The King’s School

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-10
- All questions are of equal value

The King’s School

2004
Higher School Certificate
Trial Examination

Mathematics

		$\begin{aligned} & \text { Z } \\ & \stackrel{0}{0} \\ & \vdots \\ & \hline 0 \\ & 0 \end{aligned}$		를 응 은 은			- ㅠㅡㅇ
1	(c), (d), (f)		(b)	(a)		(e)	12
2			(b)		(a)		12
3		(c)	(b)			(a)	12
4			(c)	(a)			12
5					(a)	(b)	12
6			(c)	(a)		(b)	12
7			(a)		(c)	(b)	12
8	(a)				(b)		12
9	(a)	(b)					12
10	(i)			(ii), (iii), (v)	(iv)		12
Marks	20	10	26	20	26	18	120

Total marks - 120
Attempt Questions 1-10
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find the value of $\sin 2 x$ if $x=0.006$, correct to 2 significant figures.
(b) State the domain and range of the function $y=\log _{e} x$
(c) Find $\lim _{x \rightarrow 0} \frac{x^{3}-3 x}{6 x}$
(d) Solve the equation $(2 x+3)^{2}=4$
(e) Find a primitive function of $(2 x+3)^{4}$
(f) For what value of x do $y=1-2 x$ and $2 y=7+6 x$ hold simultaneously?
(a) Find the gradient of the normal to the curve $y=\frac{x}{x^{2}+1}$ at the point $(0,0)$
(b)

In the diagram, ABCD is a rectangle where $\mathrm{A}=(-4,8)$ and $\mathrm{B}=(2,0) . \mathrm{P}(3,7)$ is a point on the side CD.
(i) Find the gradient of line AB .
(ii) Deduce that the equation of line AB is $4 x+3 y-8=0$
(iii) Hence, or otherwise, show that the length of side BC is 5 units.
(iv) Write down the mid-point of side AB and deduce that $\mathrm{P}(3,7)$ is the mid-point of side CD.
(v) Write down the point of intersection of the diagonals AC and BD .
(vi) Find the coordinates of point D .

1

End of Question 2

(a) Find the exact value of
(i) $\int_{0}^{\frac{\pi}{6}} \sin x d x$
(ii) $\int_{0}^{1} \frac{6 x^{2}}{x^{3}+1} d x$
(b) For what values of k is $x^{2}+2 x+k$
(i) concave upward?
(ii) positive for all values of x ?
(c)

In the diagram, $A B \| C D$ and ECP is a straight line.

$$
\angle A B C=50^{\circ}, \angle E C B=170^{\circ}, \angle Q P C=140^{\circ}
$$

(i) Find $\angle B C P$, giving reasons.
(ii) Find $\angle E C D$, giving reasons.
(iii) Prove that $P Q \| A B$
(a) (i) Sketch the curve $y=\tan \frac{x}{2}$ for $-2 \pi \leq x \leq 2 \pi$
(ii) State the period of $y=\tan \frac{x}{2}$
(iii) Solve the equation $\tan \frac{x}{2}=1$ for $-2 \pi \leq x \leq 2 \pi$
(b) Consider the two arithmetic series

$$
\begin{aligned}
& A=11+13+15+\ldots \\
\text { and } & B=-14-11-8-\ldots
\end{aligned}
$$

(i) Find the sum of the first 40 terms of series A
(ii) The two series have the same number of terms and the same sum. How many terms are in the series?
(c) Find the values of $a, b, \quad c$ if

$$
a(x+1)^{2}+b(x+1)(x-1)+c(x-1) \equiv x^{2}+7 x
$$

End of Question 4

(a) Consider the function $f(x)=x^{4}-6 x^{2}+8 x$
(i) Show that $f^{\prime}(x)=4(x+2)(x-1)^{2}$
(ii) For what values of x is the function increasing?
(iii) Show that there is a minimum turning point at $x=-2$
(iv) Show that there is a horizontal point of inflection at $x=1$
(b) (i) Briefly explain why Simpson's Rule gives the exact value of $\int_{a}^{b} f(x) d x$ if $f(x)$ is a quadratic function.
(ii)

A parabola $y=f(x)$ passes through the points $(0,0),(1,-2)$ and $(2,5)$. Find the value of $\int_{0}^{2} f(x) d x$
(a)

In the diagram, $P(3,4)$ and $Q(0,-5)$ are points on the circle $x^{2}+y^{2}=25$.
Let $\angle P O Q=\theta$, as marked on the diagram.
(i) Find the length of chord $P Q$.
(ii) Show that $\cos \theta=-\frac{4}{5}$
(iii) Find the area of minor sector $P O Q$ correct to 1 decimal place.
(b)

In the diagram, the shaded region is bounded by the curve $y=3 x^{2}+\frac{3}{x^{2}}, x>0$, and the two lines $y=6$ and $x=3$. Find the area of this shaded region.

