

THE KING'S SCHOOL

2005 Higher School Certificate Trial Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1-10
- All questions are of equal value

THE KING'S SCHOOL

2005 Higher School Certificate Trial Examination

Mathematics

Question	Algebra and Number	Geometry	Functions	Trigonometry	Differential Calculus	Integral Calculus	Total
1	(a), (c), (d), (e), (f)			(b)			12
2			(a)		(b)		12
3	(d)	(a)				(b), (C)	12
4				(a)		(b), (C)	12
5	(b)(ii)(iii)(iv)		(a)		(b)(i)		12
6	(b)		(a)(i)(ii)		(a)(iii)		12
7		(b)			(a)		12
8			(a)(i)		(b)ii)	(a)(ii), (b)(i)(iii)	12
9	(a)		(b)(iv)(v)	(b)(ii)(iii)	(b)(i)		12
10			(a), (b)(iii)	(b)(i)(ii)	(b)(iv)(v)		12
Marks	27	10	26	15	25	17	120

Total marks – 120 Attempt Questions 1-10 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

		Marks
Que	stion 1 (12 marks) Use a SEPARATE writing booklet.	
(a)	Convert 2005 degrees to radians, correct to the nearest integer.	1
(b)	State the amplitude and period of the function $y = -\sin 2x$	2
(c)	Simplify $\frac{2}{3} - \frac{3x+8}{12}$	2
(d)	Express $\frac{\sqrt{2}+2}{\sqrt{2}}$ in simplest form.	2
(e)	Find $\sum_{n=1}^{3} \frac{6}{n}$	1
(f)	Solve	
	(i) $ x-3 < 9$	2
	(ii) $2005^x = 21$, correct to 1 decimal place.	2

A (-2,0) O

ABCD is a quadrilateral with vertices A(-2,0), B(-2,6), C(4,14) and D(1,4).

(i)	Show that AD is parallel to BC.	2
(ii)	Find the sum of the lengths of AD and BC.	2
(iii)	Show that the equation of the line AD is $3y - 4x - 8 = 0$	2
(iv)	Hence, or otherwise, find the area of the quadrilateral ABCD.	3

▶ x

(b) Differentiate

(i)
$$(2x+1)^{-1}$$
 1

(ii)
$$\frac{x}{x^2+1}$$
 2

End of Question 2

(a)

In the diagram, AB = AD and $\angle DBC = 90^{\circ}$.

Line APQ is parallel to line BC and meets DB at P and DC at Q.

(i) Give a reason why
$$\angle APB = 90^{\circ}$$
. 1

(ii) Prove that $\triangle ABP$ is congruent to $\triangle ADP$.

(iii) Deduce that
$$DQ = QC$$
. 2

(b) Find a primitive function of
$$\frac{x^3}{x^4+1}$$
 1

(c) Evaluate
$$\int_{0}^{\frac{\pi}{8}} 2 \sec^2 2x \, dx$$
 2

Question 3 continues on next page

3

(d)

P(x,0) is the point between O(0,0) and A(25,0) such that PA = PB, where B = (0,15).

- (i) Explain why PB = 25 x.
- (ii) Find the value of x.

3

3

(a)

The bearing of K from T is 070° and TK = 400km. The bearing of S from T is 150° and TS = 213km.

- (i) Show that $\angle KTS = 80^{\circ}$. 1
- (ii) Find KS, nearest km.
- (iii) Use the sine rule to find the bearing of S from K, nearest degree.
- (b) Use Simpson's Rule once to approximate $\int_{1}^{2} x \sin x \, dx$, correct to 2 decimal places.
- (c) The curve y = f(x) has a stationary point at x = 1 and f''(x) = 6x 2.

