2008

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Start a new booklet for each question

Total marks - 120

- Attempt Questions 1 - 10
- All questions are of equal value

Kincoppal-Rose Bay, School of the Sacred Heart
Mathematics HSC Trial Examination, August 2008

Blank Page
(a) A telephone directory is 4.5 cm thick. There are 2000 pages in it. Find the thickness in millimeters of one page in scientific notation correct to 2 significant figures.
(b) Factorise fully $8 x^{3}-27$
(c) Solve for $x: \quad|3 x+1|=x+9$

2
(d) Find the gradient of the function $y=3 x^{2}-4 x+1$ at $(3,1)$
(e) Find the length of an arc of a circle with radius 15 cm if the arc subtends an angle of 70° at the centre (leave answer in terms of π)
(f) Find the value of the pronumeral, giving reasons for your answer.

DIAGRAM NOT
TO SCALE

End of Question 1

Question 2 (12 marks) Use a SEPARATE writing booklet.

In the diagram $A B=B C$ and $C D$ is perpendicular to $A B$.
$C D$ intersects the y axis at P.
Copy the diagram onto your answer sheet.
(a) Find the length of $A B$.
(b) Hence show the coordinates of C are $(2,0)$
(c) Show the equation of $C D$ is $3 x+4 y=6$
(d) Show the coordinates of P are $\left(0,1 \frac{1}{2}\right)$
(e) Use Pythagoras' Theorem on $\triangle P O C$ to show the length of $C P$ is $21 / 2$ units.
(f) Prove that $\triangle A D P$ is congruent to $\triangle C O P$
(g) Hence calculate the area of the quadrilateral $D P O B$

End of Question 2

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) Differentiate with respect to x :
(i) $y=3 e^{4 x}+x^{2}-1$
(ii) $y=\frac{3 x-1}{2 x+3}$
(b) (i) Find $\int \frac{3 x}{x^{2}-4} d x$
(ii) Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} 3 \sin 2 x d x$
(c) Using an appropriate substitution, solve for x :

$$
4^{x}-12\left(2^{x}\right)+32=0
$$

(d) Prove $\tan \theta\left(1-\cot ^{2} \theta\right)+\cot \theta\left(1-\tan ^{2} \theta\right)=0$

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) Graph the intersection of the regions $y<-x^{2}+3$ and $y \geq|x-3|$
(b) Let α and β be the roots of the equation $x^{2}-5 x+2=0$. Find the values of
(i) $\alpha+\beta \quad$ 促
(ii) $\quad(\alpha+1)(\beta+1)$

2
(c) Find the values of k for which the quadratic equation $2 x^{2}-4 x+k=0$ has one root.
(d) Find the value of $\log _{5} 25$
(e) Given that $\frac{d^{2} s}{d t^{2}}=10-2 t, t \geq 0$, and $\frac{d s}{d t}=24$ when $t=0$, find t when $\frac{d s}{d t}=0$.

End of Question 4

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Alison decides to swim to improve her fitness levels.

On the first day she swims 450 metres, and on each day after that she swims 200 metres more than the previous day. That is she swims 650 metres on the second day, 850 metres on the third day and so on.
(i) How far does Alison swim on the $10^{\text {th }}$ day?
(ii) What is the total distance she swims in the first 10 days?
(iii) Alison wants to enter an ocean swimming competition which is a distance of 5.25 kilometres. On which day will she be ready to complete this distance?
(b) Find for x : $\quad \log _{2} x+\log _{2} 5=6$
(c)

The diagram above shows $\triangle A B C$, where $A P=P Q=Q C$ and $P Q R S$ is a rhombus.
(i) If $\angle S A P=x^{\circ}$ prove that $\angle S P Q=2 x^{\circ}$
(ii) Prove that $\angle A B C=90^{\circ}$
(d) Below is the graph of the function $y=f(x)$. In your answer booklet, draw a

2
possible sketch of $y=f^{\prime}(x)$

End of Question 5

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) Express with a rational denominator $\frac{1}{3-\sqrt{2}}$
(b) (i) Express 0.1° as an infinite series.
(ii) Hence express 0.1° as a fraction with no common factors.
(c) The diagram shows a cross-section of a river at a point where the width $A B$, across the river, is 60 metres.

