The King’s School

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-10
- \quad All questions are of equal value

The King’s School

Higher School Certificate Trial Examination

Mathematics

듷 O O		층 $\stackrel{0}{0}$ 0 0 0	$\begin{aligned} & \text { N } \\ & \text { 은 } \\ & \text { 든 } \end{aligned}$				
1	(a), (c), (d), (e), (f)			(b)			12
2			(a)		(b)		12
3	(d)	(a)				(b), (c)	12
4				(a)		(b), (c)	12
5	(b)(ii)(ii) (iv)		(a)		(b)(i)		12
6	(b)		(a)(i)(ii)		(a)(iii)		12
7		(b)			(a)		12
8			(a)(i)		(b)ii)	(a)(ii), (b)(i)(iii)	12
9	(a)		(b)(iv)(v)	(b)(i)(iii)	(b)(i)		12
10			(a), (b)(iii)	(b)(i)(ii)	(b)(iv)(v)		12
Marks	27	10	26	15	25	17	120

Total marks - 120
Attempt Questions 1-10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Convert 2005 degrees to radians, correct to the nearest integer.
(b) State the amplitude and period of the function $y=-\sin 2 x$
(c) Simplify $\frac{2}{3}-\frac{3 x+8}{12}$
(d) Express $\frac{\sqrt{2}+2}{\sqrt{2}}$ in simplest form.
(e) Find $\sum_{n=1}^{3} \frac{6}{n}$
(f) Solve
(i) $|x-3|<9$
(ii) $2005^{x}=21$, correct to 1 decimal place.
(a)

ABCD is a quadrilateral with vertices $\mathrm{A}(-2,0), \mathrm{B}(-2,6), \mathrm{C}(4,14)$ and $\mathrm{D}(1,4)$.
(i) Show that AD is parallel to BC .
(ii) Find the sum of the lengths of AD and BC .
(iii) Show that the equation of the line AD is $3 y-4 x-8=0$
(iv) Hence, or otherwise, find the area of the quadrilateral ABCD .
(b) Differentiate
(i) $(2 x+1)^{-1}$
(ii) $\frac{x}{x^{2}+1}$

End of Question 2

(a)

In the diagram, $A B=A D$ and $\angle D B C=90^{\circ}$.

Line $A P Q$ is parallel to line $B C$ and meets $D B$ at P and $D C$ at Q.
(i) Give a reason why $\angle A P B=90^{\circ}$.
(ii) Prove that $\triangle A B P$ is congruent to $\triangle A D P$.
(iii) Deduce that $D Q=Q C$.
(b) Find a primitive function of $\frac{x^{3}}{x^{4}+1}$
(c) Evaluate $\int_{0}^{\frac{\pi}{8}} 2 \sec ^{2} 2 x d x$
(d)

$P(x, 0)$ is the point between $O(0,0)$ and $A(25,0)$ such that $P A=P B$, where $B=(0,15)$.
(i) Explain why $P B=25-x$.
(ii) Find the value of x.
(a)

The bearing of K from T is 070° and $T K=400 \mathrm{~km}$.
The bearing of S from T is 150° and $T S=213 \mathrm{~km}$.
(i) Show that $\angle K T S=80^{\circ}$.
(ii) Find $K S$, nearest km.
(iii) Use the sine rule to find the bearing of S from K, nearest degree.
(b) Use Simpson's Rule once to approximate $\int_{1}^{2} x \sin x d x$, correct to 2 decimal places.
(c) The curve $y=f(x)$ has a stationary point at $x=1$ and $f^{\prime \prime}(x)=6 x-2$.