Find the x coordinate at which there is another stationary point. 3

2

1

1

2

2

- (a) The quadratic equation $Q(x) = 2x^2 + (k-3)x + (k+3) = 0$ has no real roots.
 - (i) Prove that $k^2 14k 15 < 0$
 - (ii) Find the values of k.
 - (iii) For what values of k is Q(x) > 0 for all real values of x?
- (b) The population P of a country town on January 1, 1995 was 1730 and on January 1, 2005 was 1160. The town's population is known to be changing according to the equation $\frac{dP}{dt} = kP$ where t is time in years measured from January 1, 1995 and k is a constant.
 - (i) Verify that $P = Ae^{kt}$, where A is a constant, satisfies the equation $\frac{dP}{dt} = kP$. 2
 - (ii) State the value of A
 - (iii) Find the value of k, correct to 1 significant figure.
 - (iv) Approximately how many people are expected to leave the town during the year 2005?

2

(a)

 ΔPQR has a fixed angle $P = 30^{\circ}$ but side *PR* is increasing at 4cm/min and side *PQ* at 2cm/min.

Initially, PR = 2cm and PQ = 4cm.

Let A(t) be the area of ΔPQR after t minutes.

(i) Show that
$$A(t) = 2t^2 + 5t + 2$$
 2

- (ii) When is the area of ΔPQR equal to 102 cm^2 ?
- (iii) At what rate is the area of ΔPQR changing after 10 minutes?

Question 6 continues next page

(b) George borrows \$20 000 from Saint Bank. This loan plus interest is to be repaid in equal monthly instalments of \$399 over five years. Interest of 7.2% p.a. is compounded monthly on the balance owing at the start of each month.

Let A_n be the amount owing after *n* months.

(i)Over the five year repayment period, how much interest is charged?1(ii)Show that $A_1 = 19721$.1(iii)Clearly show that $A_2 = 20\ 000 \times 1.006^2 - 399(1+1.006)$.1(iv)Deduce that $A_n = 66\ 500 - 46\ 500 \times 1.006^n$.2(v)After two years of repayments George decides on the very next day to repay the loan in full by one payment.
How much will this one payment be?1

(b)

(a)

In the diagram there are six right angles marked.

(i)	Prove that $\triangle ABC$ is similar to $\triangle BPQ$.	2
(ii)	If further, $BC = BP$, which test proves that $\triangle ABC$ is congruent to $\triangle BPQ$?	1

```
(iii) Deduce that PR = AB + AC.
```

End of Question 7

(a) The line y = 3 - 2x and the parabola $y = 2x - x^2$ meet at the points (1,1) and (3,-3).

[Do Not Show This]

- (i) On the same diagram sketch the line and the parabola and include on your diagram the x intercepts for each.
- (ii) Find the area of the region bounded by the line and the parabola.

(b)

(i) The region bounded by the curve $y = \ln x$ and the y axis between y = 0and y = 1 is revolved about the y axis.

Find the volume of the solid of revolution.

(ii) Show that
$$\frac{d}{dx} \left[x \left((\ln x)^2 - 2 \ln x + 2 \right) \right] = (\ln x)^2$$
 2

(iii) The region bounded by the curve $y = \ln x$ and the x axis between x = 1and x = e is revolved about the x axis.

Find the volume of the solid of revolution.

End of Question 8

Marks

2

3

3

(a) The sum of the first *n* terms of an arithmetic series is given by $S_n = n(n+a)$, where *a* is a constant.

Find the common difference.

(b) A particle is moving along the x axis. Initially it is at the origin with velocity 1.

Its displacement at any time $t \ge 0$ is given by $x = \sin^2 t + \sin t$.

- (i) Show that its velocity at any time $t \ge 0$ is given by $\dot{x} = \cos t (2\sin t + 1)$ 2
- (ii) Find the first five times that the particle stops.
- (iii) The acceleration of the particle can be expressed as $\ddot{x} = 2\cos 2t \sin t$

[DO NOT SHOW THIS]

Find the displacement, velocity and acceleration when $t = \frac{\pi}{2}$

- (iv) Use (iii) to explain why immediately after $t = \frac{\pi}{2}$ the particle will move towards the origin.
- (v) Find the least distance that the particle moves between its stopping positions.

