16)}{(2 x+16)^{2}} \end{aligned} . \end{aligned}$ Which must be cancelled to give D You could also have used your log laws to simplify. $\ln (2 x+16)^{2}=2 \ln (2 x+16)$
6	A	Use area of a triangle to find area from 3 to 5 .
7	C	Can integrate by parts, or take the area of the two triangles created by the critical point $x=-7$
8	C	$\begin{aligned} & f(x)=x^{2} \sin x^{2} \\ & u=x^{2} \quad v=\sin x^{2} \\ & u^{\prime}=2 x \quad v^{\prime}=2 x \cos x^{2} \\ & f^{\prime}(x)=2 x \sin x^{2}+2 x^{3} \cos x^{2} \end{aligned}$
9	C	There is a solution $\mathrm{x}=0$.
10	D	Between 0 and 2π both functions have an integral of 0 . Between 0 and π the integral of the sine function is positive (2), cosine is 0 Between $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ the integral of the sine function is 0 and the integral of the cosine function is negative (-2). This means that the answer must be π and 2π, where the sine function is negative (-2) and cosine is 0 .

Question 11 (15 marks)

(a)	$(x-3)^{2}+(y+5)^{2}=16$ Centre at $(3,-5)$ and radius of 4	2 marks for good shape and correct centre and radius 1 mark deducted for poor shape, incorrect centre or incorrect radius	Most students were able to sketch the curve with correct radius and centre. Students should try to sketch their curves with no pointy bits.
(b)	$\begin{aligned} & \frac{3 x^{2}-3 x+3}{x^{2}-4 x+3} \times \frac{x^{2}-1}{x^{3}+1} \\ = & \frac{3\left(x^{2}-x+1\right)}{(x-3)(x-1)} \times \frac{(x-1)(x+1)}{(x+1)\left(x^{2}-x+1\right)} \\ = & \frac{3}{x-3} \end{aligned}$	2 marks for correct factorising and simplifying 1 mark for factorising at least two algebraic expressions	Mostly done well. Students should revise factorising sum and difference of two cubes.
(c)	$\begin{gathered} \frac{d}{d x}\left(\frac{3 x}{x-5}\right)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\ u=3 x \\ u^{\prime}=3 \\ v=x-5 \\ v^{\prime}=1 \end{gathered} \begin{aligned} \frac{d}{d x}\left(\frac{3 x}{x-5}\right)= & \frac{(x-5) \times 3-3 x \times 1}{(x-5)^{2}} \\ = & \frac{3 x-15-3 x}{(x-5)^{2}} \\ = & -\frac{15}{(x-5)^{2}} \end{aligned}$	2 marks for correctly differentiating and simplifying. 1 mark for correctly applying the quotient rule but incorrectly simplifying	Mostly done well. Careless errors included expanding the numerator incorrectly

(d)	$\|x-3\|<4 x$ Case 1 Case 2 $\begin{aligned} x-3 & <4 x \\ -4 x+x & <3 \\ -3 x & <3 \\ x & >-1 \end{aligned}$ $\begin{aligned} -(x-3) & <4 x \\ x-3 & >4 x \\ 5 x & >3 \\ x & >\frac{3}{5} \end{aligned}$ Test: $\begin{aligned} x & =0 \\ L H S & =\|0-3\| \\ & =\|-3\| \\ & =3 \\ R H S & =4 x \\ & =4(0) \\ & =0 \\ L H S & \neq R H S \\ \therefore & x>\frac{3}{5} \end{aligned}$	2 marks for correctly solving and checking 1 mark for correctly solving the inequality	Most students were able to solve for the two cases but many students did not pay attention to the direction of the inequality symbol and chose the interval $-1<x<\frac{3}{5}$ or $x>-1$. Most students lost an easy one mark for not testing a point and confirming the solution as $x>\frac{3}{5}$. This is where most students lost a mark and their opportunity for full marks in question 11.
(e)	$\begin{gather*} y=2 x^{2}+5 x-12 \ldots \ldots \tag{1}\\ y=-x-4 \ldots \ldots \text { (2) } \end{gather*}$ $\begin{aligned} & (1)=(2) \\ & -x-4=2 x^{2}+5 x-12 \\ & 2 x^{2}+6 x-8=0 \\ & x^{2}+3 x-4=0 \\ & (x+4)(x-1)=0 \\ & \therefore x=-4, x=1 \ldots \ldots \text { (3) and (4) } \end{aligned}$ (3) in (2) $\begin{aligned} & y=-(-4)-4 \\ & y=0 \end{aligned}$ (4) in (2) $\begin{aligned} & y=-1-4 \\ & y=-5 \end{aligned}$ Points of intersection are $(-4,0)$ and $(1,-5)$	4 marks for all correct 1 mark deducted if only x values found or only one coordinate correct	Mostly done well, however student should take care to collect like terms carefully and substitute correctly.

