Total marks - 120
Attempt Questions 1 - 10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a)

Find the value of $\frac{\sqrt{12.35-8.68}}{6.5+2.9}$ correct to 2 decimal places.
(b) Simplify $\frac{2 x}{3}-\frac{x+2}{5}$
(c) Rationalise the denominator of the expression $\frac{5}{1-\sqrt{3}}$.
(d) Differentiate $x^{3}-7 x$
(e) Solve $|x-1|=2 x-1$
(f) A girl deposits $\$ 1200$ in a bank account, which pays 9% per annum. How much will be in the account after 10 years, if interest is calculated monthly?
(a)
Differentiate
(i) $\sqrt{2 x+1}$
(ii) $x \ln x$
(iii) $\frac{\ln x}{\sin x}$
(b) Find
(i) $\int 3 e^{3 x} d x$
(ii) $\int \sec ^{2} 3 x d x$ centre. Find, to 1 decimal place, the length of the arc cut off by the chord AB .

(d) Show that $\tan \beta-\sin ^{2} \beta \tan \beta=\sin \beta \cos \beta$.
(a) For the equation $x^{2}+(k+6) x-2 k=0$:
(i) Prove the discriminant is $k^{2}+20 k+36$
(ii) Find the alues of k for which this equation has real roots.
(b) In the diagram, $O P Q R$ is a quadrilateral.

(i) Find the midpoint of the interval joining $P R$.
(ii) Find the gradient of $Q R$.
(iii) Show that the equation of $Q R$ is $x-y+6=0$
(iv) Find the exact length of $Q R$.
(v) Show that $Q R$ is parallel to $P O$.
(vi) Find the exact perpendicular distance from O to $Q R$.
(vii) Hence find the area of parallelogram $O P Q R$.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) (i) How many terms are there in the sequence:

$$
-8,-3,2, \ldots \ldots, 122 ?
$$

(ii) What is the sum of this sequence?
(b)

A new hallway table (shaded) is in the shape of a circle with a small segment removed as shown. The circle has a centre O and radius 80 centimetres. The length of the straight edge $A B$ is also 80 centimetres.
(i) Explain why $\angle A O B=\frac{\pi}{3}$.
(ii) Find the area of the hallway table.
(c) The point $P(x, y)$ moves in the $X Y$-plane such that its distance from the point $R(-1,0)$ is always twice its distance from the point S $(2,0)$.
(i) Find the equation of the locus of point P.
(ii) Describe the locus geometrically.
(a)

$$
\text { Evaluate } \sum_{n=2}^{6} n^{3}
$$ points in the interval $3 \leq x \leq 7$.

Use all the data to approximate $\int_{3}^{7} f(x) \cdot d x$ using the Trapezoidal Rule.

x	3	4	5	6	7
y	1.21	2.83	4.15	5.32	6.21

(c) Solve the following equation for x :

$$
e^{2 x}+3 e^{x}-10=0
$$

(d) A bag contains 7 red, 3 white, and 8 blue marbles.
(i) One marble is drawn at random from the bag. What is the probability that it is not blue?
(ii) If 2 are drawn in succession with replacement, find the probability that the outcome will be a red followed by a blue.
(iii) If 3 marbles are drawn without replacement, find the probability that they are all red.
(a) (i) Write down the exact value of $\sin 225^{\circ}$.

Question 6 continues on next page

Kincoppal-Rose Bay, School of the Sacred Heart
HSC Mathematics Internal Examination, June 2005
Question 6 (continued)
(c)

(i) Show that $x=\frac{\pi}{3}$ is a solution to the equation $\sin x=\sin 2 x$.
(ii) Find the exact shaded area in the diagram above.

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) A curve is given by the function:

$$
f(x)=x^{3}-2 x^{2}-4 x+8
$$

(i) Find the x-intercepts of the curve.
(ii) Find the turning points of the curve and determine their nature.
(iii) For what values of x is the function concave down?
(b) $\quad P Q R S$ is a rhombus. $P R$ is produced to T such that $S R=T R$.

(i) Show that $\angle S P Q=4 \angle S T R$.
(ii) Show that R is the midpoint of $P T$, given that $\angle P S T=90^{\circ}$.
(a) Give, in simplest form, the exact value of $\int_{1}^{e} \frac{d x}{3 x}$
(b) The graph below is of the curve $y=\sin \pi x$.

(i) Find the axis of symmetry for $y=x^{2}-4 x+3$
(ii) Copy the graph into your answer booklet and on the same number plane graph the curve $y=x^{2}-4 x+3$
(iii) Determine the range of $y=x^{2}-4 x+3$
(iv) Hence find the number of real solutions to the equation $\sin \pi x=x^{2}-4 x+3$, 1 for $0 \leq x \leq 2$.

Question 8 (continued)
(c)

The shaded region that lies between the x-axis and the curve $y=\sec x$, from $x=0$
to $x=\frac{\pi}{3}$, is rotated about the x-axis to form a solid.
Find the volume of the solid correct to 1 decimal place.

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) Find the equation of the normal to the curve $y=x \sin x$ at the point where $x=\frac{\pi}{2}$.
(b) Solve $\ln (8 x-12)=2 \ln x$
(i) Show that $\frac{3 x-5}{x^{2}-25}=\frac{1}{x-5}+\frac{2}{x+5}$
(ii) Hence, find $\int \frac{3 x-5}{x^{2}-25} d x$
(d) A little green frog jumps 0.3 metres. It then jumps 0.2 metres, and on each 3 subsequent jump it travels half of the distance of the previous jump. Find the total distance through which the little green frog jumps.
(a) A cone shaped storage unit is constructed with a slant height of 20 metres.

(i) Show that the volume can be expressed as

$$
V=\frac{\pi}{3}\left(400 h-h^{3}\right)
$$

where h is the perpendicular height.
(ii) Hence find the value of h, such that the cone will have a maximum volume.
(b) John borrows $\$ 300000$ at 6% p.a. interest rate. He aims to pay the loan back in equal monthly instalments of $\$ M$ over 25 years.
(i) How many instalments will John make?
(ii) Show that immediately after making his first monthly instalment, John owed

$$
A_{1}=\$[300000 \times 1.005]-M
$$

where A_{1} is the amount owing after 1 month.
(iii) Show that immediately after making his third monthly instalment, John owed

$$
A_{3}=\$\left[300000 \times 1.005^{3}-M\left(1+1.005+1.005^{2}\right)\right]
$$

(iv) Calculate the value of M.

End of Examination