Find the x coordinate at which there is another stationary point.
(a) The quadratic equation $Q(x)=2 x^{2}+(k-3) x+(k+3)=0$ has no real roots.
(i) Prove that $k^{2}-14 k-15<0$
(ii) Find the values of k.
(iii) For what values of k is $Q(x)>0$ for all real values of x ?
(b) The population P of a country town on January 1, 1995 was 1730 and on January 1, 2005 was 1160 . The town's population is known to be changing according to the equation $\frac{d P}{d t}=k P$ where t is time in years measured from January 1,1995 and k is a constant.
(i) Verify that $P=A e^{k t}$, where A is a constant, satisfies the equation $\frac{d P}{d t}=k P$.
(ii) State the value of A
(iii) Find the value of k, correct to 1 significant figure.
(iv) Approximately how many people are expected to leave the town during the year 2005?
(a)

$\triangle P Q R$ has a fixed angle $P=30^{\circ}$ but side $P R$ is increasing at $4 \mathrm{~cm} / \mathrm{min}$ and side $P Q$ at $2 \mathrm{~cm} / \mathrm{min}$.

Initially, $P R=2 \mathrm{~cm}$ and $P Q=4 \mathrm{~cm}$.
Let $A(t)$ be the area of $\triangle P Q R$ after t minutes.
(i) Show that $A(t)=2 t^{2}+5 t+2$
(ii) When is the area of $\triangle P Q R$ equal to $102 \mathrm{~cm}^{2}$?
(iii) At what rate is the area of $\triangle P Q R$ changing after 10 minutes?

Question 6 continues next page

(b) George borrows \$20 000 from Saint Bank. This loan plus interest is to be repaid in equal monthly instalments of \$399 over five years. Interest of 7.2\% p.a. is compounded monthly on the balance owing at the start of each month.

Let $\$ A_{n}$ be the amount owing after n months.
(i) Over the five year repayment period, how much interest is charged?
(ii) Show that $A_{1}=19721$.
(iii) Clearly show that $A_{2}=20000 \times 1.006^{2}-399(1+1.006)$.
(iv) Deduce that $A_{n}=66500-46500 \times 1.006^{n}$.
(v) After two years of repayments George decides on the very next day to repay the loan in full by one payment.

How much will this one payment be?
(a) Consider the function $f(x)=8 x^{3}-3 x^{4}$.
(i) For what values of x is the function decreasing?
(ii) Show that the point $(0,0)$ is a point of inflection.
(iii) Sketch the function showing x intercepts and stationary points.
(b)

In the diagram there are six right angles marked.
(i) Prove that $\triangle A B C$ is similar to $\triangle B P Q$.
(ii) If further, $B C=B P$, which test proves that $\triangle A B C$ is congruent to $\triangle B P Q$?
(iii) Deduce that $P R=A B+A C$.

End of Question 7

(a) The line $y=3-2 x$ and the parabola $y=2 x-x^{2}$ meet at the points (1,1) and (3,-3).

[Do Not Show This]

(i) On the same diagram sketch the line and the parabola and include on your diagram the x intercepts for each.
(ii) Find the area of the region bounded by the line and the parabola.
(b)

(i) The region bounded by the curve $y=\ln x$ and the y axis between $y=0$ and $y=1$ is revolved about the y axis.

Find the volume of the solid of revolution.
(ii) Show that $\frac{d}{d x}\left[x\left((\ln x)^{2}-2 \ln x+2\right)\right]=(\ln x)^{2}$
(iii) The region bounded by the curve $y=\ln x$ and the x axis between $x=1$ and $x=e$ is revolved about the x axis.

Find the volume of the solid of revolution.

End of Question 8

(a) The sum of the first n terms of an arithmetic series is given by $S_{n}=n(n+a)$, where a is a constant.

Find the common difference.
(b) A particle is moving along the x axis. Initially it is at the origin with velocity 1.