DIAGRAM NOT TO
SCALE
(i) Using the Trapezoidal Rule and 6 strips, find the approximate area of the cross-section.
(ii) At the point of the cross-section, the river is flowing at the rate
of $80 \mathrm{~cm} /$ second. Calculate the volume of water that flows past this point in 1 second.
(d) Find the equation of the normal to curve $y=\sin 2 x \cos 2 x$ at the point $(\pi, 0)$.

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) Consider the function $f(x)=x^{3}-12 x$
(i) Show that the curve represents an odd function. $\mathbf{2}$
(ii) Show that the function has two stationary points and determine their nature.
(iii) Find the coordinates of the point of inflection . 1
(iv) Hence sketch the curve showing all important features $\quad \mathbf{1}$
(v) What is the relative maximum in the domain $-3 \leq x \leq 5$
(b) The limiting sum of a geometric series is 27
(i) Show that $a=27(1-r)$.
(ii) If the sum of the first three terms of the geometric series is 19 , 3 find the common ratio

End of Question 7

Question 8 (12 marks) Use a SEPARATE writing booklet.
(a) Below is the sketch of $y=\cos x$. It is also provided for you on page 18 (Attachment A)

(i) Using attachment A, graph the function $y=\sqrt{3} \sin x$.
(ii) The curves intersect twice in the domain. Show, algebraically, that the x coordinates of the points of intersection are $x=\frac{\pi}{6}, \frac{7 \pi}{6}$.
(iii) Find the area between the two curves.
(b) Three boats A, B and C are situated off Shark Island, as shown below.

DIAGRAM
NOT TO
SCALE

Boat A is due north of the island. Boat B is on a bearing of 060° from the island and Boat C is on a bearing of 240° from the island. Fish nets (of length 100 m) have been laid out between the island and each boat and also between boats A and B.
(i) Copy and complete the diagram showing all information.
(ii) Calculate the triangular area that boats A and B have netted, to the nearest square metre.
(iii) Calculate the length to the nearest metre of net needed between 2 boats A and C.

End of Question 8

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) The area enclosed by the curve $x y=3$, the x-axis and the lines $x=1$ and $x=4$, is rotated about the x-axis. Find the exact volume of the solid of revolution.

(b) The graph $y=\ln \left(\frac{1}{2} x\right)$ is shown below. Find the area between the x-axis, y-axis and the line $y=\ln 3$

Question 9 continued on page 14

Question 9 continued
(c)

$A B D$ is a sector of a circle, centre D, such that $A D=B D=24 \mathrm{~cm}$, arc
$A B=4 \pi \mathrm{~cm}$ and the line $A C$ is perpendicular to $B D$.
(i) Show that $\angle A D B$ is $\frac{\pi}{6}$
(ii) Show that the exact length of $D C$ is $12 \sqrt{3}$
(iii) Find the exact area of $A C B$ in terms of π

Question 10 (12 marks) Use a SEPARATE writing booklet.
(a) Betina's daughter was born on the $1^{\text {st }}$ August. On that day she opened a trust account by depositing $\$ 500$. Each year, on her birthday, she deposited $\$ 500$ into this trust account. She continued to do this up to and including her $17^{\text {th }}$ birthday. When her daughter turned 18 , Betina collected the total amount including interest from this account and presented it to her. This account paid interest at a rate of 6% per annum compounded every six months.
(i) Betina used the formula $A=P(1+r)^{n}$ to work out that her initial deposit amounted to $A=\$ 1449.14$ after 18 years. Write down values for P, r and n.
(ii) After 2 years the amount in the account is A_{2}.

$$
A_{2}=500\left(1.03^{2}+1.03^{4}\right)
$$

Write an expression for the amount in the account after 3 years, A_{3}.
(iii) Hence find the amount that Betina gives to her daughter on her $18^{\text {th }}$ birthday.
(b) A circular stained glass window of radius $\sqrt{5}$ metres requires metal strips for support along $A B, D C$ and $F G$.
O is the centre of the window.

DIAGRAM
 NOT TO SCALE
(i) Copy the diagram and information onto your answer page.
(ii) If $O F=O G=y$ metres and $F B=x$ metres, find an expression for y in terms of x.
(iii) Show that the total length L of the metal strips (i.e. $L=A B+D C+F G$) $\mathbf{1}$ is given by:

$$
L=4 x+2 \sqrt{5-x^{2}} .
$$

(iv) The window will have maximum strength when the length of the supports is a maximum. Find the value of x that will allow the window to have maximum strength.