End of Question 9

2

3

1

2

(a)

A cone has radius r, height h and slant height l.

The volume of the cone $V = \frac{\pi}{3}r^2h$

Show that the volume of the cone can be expressed as $V = \frac{\pi}{3}\sqrt{l^2r^4 - r^6}$. 2

1

4

(b)

The angle at the centre *C* of a circle of radius 2cm is $\pi\theta$ radians, $0 < \theta < 2$, as shown in the diagram.

- (i) Write down the length of the arc *AB* of this sector.
- (ii) This sector is cut from the circle along the radii *CA* and *CB* and folded to make a cone.

Find the radius of the cone.

- (iii) Show that the volume of the cone is given by $V = \frac{\pi}{3}\sqrt{4\theta^4 \theta^6}$ 1
- (iv) Find the value of θ , correct to two decimal places, for which the volume of the cone is a maximum.
- (v) Sketch the graph of V against θ using the same scale on both axes. 3

End of Examination

STANDARD INTEGRALS

$\int x^n dx$	$= \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$		
$\int \frac{1}{x} dx$	$= \ln x, x > 0$		
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$		
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, a \neq 0$		
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, a \neq 0$		
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$		
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$		
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$		
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a>0, -a < x < a$		
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln \left(x + \sqrt{x^2 - a^2} \right), x > a > 0$		
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln \left(x + \sqrt{x^2 + a^2} \right)$		
NOTE : $\ln x = \log_e x$, $x > 0$			

$$\frac{TKS}{RATHEMATICS} \frac{TRIAL}{H.S.C.} 2005 \frac{Solutions}{Solutions}$$

$$\frac{OL}{(A)} \frac{1}{2005 \times \frac{\pi}{1P0}} rediano}{1} = 35^{C}$$

$$(L) arglitude = 1, print = \frac{2\pi}{2} = \pi$$

$$(L) \frac{9 - (3x + 8)}{12} = -\frac{3x}{12} = -\frac{x}{14}$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + \frac{2}{\sqrt{2}} = 1 + \sqrt{2}$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + \frac{2}{\sqrt{2}} = 1 + \sqrt{2}$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

$$(A) \frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + 2 = 11$$

Que 2

(a) (i) gradient
$$AD = \frac{4}{1-2} = \frac{4}{3}$$

grod $BC = \frac{14-6}{4-2} = \frac{8}{6} = \frac{4}{3}$
 $\therefore AD ||BC \quad (equal grds)$
(ii) $AD + BC = \sqrt{3^2 + 4^2} + \sqrt{6^2 + 8^2}$
 $= 5 + 10 = 15$
(iii) AD is $y = \frac{4}{3}(n - 2)$
or $3y = 4x + 8$
 $12 - 3y - 4x - 8 = 0$
(iv) $ABCD$ is a trapezium, from (i)
 $\pm distance$ for $B(-2,6) \neq AD$

$$= \frac{18 + 8 - 8}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5}$$

. Area =
$$\frac{1}{2}(15)\frac{18}{5} = 27 u^{-1}$$

(4) (i)
$$-(2x+1)^{-2} = -\frac{2}{(2x+1)^{2}}$$

, ·

$$\frac{(1)}{(2^{2}+1)^{2}} = \frac{(-2^{2})}{(2^{2}+1)^{2}} = \frac{(-2^{2})}{(2^{2}+1)^{2}}$$

$$\begin{pmatrix} 4 \\ 4 \end{pmatrix} \frac{4^{3}}{x^{4}+1} dx = \frac{1}{4} \ln (x^{4}+1)$$

(c)
$$\int_{0}^{\frac{\pi}{8}} 2 \sec^{2} x \, dx = \frac{2}{2} \left[\tan 2x \right]_{0}^{\frac{\pi}{8}}$$