(f)	$\begin{aligned} f(x) & =\cos (2 x) \\ f^{\prime}(x) & =-2 \sin (2 x) \\ f^{\prime}\left(\frac{\pi}{4}\right) & =-2 \sin \left(2 \cdot \frac{\pi}{4}\right) \\ & =-2 \sin \left(\frac{\pi}{2}\right) \\ & =-2 \\ & \therefore m=-2 \\ f\left(\frac{\pi}{4}\right) & =\cos \left(2 \cdot \frac{\pi}{4}\right) \\ & =\cos \left(\frac{\pi}{2}\right) \\ & =0 \end{aligned}$ coordinates of the point is $\left(\frac{\pi}{4}, 0\right)$ $\begin{aligned} y-0 & =-2\left(x-\frac{\pi}{4}\right) \\ y & =-2 x+\frac{\pi}{2} \end{aligned}$	2 marks if correct gradient and equation of the line found. 1 mark deducted if gradient found but the equation of the line was incorrect 1 mark also deducted if incorrect gradient found, but applied correct process to find the equation of the line.	Mostly done well Some students did not correctly differentiate $f(x)$. Some students correctly differentiated the function but incorrectly evaluated $f^{\prime}\left(\frac{\pi}{4}\right)$ or $f\left(\frac{\pi}{4}\right)$.
(g)	$\begin{aligned} \sin (\theta) & =-\frac{\sqrt{3}}{3} \\ \text { acute } \theta & =\frac{\pi}{3} \\ \theta & =\pi+\frac{\pi}{3}, 2 \pi-\frac{\pi}{3} \\ & =\frac{4 \pi}{3}, \frac{5 \pi}{3} \end{aligned}$	2 marks for each correct answer	Mostly done well.

Question 12 Solutions and Feedback
Wednesday, 31 July 2019 3:18 pM

Feedback

ai) Same students confused x and y coordinates.
ii) Should always try to simplify suds,
although marks were not lost in the instance.
iii) A lot of marks last for "general form".
v) $\operatorname{Tan} \theta=m$

For obtuse ankle
$180-26^{\circ} 33^{\prime} 54^{\prime \prime}$
$180-26^{\circ} 33^{\prime} 59^{\prime \prime}$
$=1533^{\circ} 26^{\prime} 6^{\prime \prime}$
$\div 153^{\circ}$ to nernst degree
iv) $M_{A B}=2$

$$
\begin{aligned}
& m_{A C}=\frac{0-2}{5-1} \\
&=\frac{-2}{4} \\
&=\frac{-1}{2} \\
& m_{A B} \times m_{A C}=2 \times-\frac{1}{2} \\
&=-1 \\
& \therefore A B \perp A C \\
& \therefore \angle B A C=90^{\circ}
\end{aligned}
$$

$y-y_{2}=2\left(x-x_{0}\right)$
$\operatorname{Sub}(1,2)$
$\begin{aligned} y-2 & =2(x-1) \\ & =2 x-2\end{aligned}$
$2 x-y=0$

$$
\begin{aligned}
& 2 \text { mark e for } \\
& \text { correct } \\
& \text { general form }
\end{aligned}
$$

$$
\begin{aligned}
m_{A C} & =-\frac{1}{2} \\
T_{\operatorname{~an}} \theta & =-\frac{1}{2} \\
\theta & =-26^{\circ} 33^{\prime} 54^{\prime \prime}
\end{aligned}
$$

$$
\begin{gathered}
a x+b y+c=0 \\
o r \\
a x+b y=c \\
\text { ' } x \text { ' term must be first } \\
\text { ' } a \text { ' must be positive } \\
\text { ' } a^{\prime}, b^{\prime} \text { and 'c must be integers }
\end{gathered}
$$

iv) The important line of working here is:
$m_{1} \times m_{2}=-1<$ Must write this
Mary students attempted alternate methods:
$\frac{\text { Ply the goren the oren }}{\text {-Was }}$

- Was accosted although mary did not know
how to we workighto show $a^{2}+b^{2}=6$?
how to use working to thaw bizarre final
It left man g when the
line of: $\quad 40=40 \longleftarrow$ What does prove?
Instead ty this RIP $o^{2}+b^{2}=c^{2}$ Also this method LH

$\frac{\text { Perpend insular Distance }}{\text { - Poorly applied }}$
- Mary assumed
perpendicularity in
order to apply the
formula
Ore
A
of
in
A significant review
of perpendicular lines
in coordicurde genedy
is neecessang f.
this cohort
v) Poorly dore.