End of Examination

Kincoppal-Rose Bay, School of the Sacred Heart
Mathematics HSC Trial Examination, August 2008

Blank Page

(ATTACHMENT A)

Question 8

(a) (i)

Solutions:

Question 1

(a) $4.5 \mathrm{~cm}=45 \mathrm{~mm}$

$$
\sqrt{v}
$$

$45 \div 2000=0.0225 \mathrm{~mm}$
$2.25 \times 10^{-2} \mathrm{~mm}=2.3 \times 10^{-2} \mathrm{~mm}(2 \mathrm{sig}$ figs $)$
(b) $8 x^{3}-27=(2 x-3)\left(4 x^{2}+6 x+9\right)$
(c) $|3 x+1|=x+9$

$$
\begin{aligned}
& 3 x+1=x+9 \quad \text { or } \quad-3 x-1=x+9 \\
& 2 x=8 \\
& \therefore x=4 \\
& -4 x=10 \\
& x=-2.5
\end{aligned}
$$

(d) $y=3 x^{2}-4 x+1$
$\therefore \frac{d y}{d x}=6 x-4$
\therefore at $x=3 \frac{d y}{d x}=6(3)-4=14 \quad \sqrt{\checkmark}$
(e) $70^{\circ}=\frac{70 \pi}{180}=\frac{7 \pi}{18}$ radians $\sqrt{\checkmark}$

$$
\text { since } l=r \theta
$$

$$
\begin{aligned}
& l=15 \times \frac{7 \pi}{18} \\
& l=\frac{35 \pi}{6} \mathrm{~cm}
\end{aligned}
$$

(f) $\quad x=180-83$
$\therefore x=97^{\circ}$
(corresponding angles are equal on parallel lines)
(angles on a straight line are supplementary)

Question 2

(a) $d_{A B}=\sqrt{(-3-0)^{2}+(0-4)^{2}}=\sqrt{25}$

$$
=5 \text { units }
$$

(b) C is 5 units from $B \quad \therefore-3+5=2 \quad \therefore C(2,0) \quad \sqrt{\checkmark}$
(c) $m_{A B}=\frac{4-0}{0--3}=\frac{4}{3} \quad$ sin ce $A B \perp C D$ then $m_{A B}=-\frac{3}{4} \quad \sqrt{\checkmark}$
$\therefore y-0=-\frac{3}{4}(x-2) \quad \boxed{\checkmark}$
$4 y=-3 x+6$
$\therefore 3 x+4 y=6$
(d) P has coordinates $(0, y)$
(e) $C P^{2}=O C^{2}+O P^{2}$
$C P^{2}=2^{2}+1.5^{2}$
$C P^{2}=4+2.25$
$C P^{2}=6.25$
$C P=\sqrt{6.25}=2.5$ units
(f) $\quad \angle A P D=\angle O P C \quad$ (vertically opposite angles are equal)

$$
A O=4 \text { units }
$$

$$
O P=1.5 \text { units }
$$

$$
\therefore A P=A O-O P=4-1.5=2.5
$$

$$
\therefore A P=C P=2.5 \text { units }
$$

$$
\angle A D P=\angle P O C=90^{\circ} \text { (given) } \sqrt{\checkmark}
$$

$$
\therefore \triangle A D P \equiv \triangle C O P(A A S)
$$

$$
\begin{aligned}
& \therefore 3 x+4 y=6 \\
& 3(0)+4 y=6 \\
& y=1.5 \quad \therefore P(0,1.5)
\end{aligned}
$$

(g) Area $_{\triangle C O P}=\frac{1}{2} \times 2 \times 1.5=1.5$ units 2

$$
\text { Area }_{\triangle A B O}=\frac{1}{2} \times 3 \times 4=6 \text { units }^{2} \quad \sqrt{\checkmark}
$$

\therefore Area $_{B D P O}=6-1.5=4.5$ units 2

Question 3

(a) (i) $\frac{d y}{d x}=12 e^{4 x}+2 x$
(ii) $\frac{d y}{d x}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \quad u=3 x-1 \quad u^{\prime}=3$

$$
v=2 x+3 \quad v^{\prime}=2
$$

$$
\begin{aligned}
\frac{d y}{d x}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} & =\frac{3(2 x+3)-2(3 x-1)}{(2 x+3)^{2}} \\
& =\frac{11}{(2 x+3)^{2}}
\end{aligned}
$$