= $\tan \frac{\pi}{4} - 0$
= 1

(d) (i)
$$PA = 25 - x$$
 .'. $PB = 25 - x$ since $PA = PB$
(ii) $I_{n} \Delta OPB$, $x^{2} + 15^{2} = (25 - x)^{2}$
Re. $x^{2} + 225 = 625 - 50x + x^{2}$
or $50x = 400$
 $x = 8$

(ii) $KS^2 = 400^2 + 213^2 - 2 \times 400 \times 213 \cos 60^\circ$ $\implies KS = 419 \ km$

(h)
$$\int_{1}^{2} x \sin x \, dx \approx \frac{1}{6} \cdot 1 \left[\sin 1 + 2 \sin 2 + 4 \cdot \frac{3}{2} \sin 1 \cdot 5 \right]$$

 ≈ 1.444

(c)
$$f(x) = 3x^{2} - 2x + c$$
 : $f'(x) = 3 - 2 + c = 0$
 $c = -1$
 $f(x) = 3x^{2} - 2x - 1 = (x - 1)(3x + 1)$
 $\Rightarrow stat. pt$ when $3x + 1 = 0$ i.e. $x = -\frac{1}{3}$

Qu 5

(ii)
$$k = 0$$
, $l = 1/30 \implies A = 1/30$
(iii) $t = 10$, $P = 1/60 \implies 1/60 = 1730 e^{10k}$
 $\therefore e^{10k} = \frac{1/6}{173} \implies 10k = ln \left(\frac{116}{173}\right)$
i.e. $k = \frac{1}{10} ln \left(\frac{116}{173}\right) = -0.044$, $lsig.fig$

(iv)
$$J_{an}, 2006 \Rightarrow t = 11$$
 $P = 1730 e^{-0.04 \times 11} = 1730 e^{-0.44}$
 $\simeq 1114 (1110 \text{ mill do})$
 $\therefore expect 1160 - 1114 = 46 \text{ to leave (50 will do)}$

Que 6

(a) (i) After t minutes,
$$PR = 2 + 4t$$
 and $PQ = 4 + 2t$

$$\therefore A(t) = \frac{1}{2} (2+4t) (4+2t) \sin 30^{\circ}$$

$$= \frac{1}{4} (2+4t) (4+2t)$$

$$= (1+2t) (2+t)$$

$$= 2t^{\circ} + 5t + 2$$
(ii) $2t^{\circ} + 5t + 2 = 102$

$$\Rightarrow 2t^{\circ} + 5t - 100 = 0$$

$$\therefore t = -5 + \sqrt{25 + 800}$$
 Since $t > 0$

$$= -5 \pm \sqrt{825} \text{ min} \qquad \left[\approx 5.93 \text{ min}\right]$$

(iii)
$$\frac{dA}{dt} = 4k + 5 = 4 \times 10 + 5$$
 after 10 minutes
 $\frac{dA}{dt} = 45 \text{ cm}/\text{min}$

(b) (i) Interest =
$$$399 \times 12 \times 5 - $20000 = $3940$$

(ii) $A_1 = 20000 \times 1.006 - 399 = 19721$
[* 7.2% p.a. = $\frac{0.072}{12}$ p. marth = 0.006]

$$\begin{array}{l} (\overline{n}i) \quad A_{2} = A_{1} (1.006) - 399 \\ = (20000 \times 1.006 - 399) 1.006 - 399 \\ = 20000 \times 1.006^{2} - 399 (1 + 1.006) \\ (\overline{n}i) \quad (\overline{n}i) \Rightarrow A_{n} = 20000 \times 1.006^{n} - 399 (1 + 1.006 + ... + 1.006^{n-1}) \\ = 20000 \times 1.006^{n} - 399 \left(\frac{1.006^{n} - 1}{.006} \right) \\ = 20000 \times 1.006^{n} - 66500 (1.006^{n} - 1) \\ = 66500 - 46500 \times 1.006^{n} \\ (\nu) \quad The one pagment = A_{24} = 66500 - 46500 \times 1.006^{24} \$ 12821 \\ [or \$ 12820.99] \end{array}$$

$$\begin{array}{l}
\Omega_{L} 7 \\
(a) (i) f'(x) = 24x^{2} - 12x^{3} \\
= 12x^{2} (2-x) < 0 \quad \text{if } 2-x<0 \\
(a \times > 2) \\
\hline
& \text{decreasing for } x > 2 \quad [x > 2 - 12x] \\
\end{array}$$