Its displacement at any time $t \geq 0$ is given by $x=\sin ^{2} t+\sin t$.
(i) Show that its velocity at any time $t \geq 0$ is given by $\dot{x}=\cos t(2 \sin t+1)$
(ii) Find the first five times that the particle stops.
(iii) The acceleration of the particle can be expressed as $\ddot{x}=2 \cos 2 t-\sin t$

[DO NOT SHOW THIS]

Find the displacement, velocity and acceleration when $t=\frac{\pi}{2}$
(iv) Use (iii) to explain why immediately after $t=\frac{\pi}{2}$ the particle will move towards the origin.
(v) Find the least distance that the particle moves between its stopping positions.
(a)

A cone has radius r, height h and slant height l.
The volume of the cone $V=\frac{\pi}{3} r^{2} h$
Show that the volume of the cone can be expressed as $V=\frac{\pi}{3} \sqrt{l^{2} r^{4}-r^{6}}$.
(b)

The angle at the centre C of a circle of radius 2 cm is $\pi \theta$ radians, $0<\theta<2$, as shown in the diagram.
(i) Write down the length of the arc $A B$ of this sector.
(ii) This sector is cut from the circle along the radii $C A$ and $C B$ and folded to make a cone.

Find the radius of the cone.
(iii) Show that the volume of the cone is given by $V=\frac{\pi}{3} \sqrt{4 \theta^{4}-\theta^{6}}$
(iv) Find the value of θ, correct to two decimal places, for which the volume of the cone is a maximum.
(v) Sketch the graph of V against θ using the same scale on both axes.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos \alpha x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{6} x, \quad x>0
\end{aligned}
$$

TKS MATHEMATICS TRIAL H.S.C. 2005 SOLUDOUNS
Q2 1
(a) $2005 \times \frac{\pi}{180}$ radians $=35^{c}$
(b) amplitude $=1$, period $=\frac{2 \pi}{2}=\pi$
(c) $\frac{8-(3 x+8)}{12}=-\frac{3 x}{12}=-\frac{x}{4}$
(d) $\frac{\sqrt{2}+2}{\sqrt{2}}=1+\frac{2}{\sqrt{2}}=1+\sqrt{2}$
(e) $6+3+2=11$

$$
\begin{aligned}
(f) \text { (i) } \quad & -9
\end{aligned} \quad<x-3<9.12
$$

(ii)

$$
\begin{aligned}
& x \ln 2005=\ln 21 \\
& x=\frac{\ln 21}{\ln 2005}=0.4,1 \text { d.p. }
\end{aligned}
$$

Qu 2
(a) (i)

$$
\begin{aligned}
& \text { gradient } A D=\frac{4}{1--2}=\frac{4}{3} \\
& \text { grd } B C=\frac{14-6}{4--2}=\frac{8}{6}=\frac{4}{3} \\
& \therefore A D / / B C \quad \text { (equal grds) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A D+B C & =\sqrt{3^{2}+4^{2}}+\sqrt{6^{2}+8^{2}} \\
& =5+10=15
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \text { AD is } y=\frac{4}{3}(x--2) \\
& \text { or } 3 y=4 x+8 \\
& \text { i.e } 3 y-4 x-8=0
\end{aligned}
$$

(iv) $\triangle A B C D$ is a trapezaim, from (i)

1 distance from $B(-2,6)$ to $A D$

$$
\begin{aligned}
& =\frac{18+8-8}{\sqrt{3^{2}+4^{2}}}=\frac{18}{5} \\
\therefore \text { Area } & =\frac{1}{2}(15) \frac{18}{5}=27 \mathrm{u}^{2}
\end{aligned}
$$

(l) (i) $-(2 x+1)^{-2} \cdot 2=\frac{-2}{(2 x+1)^{2}}$
(ii) $\frac{\left(x^{2}+1\right) 1-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$

Que 3
(a) (i) $\angle A P B=\angle P B C$, alt $\angle s$ in $/ /$ lines

$$
=90^{\circ}, \text { given }
$$

(ii) Since $\angle A P B=90^{\circ}$ the $\angle A P D=90^{\circ}, \angle D P B$ straight

$$
A D=A B \text { (hypotenuses), given }
$$

AP is common
$\therefore \Delta s$ congrats, RHS
(ii) $D P=P B$, corr. sides in cong Δs (ii)
$\therefore D Q=Q C$, ratio intercept theorem in $/ /$ lines
(b) $\frac{1}{4} \int \frac{4 x^{3}}{x^{4}+1} d x=\frac{1}{4} \ln \left(x^{4}+1\right)$
(c)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{8}} 2 \sec ^{2} 2 x d x & =\frac{2}{2}[\tan 2 x]_{0}^{\frac{\pi}{8}} \\
& =\tan \frac{\pi}{4}-0 \\
& =1
\end{aligned}
$$