Question 6 continues next page

Question 6 (continued)

(c) The directrix of a parabola is the x axis and the focus is the point $(0,4)$.
(i) Write down the focal length of the parabola.
(ii) Find the equation of the parabola.

End of Question 6

(a) $\quad A(-2,0)$ and $B(0,4)$ are two points in the number plane. $P(x, y)$ is any point such that $A P$ is perpendicular to BP.

(i) Prove that the equation of the locus of $P(x, y)$ is $x(x+2)+y(y-4)=0$
(ii) Deduce that the equation in (i) represents a circle and find its centre and radius.
(b)

Consider the region bounded by the curve $y=\frac{2}{1+x^{2}}$ and the line $y=1$ as shown in the diagram.

The region is revolved about the y axis. Find the volume of the solid of revolution generated.
(c) The population, P, of a rural town is growing exponentially according to the equation $P=5000 e^{0.1 t}$, t measured in years. Currently, i.e. $t=0$, the population is increasing at a rate of 500 people/year.

What rate of increase, correct to the nearest hundred, is expected after 20 more years?

End of Question 7

(a) Simplify the expression $x^{-1} y^{2}\left(x^{\frac{1}{2}}-y^{-1}\right)\left(x^{\frac{1}{2}}+y^{-1}\right)$, giving your answer with positive indices.
(b) A particle moves on a straight line so that its velocity, $v \mathrm{~m} / \mathrm{s}$, at any time t seconds is given by $v=(t-1)^{4}+\frac{t}{2}, t \geq 0$
(i) Find the initial velocity and show that the particle never stops.
(ii) Find the initial acceleration of the particle.
(iii) Find the least value of the velocity.
(iv) Sketch the velocity-time graph.
(v) Find the distance travelled by the particle in the first 2 seconds.
(a) In the land of Welf the interest on investments is paid continuously. If an interest rate of $100 \mathrm{k} \%$ p.a. is given then it can be shown that the amount in the fund after t years, $t \geq 0$, is $A(t)$ where
$A(t)=P e^{k t}, P$ is the initial investment.
(i) A particular fund, F, in Welf pays 10% p.a. interest. Show that $k=0.1$
(ii) Sally invests $\$ 5000$ into fund F for 20 years. Find, correct to the nearest dollar, the amount Sally would have after the 20 years.
(iii) Sally wants to be more wealthy in Welf and decides not to terminate her investment of $\$ 5000$ until it has grown to at least $\$ 100000$. For how many years will she need to wait?
(iv) Lucy also invests in fund F. She decides to deposit $\$ 1500$ into the fund at the start of each year for 20 years. Find, correct to the nearest dollar, the amount Lucy would have after the 20 years.
(b)

In the diagram, $A B C D$ is a parallelogram. The diagonals $A C$ and $B D$ meet at $P . M$ is the mid-point of $A B$ and $M C$ meets $B D$ at Q.
(i) Show that $\triangle C D Q$ is similar to $\triangle M B Q$
(ii) Deduce that $D Q=2 B Q$
(iii) Prove that $B Q=2 Q P$

End of Question 9

In the diagram, O is the centre of a circle of radius $\sqrt{6} \mathrm{~cm}$ and PQ is a chord of length $4 \mathrm{~cm} . \mathrm{ABCD}$ is a rectangle constructed in the minor segment cut off by chord $P Q$. OM is drawn perpendicular to PQ so that M is the mid-point of both chord PQ and side AB . N is the mid-point of side CD .

Let $\angle \mathrm{CON}=\theta, \theta$ in radians.
(i) Show that $O M=\sqrt{2} \mathrm{~cm}$
(ii) Show that $0<\theta<1$
(iii) Show that the area, a, of rectangle ABCD is given by $a=4 \sqrt{3} \sin \theta(\sqrt{3} \cos \theta-1)$
(iv) Show that $\frac{d a}{d \theta}=4 \sqrt{3}\left(2 \sqrt{3} \cos ^{2} \theta-\cos \theta-\sqrt{3}\right)$
(v) Find the maximum area of the rectangle.