(ii)
$$\int_{-\infty}^{11} (x) = 48x - 36x^2 = 12x (4 - 3x)$$

Now, $\int_{-\infty}^{11} (0) = 0$ and $\int_{-\infty}^{11} (-1) < 0$, $\int_{-\infty}^{11} (1) > 0$ [change in concavity]
 $\therefore (0,0)$ is a pt of inflection

(iii)
$$f(x) = 0 \implies x = 0, 2$$
 is short pts (0,0), (2,16)
 $y = 0, 16$

$$f_{O_3} = 0 \implies \chi^3 (\delta - 3\chi) = 0 \implies \chi \text{ intercepts } 0, \frac{\delta}{3}$$

$$\frac{Q_{-}}{2} = \frac{3}{2} + \frac{3}{2} +$$

$$\begin{pmatrix} i^{i} \\ l \\ du \end{pmatrix}^{2} = 2hu + 2 \end{pmatrix} = x \left(2hu \cdot \frac{1}{u} - \frac{2}{u} \right) + \left(\left(l + u \right)^{2} - 2hu + 2 \right) i$$

$$= 2hu - 2 + \left(l + u \right)^{2} - 2hu + 2$$

$$= \left(l + u \right)^{2}$$

$$(i^{i}i) \quad V = \pi \int_{1}^{e} \frac{g^{2}}{du} = \pi \int_{1}^{e} \left(l + u \right)^{2} du$$

$$= \pi \int_{1}^{e} \left(l + u \right)^{2} du$$

$$= \pi \left[x \left(\left(l + u \right)^{2} - 2hu + 2 \right) \right]_{1}^{e} form \quad (i^{i})$$

$$= \pi \left(e \left(1 - 2 + 2 \right) - 1 \left(0 - 0 + 2 \right) \right)$$

$$= \pi \left(e - 2 \right) u^{3}$$

$$(a) \quad S_{1} = T_{1} = 1 + a$$

$$S_{2} = 2(2+a) = 4+2a$$

$$\therefore \quad T_{2} = 4+2a - (1+a) = 3+a$$

$$\therefore \quad conner \quad differine = 3+a - (1+a) = 2$$

$$(4) \quad (i) \quad \dot{x} = 2 \text{ sink cost} + \cos st$$

$$i \quad \dot{x} = \cos st (2 \text{ sink } + 1)$$

$$(i) \quad \dot{x} = 0 \Rightarrow \cos s = 0 \text{ or } \sin t = -\frac{1}{2}$$

$$\therefore \quad t = \frac{T}{2}, 2\frac{2T}{2}, 5\frac{2T}{2}, --\cdots$$

$$re. \quad first \quad 5 \text{ hinso are } \frac{T}{2}, 7\frac{2T}{2}, 7\frac{2T}{2}, 7\frac{T}{6}, 5\frac{5T}{2}$$

$$(ii) \quad t = \frac{T}{2}, \quad x = 1 + 1 = 2$$

$$\dot{z} = 0$$

$$\dot{x} = 2\cos T - 1 = -2 - 1 = -3$$

$$(iv) \quad Since \quad \ddot{x} = -3 < 0 \quad \text{He is will decrease}$$

$$re \quad \dot{z} \quad will herease negative$$

$$\Rightarrow publike noises fore \quad x = 2 \quad \text{humands & dirigni}$$

$$(v) \quad x = 7\frac{T}{6}, \quad x = 4 - \frac{1}{2} = -\frac{1}{4}$$

$$t = 3\frac{T}{2}, \quad x = 1 + 1 = 2$$

$$\Rightarrow |east \quad didage = \frac{1}{4}$$

