The King’s School

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-10
- All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Evaluate, correct to four significant figures $\frac{1251.5 \times \pi}{1.4^{2}}$
(b) Factorise fully $18-32 a^{2}$
(c) Find a primitive of $4 x+\cos 2 x$
(d) Find the exact value of 225° in radians in simplest form.
(e) Solve $|2 x-1| \geq 3$
(f) Solve $\frac{x-5}{3}-\frac{x+1}{4}=-5 \quad 2$
(a) Solve $\tan \theta=-\frac{1}{\sqrt{3}}$ for $0 \leq \theta \leq 2 \pi$
(b) Differentiate with respect to x
(i) $2 x \cos x$
(ii) $\frac{x^{3}}{2 x+1}$
(c) (i) Find $\int \frac{2 x^{3}+1}{x^{4}+2 x} d x$
(ii) Evaluate $\int_{0}^{\frac{\pi}{3}} \sin 3 x d x$
(d) Solve the simultaneous equations

$$
\begin{equation*}
x+2 y=-2 \text { and } 2 x-y=11 \tag{2}
\end{equation*}
$$

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows the points $P(0,2)$ and $Q(-4,0)$. The point M is the midpoint of $P Q$. The line MN is perpendicular to PQ and meets the y axis at N .
(i) Show that the gradient of PQ is $\frac{1}{2}$.
(ii) Find the coordinates of M .
(iii) Find the equation of the line MN.
(iv) Show that N has coordinates $(0,-3)$.
(v) Find the distance NQ.
(vi) The point R lies in the second quadrant, and PNQR is a rhombus.

Find the coordinates of R.
1
(vii) Find the area of rhombus PNQR.
(b) Find the equation of the tangent to the curve $y=e^{x^{2}}$ at the point where $x=1$.
(a) Find the value of x giving reasons for your answer.
$\mathrm{AB}=\mathrm{AD}$
$\mathrm{BD}=\mathrm{DC}$ and $\mathrm{AD} \| \mathrm{BC}$

(b)

A motorist drives 50 km from town T to a landmark L on a bearing of 050°.
He then drives 75 km to a resort R on a bearing of 150°.
(i) Find the size of $\angle \mathrm{TLR}$.
(ii) Find the distance TR to the nearest kilometre
(c) Solve $\log _{2} x+\log _{2}(x-1)=1$
(d) Find $\frac{d y}{d x}$ when $y=\ln \sqrt{\frac{4 x-1}{2 x+3}}$

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a)

O is the centre of the circle containing the arc AB . P is the midpoint of OA and Q is the midpoint of OB.
$\angle \mathrm{AOB}=120^{\circ} \quad \mathrm{OQ}=\mathrm{OP}=5 \mathrm{~cm}$
(i) Find the exact length of the arc AB .
(ii) Find the shaded area PQBA in exact form.
(b) Find, justifying your answer, any point(s) of inflexion on the curve

$$
y=\frac{1}{3} x^{3}-x^{2}+1
$$

(c) Water is taken out of a tank at the rate $R=2 t+\frac{200}{t+4}$ litres $/ \mathrm{min}$.

Initially there were 1000 litres of water in the tank.
(i) At what time will the rate be a minimum? 3
(ii) How many litres of water will be left in the tank after $24 \frac{1}{2}$ minutes.
(a)

ABCD is a paralellogram and P, Q are the midpoints of the sides AB, DC respectively. The intervals PR and QS are drawn perpendicular to the diagonal BD.
(i) Prove the triangles BPR and DQS are congruent.
(ii) If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{PR}=3 \mathrm{~cm}$ and $\mathrm{BD}=14 \mathrm{~cm}$, find the length of SR .
(b) The equation $(x-2)^{2}=-6\left(y-\frac{3}{2}\right)$ represents a parabola.
(i) Write down the coordinates of the vertex.
(ii) Find the focal length.
(iii) Find the x-intercepts of the parabola.
(iv) Sketch the graph of the parabola showing the focus and directrix.
(c)

The graphs of $y=2 x$ and $y=6 x-x^{2}$ intersect at the origin and at point $B(4,8)$.
Find the shaded area bounded by $y=6 x-x^{2}$ and $y=2 x$.
(a) The table shows the values where $y=5 x e^{-x}$.

x	0	1	2	3	4
y	0	1.84	1.35		0.37

(i) Find y when $x=3$ correct to two decimal places.
(ii) Find $\int_{0}^{4} 5 x e^{-x} d x$ using Simpson's Rule with five function values, correct to one decimal place..
(b) The number, N , of bacteria in a culture is growing exponentially according to the formula

$$
N=120 e^{k t}
$$

(i) What is the initial number of bacteria?
(ii) After eight hours the number of bacteria has tripled. Calculate the value of k to three decimal places.
(iii) How many bacteria, correct to the nearest ten, will there be after twelve hours?
(iv) At what rate will the bacteria be increasing after eighteen hours?
(c) Sketch the curve $y=1-\sin 2 x$ for $0 \leq x \leq \pi$

End of Question 7

Question 8 (12 marks) Use a SEPARATE writing booklet.
(a) (i) Without using calculus, sketch the curve $y=e^{x}-2$
(ii) On the same sketch, find graphically the number of solutions of the equation

$$
e^{x}-x-2=0
$$

(Do not attempt to solve the equation.)
(b) Some children have 500 identical toy blocks. They wish to build a triangular wall so that the top layer has 1 brick, the second layer has 2 bricks, the third layer has 3 bricks and so on. Assuming that the wall remains stable, find
(i) the maximum number of layers they can complete
(ii) the number of bricks they have left over
(c)

A particle moves along the x axis. The graph shows the displacement x metres of the particle, from a fixed point (origin) at time t seconds.
(i) What is the initial velocity of the particle?
(ii) Between what times is the particle moving in a negative direction?
(iii) How many metres did the particle travel?
(iv) Sketch the velocity as a function of time.