TS MATHEMATICS TRIAL 2004 SOLUTiONS

Qu 1 (a) $\sin 0.012=0.012$, 2 sig. figs
(b) Domain $x>0$, Range all real values for y
(c) $\lim _{x \rightarrow 0} \frac{x\left(x^{2}-3\right)}{6 x}=\lim _{x \rightarrow 0} \frac{x^{2}-3}{6}=-\frac{1}{2}$
or $\lim _{x \rightarrow 0}\left(\frac{x^{2}}{6}-\frac{3}{6}\right)=-\frac{1}{2}$
(d)

$$
\begin{aligned}
& 2 x+3=2 \quad \text { or } 2 x+3=-2 \\
& \therefore x=-\frac{1}{2} \text { or } \frac{-5}{2}
\end{aligned}
$$

(e) $\frac{(2 x+3)^{5}}{5 \times 2}=\frac{(2 x+3)^{5}}{10}$
(f)

$$
\begin{aligned}
2(1-2 x) & =7+6 x \\
2-4 x & =7+6 x \\
\therefore \quad 10 x & =-5 \\
x & =-\frac{1}{2}
\end{aligned}
$$

Qun 2
(a)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\left(x^{2}+1\right) 1-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \\
& \text { At }(0,0), \frac{d y}{d x}=1
\end{aligned}
$$

\therefore gradient of normal at $(0,0)$ is -1
(b) (i) gradiect $A B=\frac{0-8}{2--4}=-\frac{8}{6}=-\frac{4}{3}$
(ii) line $A B$ is $y=-\frac{4}{3}(x-2)$

$$
\begin{aligned}
& \text { or } \quad 3 y=-4 x+8 \\
& \text { ic: } \quad 4 x+3 y-8=0
\end{aligned}
$$

(iii) $B C=$ popediculer distance from P to liee $A B$

$$
\therefore B C=\frac{12+21-8}{\sqrt{4^{2}+3^{2}}}=\frac{25}{5}=5
$$

(iv)

$$
M_{A B}=\left(\frac{-2}{2}, \frac{8}{2}\right)=(-1,4)
$$

\therefore From (iii), if $P M_{A B}=5$ tha P is mid-poit of $C D$

$$
P M_{A B}=\sqrt{4^{2}+3^{2}}=5 \quad \therefore \text { result. }
$$

(v) Diagonals mect at mide-point of $P M_{A B}$, fron(iv)

$$
\text { ie at }\left(\frac{2}{2}, \frac{11}{2}\right)=\left(1, \frac{11}{2}\right)=Q \text {, say }
$$

(vi) [Lots of ways]

$$
\text { A.g. } \begin{aligned}
B \rightarrow Q & =Q \rightarrow D \\
\Rightarrow D & =(0,11)
\end{aligned}
$$

Qu 3
(a) (i) $[-\cos x]_{0}^{\frac{\pi}{6}}=-\frac{\sqrt{3}}{2}--1=1-\frac{\sqrt{3}}{2}$

$$
\text { (ii) } \begin{aligned}
=2 \int_{0}^{1} \frac{3 x^{2}}{x^{3}+1} d x & =2\left[\ln \left(x^{3}+1\right)\right]_{0}^{1} \\
& =2 \ln 2
\end{aligned}
$$

(b) (i) $U \quad \therefore$ all values of k
(ii) Need $\Delta<0 \Rightarrow 4-4 k<0$

$$
4 k>4 \text { or } k>1
$$

(c) (i) $\angle E C P=180^{\circ}, E C P$ a straight line

$$
\therefore \angle B C P=10^{\circ}
$$

(ii)

$$
\begin{aligned}
\angle B C D=\angle A B C & =50^{\circ} \text {, alternate } \angle S \therefore / / \text { lines } A B, C D \\
\therefore \angle E C D & =360^{\circ}-\left(170^{\circ}+50^{\circ}\right) \text {, angles at point } C \\
& =140^{\circ}
\end{aligned}
$$

(iii) Foo (is), $\angle Q P C=\angle E C D=140^{\circ}$ and share - are corresponding angles

$$
\therefore P Q \| C D
$$

But $A B \| C D$

$$
\therefore P Q \| A B
$$

Qu 4
(a) (i)