This is a simple question if
you know and understand the formula
$m=\tan \theta$
b)

$\angle B A C=180-\angle A B E-\angle B E A$ (angle sum of

$$
\begin{aligned}
& =180-\angle A B E-\angle B E A \text { (angle sum ot } \\
& =180-24-51 \quad \text { triangle) } \quad 1 \text { monk for correct angl }
\end{aligned}
$$

$$
=105^{\circ} \quad 2 \text { marks for correct angle }
$$

(i) $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

$$
\begin{aligned}
& =\frac{11^{2}+15^{2}-7^{2}}{2 \times 11 \times 1)} \\
& =\frac{9}{10} \text { as required }
\end{aligned}
$$

ii) As $\cos A=\frac{9}{10}$

$$
\operatorname{Sin} A=\frac{\sqrt{19}}{10}
$$

Using sine rule in $\triangle A B C$
d) $\frac{d\left(e^{f(x)}\right)}{d x}=f^{\prime}(x) e^{f(x)}$

$$
\begin{array}{ll}
f(x)=\sqrt{3} x^{2} \\
f^{\prime}(x) & =2 \sqrt{3} x
\end{array} \quad \begin{aligned}
& \text { 2maks for } \\
& \begin{array}{l}
\text { correct derivative }
\end{array} \\
& \frac{d\left(e^{\left.\sqrt{3} x^{2}\right)} d x\right.}{d x}=2 \sqrt{3} x \times e^{\sqrt{3} x^{2}} \\
& \\
& -2 \sqrt{3} e^{\sqrt{3} x^{2}}
\end{aligned} \quad \begin{aligned}
& \text { mark for single } \\
& \text { mistake in } f^{\prime}(x) \\
& \text { or power of }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x}{\sin A}=\frac{11}{\sin \frac{\pi}{3}} \quad 1 \text { mark for } \frac{\sin A=\frac{\sqrt{19}}{10}}{O R} \\
& \frac{x}{\frac{\sqrt{7}}{10}}=\frac{\frac{11}{58}}{\frac{5}{2}} \\
& \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
& \frac{x}{\sqrt{9}}=\frac{11}{5 \sqrt{3}} \\
& x=\frac{115 \sqrt{19}}{5 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{11557}{15} \\
& 2 \text { oaks } \\
& \begin{array}{l}
\text { for exact } \\
\text { form }
\end{array} \\
& B C=\frac{11 \sqrt{57}}{15} \mathrm{~cm}
\end{aligned}
$$

b).A lot of poor "Reasons" Please review the list of formal, acceptable reasons

- Many overcomplicated the question which would have wasted a lot of time. For geometry questions, consider your strategy BEFORE you start finding angles. When practising, look for the must efficient methods
- Don'f forget this
property
(Exterior aye of triangle
is equal to the sum of the
interior opposite angles)
(i) Need to revieu/memorise this
form of the case rate.

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Dort skip any steps for
"show" questions
ii) Very poorly dene. If you
wort a different ratio
using the same angle)
DRAW A TRIANGLE
Make sure sine rule is all
in the same triangle.
Put all working, even if
you den't gat to the fol
answer. Mary would have
gained a mark for sabstionting $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
d) Poorly dore

See formula sheet

$$
\text { ai) } \begin{aligned}
& \frac{d(6 x-5)^{3}}{d x}=3(6 x-5)^{2} \times 6 \\
&=18(6 x-5)^{2} \\
& \text { ii) } \begin{aligned}
\int(6 x-5)^{2} d x & =\frac{1}{18} \int 18(6 x-5)^{2} d x \\
& =\frac{1}{18}(6 x-5)^{3}+c
\end{aligned} \text {.c }
\end{aligned}
$$

ii) Chair role.

Multiply by derivative of inner function
ii) Although this question was
fairly simple and could
be done without part (i).
mary wrong answers completely
ignored the connection to pat (i).
For "Pifferentiote...hence integrate"
style questions, bot for the connection.

$$
A L \text { So }=\frac{111}{+1+c \mid}=
$$

(a) For the curve $y=\frac{1}{3} x^{3}-9 x+2$,
(i) Find the coordinates of the stationary points and determine their nature.

$$
\begin{aligned}
& y=\frac{1}{3} x^{3}-9 x+2 \\
& y^{\prime}=x^{2}-9 \\
& y^{\prime}=0 \text { for } x=3 \text { or }-3 \\
& y^{\prime \prime}=2 x \\
& \text { when } x=3
\end{aligned}
$$

$$
y=\frac{27}{3}-27+2=-16
$$

$$
y^{\prime \prime}=6>0 \text { minimum at }(3,-16)
$$

$$
\text { when } x=3
$$

$$
y=-9+27+2=20
$$

$$
y^{\prime \prime}=-6<0 \text { maximum at }(-3,11)
$$

(ii) Sketch the curve labelling the stationary points (x-intercepts are NOT required).