(b) (i) $\int \frac{3 x}{x^{2}-4} d x=\frac{3}{2} \ln \left(x^{2}-4\right)+C \sqrt{\checkmark} \bar{\checkmark}$
(ii) $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} 3 \sin 2 x d x=\left[\frac{-3 \cos 2 x}{2}\right]_{\frac{\pi}{6}}^{\frac{\pi}{4}}$

$$
\begin{aligned}
& =\left[\frac{-3 \cos 2\left(\frac{\pi}{4}\right)}{2}-\frac{-3 \cos 2\left(\frac{\pi}{6}\right)}{2}\right] \\
& =\left[0+\frac{3 \times \frac{1}{2}}{2}\right] \\
& =\frac{3}{4} \quad \sqrt{ }
\end{aligned}
$$

(c) let $u=2^{x}$

$$
u^{2}-12 u+32=0
$$

$$
\therefore(u-8)(u-4)=0
$$

$$
\begin{array}{rrrr}
2^{x}=8 & \text { and } & 2^{x}=4 & \boxed{\checkmark} \\
\therefore x=3 & & x=2 & \boxed{\checkmark}
\end{array}
$$

(d) $\tan \theta\left(1-\cot ^{2} \theta\right)+\cot \theta\left(1-\tan ^{2} \theta\right)=0$

LHS: $\quad \tan \theta-\tan \theta \cot ^{2} \theta+\cot \theta-\cot \theta \tan ^{2} \theta$

$$
\begin{aligned}
& =\frac{\sin \theta}{\cos \theta}-\frac{\sin \theta}{\cos \theta} \times \frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos \theta}{\sin \theta}-\frac{\cos \theta}{\sin \theta} \times \frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{\sin \theta}{\cos \theta}-\frac{\cos \theta}{\sin \theta}+\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta} \\
& =0 \\
& =R H S
\end{aligned}
$$

Question 4

(a)

graph $y<-x^{2}+3$
graph $y \geq|x-3|$
rsection
(b) (i) $\alpha+\beta=\frac{-b}{a}=\frac{--5}{1}=5 \quad \sqrt{\checkmark}$
(ii) $(\alpha+1)(\beta+1)=\alpha \beta+\alpha+\beta+1$

$$
\begin{array}{ll}
=2+5+1 & \boxed{\checkmark} \\
=8 & \boxed{\checkmark}
\end{array}
$$

(c) $2 x^{2}-4 x+k=0$

$$
\begin{aligned}
& \therefore \Delta=0 \quad \quad \quad \checkmark \\
& \begin{aligned}
\therefore \Delta & =b^{2}-4 a c \\
& =(-4)^{2}-4(2)(k) \\
& =16-8 k=0 \\
\therefore k & =2 \quad \sqrt{V}
\end{aligned}
\end{aligned}
$$

(d) $\frac{\log _{e} 25}{\log _{e} 5}=2$
(e) $\frac{d^{2} s}{d t^{2}}=10-2 t$

$$
\begin{aligned}
& \frac{d s}{d t}=10 t-t^{2}+C \quad \sin c e \frac{d s}{d t}=24 \text { when } t=0 \quad \therefore C=24 \quad \sqrt{\checkmark} \\
& \begin{aligned}
\frac{d s}{d t} & =10 t-t^{2}+24=0 \\
& -\left(t^{2}-10 t-24\right)=0 \\
& -(t-12)(t+2)=0 \\
& \therefore t=12 \text { or } t=-2 \\
& \text { since } t \geq 0 \quad \text { then } t=12
\end{aligned}
\end{aligned}
$$

Question 5

(a) (i) $A P: T_{n}=a+(n-1) d$

$$
\begin{aligned}
T_{10} & =450+(10-1) \times 200 \\
& =2250 \mathrm{~m}
\end{aligned}
$$

(ii) AP: $S_{n}=\frac{n}{2}(2 a+(n-1) d)$

$$
\begin{aligned}
S_{10} & =\frac{10}{2}(2(450)+(10-1) 200) \\
& =13500 \mathrm{~m}
\end{aligned}
$$

(iii) 5.25 kilometres $=5250 \mathrm{~m}$
$T_{n}=a+(n-1) d$
$5250=450+(n-1) \times 200$
$\therefore n=25$ th day
(b) $\log _{2} x+\log _{2} 5=6$

$$
\begin{array}{rlr}
\therefore \log _{2} 5 x & =6 & \boxed{\checkmark} \\
5 x & =2^{6} \\
x & =12.8 & \boxed{\checkmark}
\end{array}
$$