(ii) period $=2 \pi$
(ii)

$$
\begin{aligned}
& \therefore \frac{x}{2}=\frac{\pi}{4} \text { or }-\frac{3 \pi}{4} \quad \text { for }-\pi \leq \frac{x}{2} \leqslant \pi \\
& \text { [sketch Lelps] } \\
& \Rightarrow x=\frac{\pi}{2} \text { or }-\frac{3 \pi}{2}
\end{aligned}
$$

(d) (i)

$$
S_{40}=\frac{40}{2}[22+39 \times 2]=20 \times 100=2000
$$

(ii)

$$
\begin{gathered}
\therefore \frac{n}{2}(22+(n-1) 2)=\frac{n}{2}(-28+(n-1) 3) \\
\Rightarrow \quad 22+2 n-2=-28+3 n-3 \\
\therefore n=51 \quad \text { if there's } 51 \text { terns }
\end{gathered}
$$

(c) Put $x=1, \therefore 4 a=1+7 \Rightarrow a=2$
\therefore Equating conefficiats of $x^{2}, \quad 2+b=1$

$$
\Rightarrow b=-1
$$

Put $x=-1, \quad \therefore \quad-2 c=1-7$

$$
\therefore c=3
$$

[LOTS of WAYS, of course]

Q un 5
(a)
(i)

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-12 x+8=4\left(x^{3}-3 x+2\right) \\
& \text { Now, } \begin{aligned}
(x+2)(x-1)^{2} & =(x+2)\left(x^{2}-2 x+1\right) \\
& =x^{3}-2 x^{2}+x+2 x^{2}-4 x+2 \\
& =x^{3}-3 x+2 \\
\therefore f^{\prime}(x)=4 & (x+2)(x-1)^{2}
\end{aligned}
\end{aligned}
$$

(ii) A test for increasing function is $f^{\prime}(x)>0$

$$
4(x+2)(x-1)^{2}>0 \Rightarrow x+2>0 \text { since s } 4(x-1)^{2} \geqslant 0 \text { for all } x
$$

$\therefore f(x)$ is increasing for $x>-2$
[Note If $x=1, f^{\prime}(x)=0$ but the function is still icicarij.
A curve is increasing if an x increases, $f(x)$ increases $]$
(iii) $f^{\prime}(-2)=0 \quad \therefore$ at $x=-2$ thanes a stationary point

But for $x<-2, f^{\prime}(x)<0$

$$
* x>-2, \quad f^{\prime}(x)>0
$$

\therefore at $x=-2$ thees a minimum homing point
(iv)

$$
\begin{aligned}
& f^{\prime}(x)=4\left(x^{3}-3 x+2\right) \\
& \therefore f^{\prime \prime}(x)=4\left(3 x^{2}-3\right)=12\left(x^{2}-1\right) \\
& \therefore f^{\prime \prime}(1)=0 \text { and } f^{\prime \prime}(0)<0, f^{\prime \prime}(2)>0
\end{aligned}
$$

change in concavity
and, as well, $f^{\prime}(1)=0$
\therefore at $x=1$ share's a Loris. pt. of inflection

Qu 6
(a) (i) $P Q=\sqrt{3^{2}+9^{2}}=\sqrt{90}$
(ii)

$$
5 / \sqrt[5]{\sqrt{90}} \quad \therefore \cos \theta=\frac{25+25-90}{2 \times 5 \times 5}=-\frac{40}{50}=-\frac{4}{5}
$$

(iii)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 5^{2} \times \theta \text { whar } \cos \theta=-\frac{4}{5} \\
& =\frac{1}{2} \times 25 \times 2.498 \ldots=31.2 \mathrm{~m}^{2}, 1 \text { d.p. }
\end{aligned}
$$

(b)

$$
\begin{aligned}
A & =\int_{1}^{3} 3 x^{2}+\frac{3}{x^{2}}-6 d x \\
& =\left[x^{3}-\frac{3}{x}-6 x\right]_{1}^{3} \\
& =27-1-18-(1-3-6)=16 \mathrm{u}^{2}
\end{aligned}
$$

(C)