3 marks correct stationary points and nature

2 marks correct stationary points and incorrect nature or
Correct nature and incorrect y-coord

1 mark correct expression for $y^{\prime}=0$

2 marks correct graph with correct max and min shown. Graph match part
(i)
-1 mark for:

- Incorrect shape
- Incorrect max/min
- Incorrect y-int
(b) A parabola has equation $y^{2}-6 y-3=12 x$.
(i) Write the equation of the parabola in the form

$$
\begin{aligned}
& (y-k)^{2}=4 a(x-h) \\
& y^{2}-6 y-3=12 x \\
& y^{2}-6 y+9=12 x+3+9 \\
& (y-3)^{2}=12(x+1) \\
& (y-3)^{2}=4(3)(x+1)
\end{aligned}
$$

1 mark correct equation no working required

Done well. This questions did not ask for the point of inflection. Many students calculated this unnecessarily.

Marks were deducted for no y int, poor shape, and no labelling. A dot on the graph is not labelling! The axes
should have a scale.

Several errors in completing the square.
(ii) Determine the coordinates of the vertex.
vertex at $(1,3)$

1 mark correct location no working required

Students should draw a diagram to help determine the focus when vertex is known. Many students assume it was concave up not a sideways parabola.
(iii) Determine the coordinates of the focus.
$a=3$
focus at $(4,3)$
(c) The graph shows the functions $y=\cos \left(\frac{\pi x}{2}\right)$ and the line $6 x-2 y-3=0$.
Calculate the shaded area as an exact value.
$A=\int_{0}^{\frac{2}{3}} \cos \frac{\pi x}{2}-\left(3 x-\frac{3}{2}\right) d x$
$=\left[\frac{2}{\pi} \sin \frac{\pi x}{2}-\frac{3 x^{2}}{2}+\frac{3}{2} x\right]_{0}^{\frac{2}{3}}$
$=\left[\frac{2}{\pi} \sin \frac{\pi x}{2}-\frac{3 x^{2}}{2}+\frac{3}{2} x\right]_{0}^{\frac{2}{3}}$
$=\left[\frac{2}{\pi} \sin \left(\frac{\pi}{2} \times \frac{2}{3}\right)-\frac{3}{2} \times\left(\frac{4}{9}\right)+\frac{3}{2} \times \frac{2}{3}-0\right]$
$=\frac{2}{\pi} \times \frac{\sqrt{3}}{2}-\frac{2}{3}+1$
$=\frac{\sqrt{3}}{\pi}+\frac{1}{3} \quad$ or $\quad \frac{\pi+3 \sqrt{3}}{3 \pi}$

1 mark correct location no working required

2 marks correct simplified exact value with working

1 mark correct integrated expression

Integration of $\int \cos \frac{\pi x}{2}=\frac{2}{\pi} \sin \frac{\pi x}{2}$
Was a problem. Students who evaluated the integral as a single expression did better than those that tried to break it up into triangles.
Some students incorrectly tried to calculate the area under the curve using areas of sectors.
(d) The quokka population on the West Australian Mainland was decimated by a bushfire in 2015. The fire destroyed a significant amount of forest and the population on 1st February 2015 dropped to just 39.
Recent surveys have shown that the quokka population is increasing according to the equation $P=A e^{k t}$ where A and k are constants and t is time measured in months. On $1^{\text {st }}$ February 2018 the population had increased to 115.
(i) Calculate the value of A and show that the value of $k=0.03$ (to 2 decimal places).
$P=A e^{k t}$
$t=0 \quad P=39$
$\therefore A=39$
1st Feb $2018 t=36$ months
$39 \mathrm{e}^{36 k}=115$
$36 k=\ln \left(\frac{115}{39}\right)$
$k=0.03$
(ii) If this trend continues, how many quokkas will be in Western Australia on $1^{\text {st }}$
February 2023?
In 8 years from $2015 \mathrm{t}=96$ months
$P=A e^{k t}$
$P=39 e^{0.03 \times 96}$
$=694.75$
$P=695$ quokkas
(iii) What was the rate of increase on $1^{\text {st }}$

February 2019?

$$
\begin{aligned}
\frac{d P}{d t} & =39 e^{0.03 t} \times 0.03 \\
& =1.17 e^{0.03 t}
\end{aligned}
$$

when $t=48$ months

$$
\frac{d P}{d t}=1.17 e^{0.03 \times 48}
$$

$$
=4.94
$$

$\therefore 4.9$ quokkas per month

2 marks correct value of A and k with working

1 mark, 1 correct variable

1 mark correct value from correct working

2 marks

correct answer
from correct
working

1 mark correct
value
$\frac{d P}{d t}=1.17 e^{0.03 t}$

Calculation of value of k is a "show that" question. All working must be shown. Many students skipped a step and so lost a mark.

The unrounded answer should be given $P=694.75$....... $P=695$ quokkas

Students who differentiated did well.
Many students trued to calculate this using percentages unsuccessfully.

Q14 Feedback
a is eur Many students went straight to decimals without clearly stating the exact answer first. You should only answer in decimals if the question requests it.