(c) (i) since $P Q R S$ is a rhombus then $P Q=A P=S P \quad \therefore \triangle A P S$ is isosceles $\quad \sqrt{\checkmark}$ if $\angle S A P=x^{\circ}$ then $\angle A S P=x^{\circ}$
$\therefore \angle S P Q=2 x$ (exterior angle theorem of a triangle)
(ii) $\angle S P Q=2 x^{\circ}$
$\angle R Q P=180-2 x$ (co-interior angles as $S P \| R Q$)
\sin ce $P Q=Q R=Q C$ then $\Delta Q R C$ is an isoceles Δ
$\therefore \angle Q R C=\angle R C Q=90-x$
since $\angle S A P=x^{\circ}$ and $\angle R C Q=90-x$
then $\triangle A B C=180-(90-x)-x=90^{\circ} \quad($ angle sum of $a \Delta)$
(d)

native of the HPOI at $x=0 / 2 n d T P$
$l x$ int excepts

Question 6

(a) $\frac{1}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$

$$
\begin{align*}
& =\frac{3+\sqrt{2}}{9-4} \\
& =\frac{3+\sqrt{2}}{7} \tag{v}
\end{align*}
$$

(b) (i) $0.1^{\cdot} \quad 10^{-}+\frac{5}{100}+\frac{5}{1000}+\frac{5}{10000}+\ldots$
(ii) $0.1 \cdot \frac{1}{10^{-}}+\frac{5}{100}+\frac{5}{1000}+\frac{5}{10000}+\ldots$

$$
\begin{align*}
& S_{\infty}=\frac{a}{1-r}=\frac{\frac{5}{100}}{1-\frac{1}{10}}=\frac{1}{18} \\
& \therefore \frac{1}{10}+\frac{1}{18}=\frac{7}{45}
\end{align*}
$$

Kincoppal-Rose Bay, School of the Sacred Heart
Mathematics HSC Trial Examination, August 2008
(c) (i) $A \approx \frac{10}{2}(14+2(17+19+21+16+14)+13) \quad \sqrt{\checkmark}$

$$
A \approx 1005 \mathrm{~m}^{2}
$$

(ii) $V=A \times h$

$$
\begin{aligned}
& =1005 \times 0.8 \mathrm{~m} / \mathrm{s} \\
& =804 \mathrm{~m}^{3}
\end{aligned}
$$

(d) $y=\sin 2 x \cos 2 x$

$$
\begin{array}{ll}
u=\sin 2 x & v=\cos 2 x \\
u^{\prime}=2 \cos 2 x & v^{\prime}=-2 \sin 2 x
\end{array}
$$

$$
\therefore \frac{d y}{d x}=v u^{\prime}+u v^{\prime}
$$

$$
=2 \cos ^{2} 2 x-2 \sin ^{2} 2 x
$$

$$
\text { at } x=\pi \quad \frac{d y}{d x}=2 \cos ^{2} 2(\pi)-2 \sin ^{2} 2(\pi)
$$

$$
=2-0
$$

$$
=2
$$

$\therefore m_{T}=2$
$\therefore m_{N}=-\frac{1}{2} \quad$ at $(\pi, 0) \quad \sqrt{\checkmark}$
$y-0=-\frac{1}{2}(x-\pi)$
$2 y=-x+\pi$

Kincoppal-Rose Bay, School of the Sacred Heart
Mathematics HSC Trial Examination, August 2008

Question 7

(a) (i) $y=x^{3}-12 x$

$$
\begin{aligned}
& f(x)=x^{3}-12 x \\
& f(-x)=(-x)^{3}-12(-x)=-x^{3}+12 x \\
& -f(x)=-\left(x^{3}-12 x\right)=-x^{3}+12 x
\end{aligned}
$$

Since $f(-x)=-f(x)$ then $y=y=x^{3}-12 x$ is an odd function $\sqrt{\checkmark}$
(ii) $y=x^{3}-12 x$
$\frac{d y}{d x}=3 x^{2}-12$
$S P$ occur when $\frac{d y}{d x}=0 \quad \therefore \frac{d y}{d x}=3 x^{2}-12=0$

$$
\begin{aligned}
& 3\left(x^{2}-4\right)=0 \\
& 3(x+2)(x-2)=0 \quad \therefore x=2 \text { or }-2
\end{aligned}
$$