(i) focal lergth $a=2$
(ii) Vertex $=(0,2)$
\therefore equation is $(x-0)^{2}=4 \times 2(y-2)$

$$
\text { 18. } \quad x^{2}=8(y-2)
$$

Qu 7
(a) (i) Since $A P \perp B P$ the product of shair gradiant is -1

$$
\begin{aligned}
& \therefore \frac{y}{x+2} \times \frac{y-4}{x}=-1 \\
& \quad \text { or } y(y-4)=-x(x+2) \\
& \text { or } x(x+2)+y(y-4)=0
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\therefore x^{2}+2 x+y^{2}-4 y=0 \\
\Rightarrow(x+1)^{2}-1+(y-2)^{2}-4=0 \\
\text { or }(x+1)^{2}+(y-2)^{2}=5
\end{gathered}
$$

is a circle, centre $(-1,2)$, radius $\sqrt{5}$
(b) $V=\pi \int_{1}^{2} x^{2} d y$ where $y=\frac{2}{1+x^{2}}$

$$
\begin{aligned}
\therefore V & =\pi \int_{1}^{2} \frac{2}{y}-1 d y=\frac{2}{y} \text { or } x^{2}=\frac{2}{y}-1 \\
& =\pi[2 \ln y-y]_{1}^{2} \\
& =\pi(2 \ln 2-2-(0-1))=\pi(21-2-1) u^{3}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \frac{d P}{d t}=5000 \times 0.1 e^{0.1 t}=500 e^{0.1 t} \\
& \therefore \text { whan } t=20, \frac{d P}{d t}=500 e^{2} \approx 3700 \mathrm{peple} / \mathrm{yr}
\end{aligned}
$$

nerent humbed.

Qu 8
(a)

$$
\begin{array}{r}
x^{-1} y^{2}\left(x-y^{-2}\right)=y^{2}-x^{-1}=y^{2}-\frac{1}{x} \\
{\left[0 \cdot \frac{y^{2} x-1}{x}\right]}
\end{array}
$$

(b) (i)

$$
\begin{aligned}
& t=0, \quad v=(-1)^{4}+0=1 \mathrm{n} / \mathrm{s} \\
& \text { Now, }(t-1)^{4} \geqslant 0 \text { for all } t \geqslant 0 \\
& \text { ad } \frac{t}{2}>0 \text { for all } t>0
\end{aligned}
$$

$\therefore v>0$ for all $t \geqslant 0$ aie: partide averas stops
(ii)

$$
\begin{aligned}
& \ddot{x}=\frac{d v}{d t}=4(t-1)^{3}+\frac{1}{2} \\
& \therefore \text { wha } t=0, \ddot{x}=-4+\frac{1}{2}=-3 \frac{1}{2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(iii) From (i) ad (ii), leart v occus wher $\ddot{x}=0$

$$
\begin{gathered}
\Rightarrow 4(t-1)^{3}+\frac{1}{2}=0 \\
\sim(t-1)^{3}=-\frac{1}{8} \\
\therefore t-1=-\frac{1}{2} \sim t=\frac{1}{2} \\
\therefore \text { lenat } v=\frac{1}{16}+\frac{1}{4}=\frac{5}{16} \mathrm{\sim} / \mathrm{s}
\end{gathered}
$$

(iv)

(r)

$$
\begin{aligned}
x=\int_{0}^{2}(t-1)^{4}+\frac{t}{2} d t & =\left[\frac{(t-1)^{5}}{5}+\frac{t^{2}}{4}\right]_{0}^{2} \\
& =\frac{1}{5}+1-\left(-\frac{1}{5}+0\right)=1 \frac{2}{5}
\end{aligned}
$$

$6 \ln 9$
(a) (i) $\therefore 100 k=10 \Rightarrow k=0.1$
(ii)

$$
\begin{aligned}
A(20)=5000 e^{0.1 \times 20} & =5000 e^{2} \\
& =\$ 36945, \text { neanet dollar }
\end{aligned}
$$

(iii) Here,

$$
\begin{aligned}
A(t) & =5000 e^{0.1 t} \geqslant 100000 \\
& \therefore e^{0.1 t} \geqslant 20 \\
& \sim 0.1 t \geqslant \ln 20 \\
& \therefore \quad t \geqslant \frac{\ln 20}{0.1}=29.957 \ldots
\end{aligned}
$$

\Rightarrow sally needs to wait approx 30 years
(iv) Lucy would have

$$
\begin{aligned}
& 1500 e^{0.1 \times 20}+1500 \times e^{0.1 \times 19}+\cdots+1500 e^{0.1 \times 1} \\
= & 1500 e^{.1}+1500 e^{-2}+1500 e^{.3}+\cdots+1500 e^{2}
\end{aligned}
$$

is a geometric series who $a=1500 e^{.1}$

$$
r=e^{\cdot \prime}
$$

\therefore Lucy would have $1500 e^{.1} \frac{\left(\left(e^{.1}\right)^{20}-1\right)}{e^{\cdot 1}-1}$

$$
\begin{aligned}
& =1500 e^{.1} \frac{\left(e^{2}-1\right)}{e^{\cdot 1}-1} \\
& =\$ 100707 \text {, nearest dollar }
\end{aligned}
$$

a. 9 (a)