Many didit 2 applications of trapezoidal rule, and usedsimpoon's Rule incorrectly.
üi Only 60% of students realised simpsonis Rule is better and could explain why. Please answer the on

6 i generally well done, some didn't answer in
ii move than half got this incorrect ar they didit answer the Qi.
c Those who drew a probability thee did well.
i most got this correct
ii many forgot cases, and didit show sufficient correct working to gain marks.
d. Many made mistakes here. Some rotated about x-axis Not the y-axis Some didnit use $v=\pi \int x^{2} d y$.
Many struggled to get x^{2} correctly, and integrated fractional powers poorly. As per pasta, many students answered in decimals without giving a clear exact answer.
e i Mostly done well but many lost matt due to assuming too much or incorect reasoning.
ii Mostly done well, but a number wrote $\frac{7}{2}$ instead of $\frac{7}{3}$
Many would have done better if they drew $\triangle A D E, \triangle A B C$ separately first...

Q14

$$
\begin{aligned}
i & \approx \frac{h}{2}\{f(a)+f(\text { b })\} \\
h & =1 \\
\therefore A & =\frac{1}{2}\{f(0)+2 f(1)+f(2)\} \text { as } 2 \text { trapeziums } \\
A & =\frac{1}{2}\{0+2+\sqrt{2})
\end{aligned}
$$

$$
A=\frac{2+\sqrt{2}}{2} \text { units }^{2} \quad[1]
$$

$\ddot{\mu} \quad A \approx \frac{h}{3}\{d f+4 d m+d l\}$

$$
\begin{align*}
& h=1 \\
& A \approx \frac{1}{3}\{f(0)+4 f(1)+f(2)\} \\
& A \approx \frac{1}{3}(0+4+\sqrt{2}) \\
& A \approx \frac{4+\sqrt{2}}{3} \tag{1}
\end{align*}
$$

iii Simpson's Rule will be more accurate as it will use a concave down parabolic arc. If will be accurate (exact) or close to. Trapezoidal Rule as shown in diagram [.] above will underestimate the area, as top of trapeziums under the cure.
b $\quad 3^{n}+2 n$
i. day $1^{\prime}: 3^{\prime}+2 \times 1=5$
$\operatorname{day} 2: \quad 3^{2}+2 \times 2=9+4=13$
day 3: $3^{3}+2 \times 3=27+6=33 \quad[1]$
ii \quad After 15 days
we have 2 series

Arithmetic $a=2, d=2, n=15$

$$
S_{15_{A}}=\frac{15}{2}\{2 \times 2+14 \times 2\}=240
$$

cither arp
Geometric $a=3, r=3, n=15$ orgep correct [1]

$$
\begin{aligned}
S_{15_{G}} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
& =\frac{3\left(3^{15}-1\right)}{3-1}=21,523,359
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Total } & =S_{15}+S_{15 G} \\
& =21,523,599 \quad[1]
\end{aligned}
$$

$C \quad 3 R, 4 B, 7 G$
total $=14$ marbles

$$
\therefore \quad \begin{aligned}
P(R G)+P(G R) & =P(\text { draw }(R, 1 G \text { any order }) \\
& =\frac{3}{14} \times \frac{7}{13}+\frac{7}{14} \times \frac{3}{13} \\
& =\frac{3}{13} \quad[1]
\end{aligned}
$$

$\ddot{i} \quad$.at least one green)
$=1-p($ no green $)$ in this case justaseasy to leverage part;

$$
P(\text { at least one green })=P(R G)+P(B G)
$$

$+P(G)$ on 1 straw
$O R \quad 1-P(R R+R B+B R+B B)$

$$
\begin{aligned}
& =1-p\left(\begin{array}{l}
\frac{3}{14} \times \frac{2}{13}+\frac{3}{14} \times \frac{4}{13} \\
+\frac{4}{14} \times \frac{3}{13} \times 2
\end{array}\right] \\
& =1-\frac{3}{13}
\end{aligned}
$$

$$
=\left(\frac{3}{14} \times \frac{7}{13}\right)+\left(\frac{4}{14} \times \frac{7}{13}\right)+\frac{7}{14}
$$

$$
=\frac{3}{26}+\frac{2}{13}+\frac{1}{2}[1]
$$

$$
=\frac{10}{13} \quad[1]
$$

$d \quad y=x^{6}+2$

$$
A=\pi \int x^{2} \cdot d y
$$

need x^{2}

$$
\begin{aligned}
& y=x^{6}+2 \\
& \left(x^{6}=y-2\right) \text { ewhe root all } \\
& x^{2}=\sqrt[3]{y-2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore A & =\pi \int_{2}^{8}(y-2)^{1 / 3} d y \\
A & =\pi\left[\frac{3(y-2)^{4 / 3}}{4}\right]_{2}^{8} \\
A & =\frac{3 \pi}{4}\left[(y-2)^{4 / 3}\right]_{2}^{8} \\
A & =\frac{3 \pi}{4}\left(6^{4 / 3}-0\right)
\end{aligned}
$$