(d) (i) $P A=25-x \quad \therefore \quad P B=25-x$ sine $P A=P B$
(ii) In $\triangle O P B, x^{2}+15^{2}=(25-x)^{2}$
re. $x^{2}+225=625-50 x+x^{2}$
or $\quad 50 x=400$

$$
x=8
$$

Q. 4
(a) (i)

$$
\therefore \angle K T S=150^{\circ}-70^{\circ}=80^{\circ}
$$

(ii)

$$
\begin{aligned}
K S^{2} & =400^{2}+213^{2}-2 \times 400 \times 213 \cos 80^{\circ} \\
\Rightarrow K S & =419 \mathrm{kn}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \frac{\sin K}{213}=\frac{\sin 80^{\circ}}{419} \\
& \therefore \sin K=\frac{213 \sin 80^{\circ}}{419} \Rightarrow \hat{K}=30^{\circ} \text {, eearest degree }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{1}^{2} x \sin x d x & \approx \frac{1}{6} \cdot 1\left[\sin 1+2 \sin 2+4 \cdot \frac{3}{2} \sin 1.5\right] \\
& \approx 1.44
\end{aligned}
$$

(c)

$$
\begin{gathered}
\therefore f^{\prime}(x)=3 x^{2}-2 x+c \quad: \quad f^{\prime}(1)=3-2+c=0 \\
c=-1 \\
\therefore f^{\prime}(3)=3 x^{2}-2 x-1=(x-1)(3 x+1)
\end{gathered}
$$

\Rightarrow stat.pt when $3 x+1=0$ sei $x=-\frac{1}{3}$

Q 5
(a) (i) We most have $\Delta<0$

$$
\begin{aligned}
& \therefore(k-3)^{2}-4 \times 2(k+3)<0 \\
& \text { \&e } k^{2}-6 k+9-8 k-24<0 \\
& \text { or } k^{2}-14 k-15<0
\end{aligned}
$$

(ii) From (i), $(k+1)(k-15)<0$

$$
\Rightarrow-1<k<15
$$

(iii) se' positive definite $\Rightarrow \Delta<0$

$$
\therefore-1<k<15
$$

(k)
(i) If $P=A e^{k t}$

$$
\text { them } \begin{aligned}
\frac{d P}{d t} & =A k e^{k t} \\
& =k\left(A e^{k t}\right) \\
& =k P
\end{aligned}
$$

(ii) $t=0, P=1730 \Rightarrow A=1730$
(iii)

$$
\begin{aligned}
& t=10, P=1160 \Rightarrow 1160=1730 e^{10 k} \\
& \therefore e^{10 k}=\frac{116}{173} \Rightarrow 10 k=\ln \left(\frac{116}{173}\right) \\
& \text { ie. } k=\frac{1}{10} \ln \left(\frac{116}{173}\right)=-0.04,1 \text { sig.fy }
\end{aligned}
$$

(i) Jan, $2006 \Rightarrow t=11$

$$
\begin{aligned}
\therefore P=1730 e^{-0.04 \times 11} & =1730 e^{-0.44} \\
& \simeq 1114 \quad(1110 \text { will do })
\end{aligned}
$$

\therefore expect $1160-1114=46$ to leave (50 will do)