(i) In $\triangle s C D Q, M B Q$
$\angle C D Q=\angle M O Q$, altemate \angle sir $\|$ lies $C D, B A$
$\angle D C Q=\angle B M Q, \quad "$
$\therefore \triangle C D Q$ III $\triangle M B Q$, 2 anglo equal
(ii) From (i), $\frac{D Q}{B Q}=\frac{C D}{B M}$, matios of comersondici sideo

$$
=2 \text {, since } M \text { is the mid -roint } A A B, A B=C D
$$

$\therefore D Q=2 B Q$
(iii) Now, $B Q+Q P=P D$, digount of $1 /$ ron- lised ead othe

$$
=P Q-\alpha P
$$

$$
=28 Q-2 P,(i i)
$$

$$
\therefore \quad B \alpha=2 Q P
$$

- On 10
(i) Considar

$$
\begin{aligned}
& M_{0}^{2} \frac{2}{\sqrt{6}} \quad \therefore O M^{2}+4=6 \\
& \\
& \Rightarrow O M=\sqrt{2}
\end{aligned}
$$

(ii) as C aflroaches the rethical porition dove N tha $\theta \rightarrow 0$, otharmise $\theta>0$
$\max \theta$ scours as C appoaches Q

$$
\Rightarrow \theta=0.955 \ldots<1
$$

$$
\therefore 0<\theta<1
$$

(iii)

Tha $\sin \theta=\frac{N C}{\sqrt{6}}, N C=\sqrt{6} \sin \theta$

$$
\therefore D C=2 \sqrt{6} \sin \theta
$$

and $\begin{aligned} \cos \theta=\frac{O N}{\sqrt{6}} \quad \therefore O N=\sqrt{6} \cos \theta \\ \therefore M N=\sqrt{6} \cos \theta\end{aligned}$

$$
\therefore M N=\sqrt{6} \cos \theta-\sqrt{2}=C B
$$

\therefore Area, $a=2 \sqrt{6} \sin \theta(\sqrt{6} \cos \theta-\sqrt{2})$ $=2 \sqrt{6} \sqrt{2} \sin \theta(\sqrt{3} \cos \theta-1)$

$$
=4 \sqrt{3} \sin \theta(\sqrt{3} \cos \theta-1)
$$

(iv)

$$
\begin{aligned}
\frac{d a}{d \theta} & =4 \sqrt{3}(\sin \theta(-\sqrt{3} \sin \theta)+(\sqrt{3} \cos \theta-1) \cos \theta) \\
& =4 \sqrt{3}\left(-\sqrt{3} \sin ^{2} \theta+\sqrt{3} \cos ^{2} \theta-\cos \theta\right) \\
& =4 \sqrt{3}\left(-\sqrt{3}\left(1-\cos ^{2} \theta\right)+\sqrt{3} \cos ^{2} \theta-\cos \theta\right) \\
& =4 \sqrt{3}\left(2 \sqrt{3} \cos ^{2} \theta-\cos \theta-\sqrt{3}\right)
\end{aligned}
$$

(v)

$$
\begin{aligned}
\frac{d a}{d \theta} & =4 \sqrt{3}((\sqrt{3} \cos \theta+1)(2 \cos \theta-\sqrt{3})) \\
& =0 \text { only if } 2 \cos \theta-\sqrt{3}=0 \text { since } 0<\theta<1
\end{aligned}
$$

and since as $\theta \rightarrow 0$ or $\theta \rightarrow 1$, ha $a \rightarrow 0$, the value of θ from $2 \cos \theta-\sqrt{3}=0$ mont, produce a maximum turning point \Rightarrow maximum area \therefore max area occurs aha $\cos \theta=\frac{\sqrt{3}}{2}$ and $\therefore \sin \theta=\frac{1}{2}$

$$
\begin{aligned}
\therefore \max a & =4 \sqrt{3} \cdot \frac{1}{2}\left(\sqrt{3} \cdot \frac{\sqrt{3}}{2}-1\right) \mathrm{cm}^{2} \\
& =\sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