[1] integrate our
[1] $\quad A=\frac{3 \pi}{4} \cdot \sqrt[3]{6^{4}}$ should be exact answer.

$$
\left.\begin{array}{rl}
A & =25.68 / 89 \\
A & =25.69 \text { cents }
\end{array}\right] \Leftarrow \text { only if Un wanted } 4 \text { sig figs },
$$

\qquad
\qquad
\qquad
\qquad

in $\triangle A D E$ and $\triangle A B C$

$$
\left.\begin{array}{l}
\angle D A E=\angle B A C \text { (common) } \\
\frac{A B}{A D}=\frac{A C}{A E}=\frac{3}{1}=3
\end{array}\right\}\left[\begin{array}{l}
\end{array}\right.
$$

$\therefore \triangle A D E\|\| \triangle A B C$ (2 pairs of sides in the same ratio \qquad and incurded angle equal $[1]$
$\ddot{\mu} \quad \frac{D E}{B C}=\frac{A D}{A B} \quad \begin{array}{r}\text { corresponding side of } \\ \text { similar A's are in }\end{array}$
the same ratio)

$$
\frac{D E}{7}=\frac{1}{3}
$$

$\therefore D E=\frac{7}{3}$ units. $[1$, with working]

Question 15

(a) (i)

$$
\begin{aligned}
S A=2 \pi r^{2}+2 \pi r h & =\frac{300 \pi}{100} \times 90(1 \text { mark }) \\
2 \pi r^{2}+2 \pi r h & =270 \pi \\
r^{2}+r h & =135 \\
r h & =135-r^{2} \\
h & =\frac{135-r^{2}}{r}(1 \text { mark })
\end{aligned}
$$

1 mark for initial statement
2 marks clear and thorough working to get the result for t
(ii)

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi r^{2}\left(\frac{135-r^{2}}{r}\right)(1 \text { mark }) \\
& =\pi\left(135 r-r^{3}\right) \\
V^{\prime} & =\pi\left(135-3 r^{2}\right) \\
V^{\prime} & =0(\text { for stationary points) } \\
\pi\left(135-3 r^{2}\right) & =0 \\
3 r^{2} & =135 \\
r^{2} & =45 \\
r & = \pm \sqrt{45} \\
& =3 \sqrt{5} \text { (must be positive) (1 mark) }
\end{aligned}
$$

Test for maximum:

$$
\begin{gathered}
V^{\prime \prime}=\pi(-6 r) \\
V^{\prime \prime}(3 \sqrt{5})=\pi(-6(3 \sqrt{5})) \\
\therefore V^{\prime \prime}(3 \sqrt{5})<0 \\
\therefore r=3 \sqrt{5} \text { gives a maximum (1 mark) }
\end{gathered}
$$

> 1 mark for first substitution
> 2 marks with correct answer,
> 3 marks for test of correct answer
(b) In $\triangle A C D$ and $\triangle E C B$:
$C A=C B$ (equilateral $\triangle A B C$, sides equal)
$E C=C D$ (equilateral $\triangle C D E$, sides equal)
$\angle E C B=180-60=120(\angle$ on a straight line add to 180 and $\angle A C B=60$
as equilateral triangle)
Similarly $\angle A C D=120$
$\therefore \angle E C B=\angle A C D$
$\therefore \triangle A C D \equiv \triangle E C B$ (SAS)

```
+1 mark for factual statements
+1 mark for reasoning
+1 mark for conclusion and reason
```

(c) (i)

$$
\begin{aligned}
\int \frac{d V}{d t} d t & =\int-40(30-t) d t \\
V & =-40\left(30 t-\frac{t^{2}}{2}\right)+C(1 \text { mark }) \\
V(0) & =-40\left(30 \times 0-\frac{0^{2}}{2}\right)+C=18000 \\
\therefore C & =18000 \\
\therefore V & =-40\left(30 t-\frac{t^{2}}{2}\right)+18000(1 \text { mark }) \\
V & =20 t^{2}-1200 t+18000
\end{aligned}
$$

+1 mark for correct integration
+1 mark for final correct solution stated with C calculated
(ii)

$$
\begin{aligned}
V=0 & =-40\left(30 t-\frac{t^{2}}{2}\right)+18000 \\
30 t-\frac{t^{2}}{2} & =450 \\
60 t-t^{2} & =900 \\
t^{2}-60 t+900 & =0 \\
(t-30)^{2} & =0 \\
t-30 & =0 \\
t & =30
\end{aligned}
$$