Qu 6
(a) (i) After t minutes, $P R=2+4 t$ and $P Q=4+2 t$

$$
\begin{aligned}
\therefore A(t) & =\frac{1}{2}(2+4 t)(4+2 t) \sin 30^{\circ} \\
& =\frac{1}{4}(2+4 t)(4+2 t) \\
& =(1+2 t)(2+t) \\
& =2 t^{2}+5 t+2
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 2 t^{2}+5 t+2=102 \\
& \Rightarrow 2 t^{2}+5 t-100=0 \\
& \therefore t
\end{aligned} \begin{aligned}
\therefore \quad & \frac{-5+\sqrt{25+800}}{4} \\
& \text { since } t>0 \\
& =\frac{-5+\sqrt{825}}{4} \text { min } \quad[\approx 5.93 \mathrm{~min}]
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{d A}{d t}=4 t+5 & =4 \times 10+5 \text { after minutes } \\
& =45 \mathrm{~cm}^{2} / \mathrm{min}
\end{aligned}
$$

(b) (i) Interest $=\$ 399 \times 12 \times 5-\$ 20000=\$ 3940$
(ii)

$$
\begin{aligned}
A_{1}= & 20000 \times 1.006-399=19721 \\
& {\left[* 7.2 \% \text { p.a. }=\frac{0.072}{12} \text { p. month }=0.006\right] }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A_{2} & =A_{1}(1.006)-399 \\
& =(20000 \times 1.006-399) 1.006-399 \\
& =20000 \times 1.006^{2}-399(1+1.006)
\end{aligned}
$$

(ii)

$$
\text { (iii) } \begin{aligned}
\Rightarrow A_{n} & =20000 \times 1.006^{n}-399\left(1+1.006+\cdots+1.006^{n-1}\right) \\
& =20000 \times 1.006^{n}-399\left(\frac{1.006^{n}-1}{.006}\right) \\
& =20000 \times 1.006^{n}-66500\left(1.006^{n}-1\right) \\
& =66500-46500 \times 1.006^{n}
\end{aligned}
$$

(v) The one payment $=A_{24}=66500-46500 \times 1.006^{24} \times \$ 12821$ [or $\$ 12820.99$]

Qu 7
(a) (i)

$$
\begin{aligned}
& f^{\prime}(x)=24 x^{2}-12 x^{3} \\
&=12 x^{2}(2-x)<0 \quad \text { if } 2-x<0 \\
& \text { \&e } x>2
\end{aligned}
$$

\therefore decreasing for $x>2 \quad[x \geqslant 2$ will do $]$
(ii) $f^{\prime \prime}(x)=48 x-36 x^{2}=12 x(4-3 x)$

Now, $f^{\prime \prime}(0)=0$ and $f^{\prime \prime}(-1)<0, f^{\prime \prime}(1)>0 \quad\left[\begin{array}{ccc}\text { once in } \\ \text { concavity }]\end{array}\right.$
$\therefore(0,0)$ is a pt of inflection
(iii)

$$
\begin{aligned}
& f^{\prime}(x)=0 \Rightarrow x=0,2 \quad \text { stat pts }(0,0),(2,16) \\
& y=0,16 \\
& f(x)=0 \Rightarrow x^{3}(8-3 x)=0 \Rightarrow x \text { interacts } 0, \frac{8}{3}
\end{aligned}
$$

(b) (i) (Lots of alternatives)

$$
\begin{aligned}
& \angle A B Q=90^{\circ} \text {, angle sum of } \triangle A B Q R \\
& \therefore \angle A B C=\angle P B Q, \text { both complements of } \angle C B Q \\
& \text { and } \angle A=\angle Q=90^{\circ} \text {, gina } \\
& \therefore \triangle A B C \| B C P Q, 2 \text { angles equal }
\end{aligned}
$$

(ii) AAS
(iii)

$$
\begin{aligned}
P R & =P Q+Q R \\
& =A C+Q R, \text { cong } \Delta s \text { in (ii) } \\
& =A C+A B, \text { opp sides of rectangle } A B Q R
\end{aligned}
$$