$\frac{d^{2} y}{d y^{2}}=6 x$
at $x=2 \quad \frac{d^{2} y}{d y^{2}}=6(2)=12 \quad \sin$ ce $\frac{d^{2} y}{d y^{2}}>0 \quad \therefore \min$ at $(2,-16)$
at $x=-2 \quad \frac{d^{2} y}{d y^{2}}=6(-2)=-12 \quad \sin$ ce $\frac{d^{2} y}{d y^{2}}<0 \quad \therefore \max$ at $(-2,16)$
(iii) Inflection occur when $\frac{d^{2} y}{d y^{2}}=0$

$$
\therefore \frac{d^{2} y}{d y^{2}}=6 x=0 \quad \therefore \text { POI is }(0,0)
$$

(iv)

(v) at $x=-3 \quad y=16$ at $x=5 \quad y=65 \quad \therefore$ relative max imum is 65
(b) (i) $S_{\infty}=\frac{a}{1-r}=27$

$$
\therefore a=27(1-r)
$$

(ii) $S_{3}=\frac{a\left(1-r^{3}\right)}{(1-r)}=19$

$$
=\frac{27(1-r)\left(1-r^{3}\right)}{(1-r)}=19
$$

$$
\begin{aligned}
27\left(1-r^{3}\right) & =19 \\
1-r^{3} & =\frac{19}{27} \\
-r^{3} & =\frac{-8}{27} \\
\therefore r & =\frac{2}{3}
\end{aligned}
$$

Question 8

(a)

(ii) $y=\sqrt{3} \sin \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \quad y=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \quad \therefore \frac{\pi}{6}$ is a solution $\quad \sqrt{\checkmark}$

$$
y=\sqrt{3} \sin \left(\frac{7 \pi}{6}\right)=\frac{-\sqrt{3}}{2} \quad y=\cos \left(\frac{7 \pi}{6}\right)=\frac{-\sqrt{3}}{2} \quad \therefore \frac{7 \pi}{6} \text { is a solution } \quad \sqrt{\checkmark}
$$

(iii) $\int_{\frac{\pi}{6}}^{\frac{7 \pi}{6}} \sqrt{3} \sin x-\cos x d x$

$$
\begin{aligned}
& =[-\sqrt{3} \cos x-\sin x]_{\frac{\pi}{6}}^{\frac{7 \pi}{6}} \quad \sqrt{V} \\
& =\left[-\sqrt{3} \cos \left(\frac{7 \pi}{6}\right)-\sin \left(\frac{7 \pi}{6}\right)\right]-\left[-\sqrt{3} \cos \left(\frac{\pi}{6}\right)-\sin \left(\frac{\pi}{6}\right)\right] \\
& =\left(\frac{3}{2}+\frac{1}{2}\right)-\left(-\frac{3}{2}-\frac{1}{2}\right) \\
& =4 \text { units }^{2}
\end{aligned}
$$

(b) (i)

$\sqrt{\checkmark} \quad \mathrm{m}$
(ii) $A=\frac{1}{2} \times 100 \times 100 \times \sin 60$

$$
=4330 \mathrm{~m}^{2}
$$

\qquad
$\sqrt{\checkmark}$
(iii) $A C^{2}=100^{2}+100^{2}-2 \times 100 \times 100 \times \cos (360-240) \sqrt{\checkmark}$
$A C^{2}=30000$
$A C=\sqrt{30000}$
$\therefore A C=173 \mathrm{~m}$

Question 9

(a) $V=\pi \int_{1}^{4}\left(\frac{3}{x}\right)^{2} d x$

$=\pi\left[\frac{-9}{x}\right]_{1}^{4}$
$=\pi\left[\frac{-9}{4}-\frac{-9}{1}\right]_{1}^{4}$
$=\frac{27 \pi}{4} u n i t^{3}$
(b) $y=\log _{e} \frac{1}{2} x$
$\therefore e^{y}=\frac{1}{2} x$
$x=2 e^{y} \quad \sqrt{\checkmark}$
$\int_{0}^{\ln 3} 2 e^{y} d y \quad \sqrt{\checkmark}$
$=\left[2 e^{y}\right]_{0}^{\ln 3}=\left[2 e^{\ln 3}-2 e^{0}\right]=6-2=4$ units $^{2} \quad \sqrt{\checkmark}$
(c) (i) $l=r \theta$

$$
\begin{aligned}
& 4 \pi=24 \times \theta \\
& \therefore \theta=\frac{4 \pi}{24}=\frac{\pi}{6}
\end{aligned}
$$

$$
\sqrt{V}
$$

(ii) $\cos \theta=\frac{D C}{A D}$

$$
\cos \frac{\pi}{6}=\frac{D C}{24}
$$

$$
\therefore D C=\cos \frac{\pi}{6} \times 24=\frac{\sqrt{3}}{2} \times 24=12 \sqrt{3}
$$