The tank will take 30 seconds to empty
+1 mark for correct answer with working

(iii)
+1 mark for correct shape and endpoints
(d) Total area given by

$$
\begin{aligned}
\int_{0}^{6} 6 x-x^{2} d x & =\left[\frac{6 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{6} \\
& =\frac{6 \times 6^{2}}{2}-\frac{6^{3}}{3} \\
& =36
\end{aligned}
$$

therefore the area of half will be 18 (1 mark)

The two lines intercept when:

$$
\begin{aligned}
y & =k x \\
y & =6 x-x^{2} \\
\therefore k x & =6 x-x^{2} \\
x^{2}+(6-x) x & =0 \\
x(x+k-6) & =0
\end{aligned}
$$

so $x=0$ or, more importantly, $x=6-x$

$$
\begin{aligned}
\int_{0}^{6-k} 6 x-x^{2}-k x d x & =18(1 \text { mark }) \\
{\left[\frac{6 x^{2}}{2}-\frac{x^{3}}{3}-\frac{k x^{2}}{2}\right]_{0}^{6-k} } & =18 \\
3(6-k)^{2}-\frac{(6-k)^{3}}{3}-\frac{k(6-k)^{2}}{2} & =18 \\
18(6-k)^{2}-2(6-k)^{3}-3 k(6-k)^{2} & =108 \\
(6-k)^{2}(18-2(6-k)-3 k) & =108 \\
(6-k)^{2}(6-k) & =108 \\
(6-k)^{3} & =108 \\
6-k & =\sqrt[3]{108} \\
k & =6-\sqrt[3]{108}(1 \text { mark })
\end{aligned}
$$

+1 mark for identifying the correct area $A=18$ +1 mark for a correct integral expression equivalent to a correct area
(this can take a few forms)
+1 for correct answer with necessary working

Q16 2019 Mathematics Trial marking scheme

Q\#	Solution \quad Marking criteria	Marker's feedback
16(a)	$\frac{d}{d x}\left(a^{x}\right)$ $=a^{x} \log _{e} a$ $\frac{d}{d x}\left(a^{x}\right)$ $=\frac{d}{d x}\left(e^{\log _{e} a^{x}}\right) 1$ mark 1 mark: correctly $=\frac{d}{d x}\left(e^{x \log _{e} a}\right)$ differentiates $=e^{x \log _{e} a} \times \log _{e} a$ (students must $=a^{x} \times \log _{e} a$ show all lines of working)	Very poorly done by almost all students. This is a proof you must learns.
$\begin{aligned} & 16 \\ & \text { (b) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & 6 \% \text { p.a. }=\frac{0.06}{12}=0.005 \text { per month } \\ & A_{1}=300000 \times 1.005-900 \\ & A_{2}=(300000 \times 1.005-900) \times 1.005-900 \times 1.02 \\ & =300000 \times 1.005^{2}-900 \times 1.005-900 \times 1.02 .1 \text { mark } \\ & A_{3}=\left(300000 \times 1.005^{2}-900 \times 1.005-900 \times 1.02\right) \times 1.005 \\ & \quad-900 \times 1.02^{2} \\ & =300000 \times 1.005^{3}-900 \times 1.005^{2}-900(1.02)(1.005)-900 \times 1.02^{2} \\ & =300000 \times 1.005^{3}-900\left[1.005^{2}+(1.02)(1.005)+1.02^{2}\right] 1 \text { mark } \end{aligned}$	1 mark: gives the correct expression for A_{2} 1 mark: proves the correct result for A_{3}
	You need to show all lines of working. Students who wrote the full expression A_{1}, multiplied by 1.005 and then subtracted the withdrawal amount was more successful than those who simply executed the operation. Please make sure yow are showing all the steps. Please remember, the question NOT asking you to STATE A_{1}, A_{2} and A_{3}. That is you need to DERIVE the expressions.	
16 (b) (ii)	$\begin{aligned} & A_{n}=300000 \times 1.005^{n}-900\left[1.005^{n-1}+(1.02)(1.005)^{n-2}+\right. \\ & \left.(1.02)^{2}(1.005)^{n-3}+\cdots+(1.02)^{n-2}(1.005)+1.02^{n-1}\right] 1 \text { mark } \\ & =300000 \times 1.005^{n}-900 \times\left[1.005^{n-1}+(1.02)(1.005)^{n-2}+\right. \\ & \left.(1.02)^{2}(1.005)^{n-3}+\cdots+(1.02)^{n-2}(1.005)+1.02^{n-1}\right] \\ & =300000 \times 1.005^{n}-900 \times 1.02^{n-1} \times \\ & \quad\left[\left(\frac{1.005}{1.02}\right)^{n-1}+\left(\frac{1.005}{1.02}\right)^{n-2}+\cdots+\left(\frac{1.005}{1.02}\right)+1\right] \\ & =300000 \times 1.005^{n}-900 \times 1.02^{n-1} \times 1 \times \frac{1-\left(\frac{1.005}{1.02}\right)^{n}}{1-\left(\frac{1.055}{1.02}\right)} \quad 1 \text { mark } \\ & =300000 \times 1.005^{n}-61200 \times 1.02^{n-1} \times 1 \times\left(1-\left(\frac{1.005}{1.02}\right)^{n}\right) \\ & =300000 \times 1.005^{n}-61200 \times \frac{\left(1.02^{n}-1.005^{n}\right)}{1.02} \\ & =300000 \times 1.005^{n}-60000 \times\left(1.02^{n}-1.005^{n}\right) \\ & =60000\left(5 \times 1.005^{n}-1.02^{n}+1.005^{n}\right) . \\ & =60000\left(6 \times 1.005^{n}-1.02^{n}\right) . \\ & 1 \text { mark } \end{aligned}$	1 mark: writes the expression for A_{n} 1 mark: applies the series formula to simplify 1 mark: manipulates to prove the result
	$\begin{aligned} & \text { Alternately, } \\ & \quad A_{n}=300000 \times 1.005^{n}-900\left[1.005^{n-1}+(1.02)(1.005)^{n-2}\right. \\ & \quad+(1.02)^{2}(1.005)^{n-3}+\cdots+(1.02)^{n-2}(1.005) \\ & \left.\quad+1.02^{n-1}\right] \\ & =300000 \times 1.005^{n}-900 \times 1.005^{n-1} \times \end{aligned}$	Students need to write the expanded form of A_{n} to reveal the pattern, soo that the common ratio is obvious. If requires write A_{4} to understand what is going ons