Qu 8
(a) (i) For $y=3-2 x, y=0 \Rightarrow x=\frac{3}{2}$

For $y=2 x-x^{2}=x(2-x), y=0 \Rightarrow x=0,2$

$$
\text { (ii) } \begin{aligned}
A & =\int_{1}^{3} 2 x-x^{2}-(3-2 x) d x \\
& =\int_{1}^{3} 4 x-x^{2}-3 d x \\
& =\left[2 x^{2}-\frac{x^{3}}{3}-3 x\right]_{1}^{3} \\
& =18-9-9-\left(2-\frac{1}{3}-3\right)=\frac{4}{3} u^{2}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
V=\pi \int_{0}^{1} x^{2} d y \quad y=\log e^{x} & \Rightarrow x=e^{y} \\
& \therefore x^{2}=e^{2 y} \\
\therefore V=\pi \int_{0}^{1} e^{2 y} d y & =\frac{\pi}{2}\left(-e^{2 y}\right]_{0}^{1} \\
& =\frac{\pi}{2}\left(e^{2}-1\right) u^{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d}{d x} x\left((\ln x)^{2}-2 \ln x+2\right) & =x\left(2 \ln x \cdot \frac{1}{x}-\frac{2}{x}\right)+\left((\ln x)^{2}-2 \ln x+2\right) 1 \\
& =2 \ln x-2+(\ln x)^{2}-2 \ln x+2 \\
& =(\ln x)^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
V=\pi \int_{1}^{e} y^{2} d x & =\pi \int_{1}^{e}(\ln x)^{2} d x \\
& =\pi\left[x\left((\ln x)^{2}-2 \ln x+2\right)\right]_{1}^{e} \text { from (ii) } \\
& =\pi(e(1-2+2)-1(0-0+2)) \\
& =\pi(e-2) u^{3}
\end{aligned}
$$

On 9
(a)

$$
\begin{aligned}
& \delta_{1}=T_{1}=1+a \\
& S_{2}=2(2+a)=4+2 a \\
& \quad \therefore T_{2}=4+2 a-(1+a)=3+a \\
& \therefore \text { comno deffereie }=3+a-(1+a)=2
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& \dot{x}=2 \sin t \cos t+\cos t \\
& \text { ie } \dot{x}=\cos t(2 \sin t+1)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \dot{x}=0 \Rightarrow \cos t=0 \text { or } \sin t=-\frac{1}{2} \\
& \therefore t=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots .
\end{aligned}
$$

10. firit 5 times are $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{3 \pi}{2}, 11 \frac{\pi}{6}, \frac{5 \pi}{2}$
(iii)

$$
\begin{aligned}
& t=\frac{\pi}{2}, \quad x=1+1=2 \\
& \dot{x}=0 \\
& \ddot{x}=2 \cos \pi-1=-2-1=-3
\end{aligned}
$$

(iv) Since $\ddot{x}=-3<0$ tha \dot{x} will decrease $\because \quad \dot{x}$ will become negatione
\Rightarrow partide vives from $x=2$ towards te ongein
(v)

$$
\begin{aligned}
& t=\frac{7 \pi}{6}, x=\frac{1}{4}-\frac{1}{2}=-\frac{1}{4} \\
& t=\frac{3 \pi}{2}, x=1-1=0 \\
& t=\frac{11 \pi}{6}, x=\frac{1}{4}-\frac{1}{2}=-\frac{1}{4} \\
& t=\frac{5 \pi}{2}, x=1+1=2
\end{aligned}
$$

\Rightarrow leost didance $=\frac{1}{4}$
(v) $\quad V=\frac{\pi}{3} \sqrt{4 \theta^{4}-\theta^{6}}, 0<\theta<2$

$$
\begin{aligned}
& \theta \rightarrow 0, V \rightarrow 0 \\
& \theta \rightarrow 2, V \rightarrow 0 \\
& \theta=1.63, V=\frac{\pi}{3} \sqrt{4(1.63)^{4}-1.63^{6}} \approx 3.22 \\
& {[\theta=1, V \approx 1.8]}
\end{aligned}
$$