(iii) $\quad A_{\text {sector } A B D}=\frac{1}{2} \times 24^{2} \times \frac{\pi}{6}=48 \pi \quad \sqrt{\checkmark}$

$$
\begin{aligned}
& \sin \frac{\pi}{6}=\frac{A C}{24} \Rightarrow A C=12 \\
& A_{\triangle A C D}=\frac{1}{2} \times 12 \times 12 \sqrt{3}=72 \sqrt{3} \\
& \therefore A_{A C B}=48 \pi-72 \sqrt{3}=24(2 \pi-3 \sqrt{3}) \mathrm{cm}^{2}
\end{aligned}
$$

Question 10

(i) 18 years $=36$ half years
6% p. $a=3 \%$ p. h
$\therefore r=3 \% \quad n=36$ and $P=\$ 500$
$\therefore A_{1}=500(1+0.03)^{36}=\$ 1449.14$
(ii) $A_{2}=500(1+0.03)^{2}+500(1+0.03)^{4}=500\left(1.03^{2}+1.03^{4}\right)$

$$
\therefore A_{3}=500\left(1.03^{2}+1.03^{4}+1.03^{6}\right)
$$

(iii) $A_{18}=500\left(1.03^{2}+1.03^{4}+1.03^{6}+\ldots+1.03^{36}\right)$

$$
S_{36}=\frac{1.03^{2}\left(\left(1.03^{2}\right)^{18}-1\right)}{1.03^{2}-1}=33.06869422
$$

$$
\therefore A_{18}=500 \times 33.06869422=\$ 16534.35
$$

(b) (ii) $\sqrt{5}^{2}=x^{2}+y^{2} \quad \therefore y=\sqrt{5-x^{2}}$
(iii) $L=A B+D C+F G=2 x+2 x+2 y$

$$
\begin{aligned}
& =4 x+2 y \\
& =4 x+2 \sqrt{5-x^{2}}
\end{aligned}
$$

(iv) $L=4 x+2\left(5-x^{2}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
\frac{d L}{d x} & =4+2 \times \frac{1}{2} \times-2 x\left(5-x^{2}\right)^{-\frac{1}{2}} \\
& =4-\frac{2 x}{\sqrt{5-x^{2}}}
\end{aligned}
$$

$$
\max / \min \text { occur when } \frac{d L}{d x}=0 \quad \therefore 4-\frac{2 x}{\sqrt{5-x^{2}}}=0
$$

$$
\begin{array}{ll}
\frac{2 x}{\sqrt{5-x^{2}}}=4 & \text { (squareboth sides) } \\
4 x^{2}=16\left(5-x^{2}\right) & \\
20 x^{2}=80 & \\
x^{2}=4 & \\
x= \pm 2 & \sqrt{\checkmark}
\end{array}
$$

$$
\frac{d L}{d x}=4-2 x\left(5-x^{2}\right)^{-\frac{1}{2}} \quad \therefore \frac{d^{2} L}{d x^{2}}=4-\left(v u^{\prime}+u v^{\prime}\right)
$$

$$
=4-\left(\left(\left(5-x^{2}\right)^{-\frac{1}{2}} \times 2+2 x \times \frac{-1}{2}\left(5-x^{2}\right)^{-\frac{3}{2}} \times-2 x\right)\right)
$$

$$
=4-\left(\left(\frac{2}{\sqrt{5-x^{2}}}+\frac{2 x^{2}}{\left(\sqrt{5-x^{2}}\right)^{3}}\right)\right) \quad \sqrt{\checkmark}
$$

since x is a length then $x>0 \quad \therefore$ test $x=2$
at $x=2 \quad \frac{d^{2} L}{d x^{2}}=4-\left(\left(\frac{2}{\sqrt{5-4}}+\frac{8}{(\sqrt{5-4})^{3}}\right)\right)<0 \therefore \max$
\therefore maximum strength in window frame when $x=2$ metres