	$\begin{aligned} & \quad\left[1+\frac{1.02}{1.005}+\left(\frac{1.02}{1.005}\right)^{2}+\left(\frac{1.02}{1.005}\right)^{3}+\cdots+\left(\frac{1.02}{1.005}\right)^{n-1}\right] \\ & =300000 \times 1.005^{n}-900 \times 1.005^{n-1} \times 1 \times \frac{\left(\frac{1.02}{1.05}\right)^{n}-1}{\left(\frac{1.02}{1.005}\right)-1} \\ & =300000 \times 1.005^{n}-60300 \times 1.005^{n-1} \times 1 \times\left(\left(\frac{1.02}{1.005}\right)^{n}-1\right) \\ & =300000 \times 1.005^{n}-60300 \times \frac{\left(1.02^{n}-1.005^{n}\right)}{1.005} \\ & =300000 \times 1.005^{n}-60000 \times\left(1.02^{n}-1.005^{n}\right) \\ & =60000\left(5 \times 1.005^{n}-1.02^{n}+1.005^{n}\right) . \\ & =60000\left(6 \times 1.005^{n}-1.02^{n}\right) . \quad 1 \text { mark } \end{aligned}$	Very poorly done due to lack of writing all logical steps
(iii)	$\begin{aligned} A_{n} & =60000\left(6 \times 1.005^{n}-1.02^{n}\right) \\ \frac{d A_{n}}{d n} & =60000\left(6 \times 1.005^{n}(\ln 1.005)-1.02^{n}(\ln 1.02)\right) \end{aligned}$ When A_{n} is maximum, $\frac{d A_{n}}{d n}=0$ $\begin{aligned} & 6 \times 1.005^{n}(\ln 1.005)-1.02^{n}(\ln 1.02)=0 \\ & \begin{array}{c} \left(\frac{1.005}{1.02}\right)^{n}=\frac{6 \times 1.005^{n}(\ln 1.005)}{6 \times \ln (1.02)} \\ =0.6617 \ldots . . \\ n \ln \left(\frac{1.005}{1.02}\right)=1.02^{n}(\ln 1.02) \\ n \end{array} \\ & n=\frac{\ln (0.6617 \ldots)}{\ln \left(\frac{1.0617}{1.02}\right)} \\ & \end{aligned}$ Test: Hence, A_{n} is maximum, between $n=27$ and $n=28$ When $n=26, A_{n}=309440.35$ $\begin{array}{ll} n=27, & A_{n}=309481.48 \\ n=28, & A_{n}=309492.69 \\ n=29, & A_{n}=309473.23 \end{array}$ Hence, $n=28$ months	1 mark: correctly differentiates Very few students realised that you could use the result from (a). common errors: $\begin{gathered} \left.6 \times 1.005^{n}\right)=6.03^{n} \\ \frac{d}{d x}\left(1.005^{n}\right)=n(1.005)^{n-1} \end{gathered}$ Some students let $A_{n}=0$ to find the value of w that maximised A. Very few students tested for maximin. 1 mark: solves $\frac{d A_{n}}{d n}=0$ 1 mark: proves $\mathrm{n}=27$ gives the maximum A_{n} and finds the maximum A_{n}.

| c) |
| :--- | :--- | :--- |
| (i) |