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) What are the values of a and b if $x-3$ and $x+7$ are factors of the quadratic expression

$$
\begin{equation*}
a x^{2}+12 x+b \tag{2}
\end{equation*}
$$

(b) A man sets up a trust fund for his grandson by investing $\$ 75$ at the beginning of each month. The money is invested at 6% p.a. compounded monthly and it matures at the end of the month, 20 years after the first investment.
(i) After 20 years, what will be the value of the first $\$ 75$ invested?
(ii) Using geometric series, calculate the final value of the trust fund at the end of the 20 years.
(c) Solve $2 \cos ^{2} x-3 \cos x-2=0$ for $0 \leq x \leq 2 \pi$
(d)

In the diagram, the shaded region is bounded by the y axis, the curve $y=e^{x}$ and a horizontal line l that cuts the curve at a point whose x coordinate is $\log _{e} 4$.

A solid is formed by rotating the shaded region about the y axis.
Find a definite integral in terms of y whose value is the volume of the solid formed.
(Do not attempt to evaluate the integral.)

End of Question 9

(a) (i) Prove that $\frac{d}{d \theta}\left(\tan ^{3} \theta\right)=3 \sec ^{4} \theta-3 \sec ^{2} \theta$
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \sec ^{4} \theta d \theta$
(b)

A right circular cone has base radius r and height h.
As r and h vary, its curved surface area $\pi r \sqrt{r^{2}+h^{2}}$ is kept constant. Let $\pi r \sqrt{r^{2}+h^{2}}=\mathrm{K}$ where K is a constant.
(i) Show that $\mathrm{V}^{2}=\frac{1}{9} r^{2}\left(\mathrm{~K}^{2}-\pi^{2} r^{4}\right)$ where V is the volume of the cone. (Note:
$\mathrm{V}=\frac{1}{3} \pi r^{2} h$)
(ii) Let $\mathrm{Q}=\mathrm{V}^{2}$. Show that $\frac{d Q}{d r}=0$ when $r^{4}=\frac{\mathrm{k}^{2}}{3 \pi^{2}}$
(iii) Show that the maximum value of Q (and hence the maximum value of V) occurs when $h=\sqrt{2} r$.

Standard Integrals

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{\mathrm{n}+1}, \quad \mathrm{n} \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}+x^{2}}} d x \quad=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { Note: } \ln x=\log _{e} x, \quad x>0
$$

Year 12 - 2 Unit Mathematies Angzook
Questian 1
(a) $E_{1 p}=2005.971$ - 1 mark

$$
=2006 \text { (to } 4 \text { sig fig) }-1 \text { mark }
$$

(b)

$$
\begin{aligned}
18-32 a^{2} & =2\left(9-16 a^{2}\right)-1 \text { mark } \\
& =2(3+4 a)(3-4 a)-1 \text { mark }
\end{aligned}
$$

1, $2 x^{2}+\frac{1}{2} \sin 2 x(+c) 1$ off eact evrer
(d) $225^{\circ}=\frac{\pi}{150} \times 225$ raphani -1 mach

$$
=\frac{5 \pi}{4} \text { raduais } \quad-1 \text { mark }
$$

(e)

$$
\begin{array}{cc}
2 x-1 \leqslant-3 & 2 x-1 \geqslant 3 \\
2 x \leqslant-2 & 2 x \geqslant 4-1 \text { erch } \\
x \leqslant-1 & x \geqslant 2 \\
x \leqslant-1 \text { or } x \geqslant 2
\end{array}
$$

(f)

$$
\begin{aligned}
\frac{x-5}{3}-\frac{x+1}{4} & =-5 \\
4(x-5)-3(x+1) & =-60 \quad \text { I off eweh error } \\
4 x-20-3 x-3 & =-60 \\
x-23 & =-60 \\
x & =-37
\end{aligned}
$$

Questron 2
(a)

$$
\begin{align*}
\tan \theta & =-\frac{1}{\sqrt{3}} \\
\therefore \text { acnle } \theta & =\frac{\pi}{6}-1 \text { mark } \\
\theta & =\pi-\frac{\pi}{6}, 2 \pi-\frac{\pi 1}{6} \\
& =\frac{5 \pi}{6}, \frac{11 \pi}{6}-1 \text { mark }
\end{align*}
$$

(b) i,

$$
\begin{aligned}
\frac{d}{d x}(2 x \cos x) & =\cos x \cdot 2+2 x-\sin x-1 \operatorname{mar} \\
& =2 \cos x-2 x \sin x-1 \operatorname{mark}
\end{aligned}
$$

$$
\text { (ii, } \begin{aligned}
\frac{d}{d x}\left(\frac{x^{3}}{2 x+1}\right) & =\frac{(2 x+1) \cdot 3 x^{2}-x^{3} \cdot 2}{(2 x+1)^{2}} \\
& =\frac{6 x^{3}+3 x^{2}-2 x^{3}}{(2 x+1)^{2}} \\
& =\frac{4 x^{2}+3 x^{2}}{(2 x+1)^{2}}-1 \text { oft }
\end{aligned}
$$

(c) i)

$$
\begin{aligned}
\int \frac{2 x^{3}+1}{x^{4}+2 x} d x & =\frac{1}{2} \int \frac{4 x^{3}+2}{x^{4}+2 x} d x-1 \operatorname{mach} \\
& =\frac{1}{2} \log _{x}\left(x^{4}+2 x\right)+c-1 \max h
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{3}} \sin 3 x d x & =-\frac{1}{3}[\cos 3 x]_{0}^{\frac{\pi}{3}} \\
& =-\frac{1}{3}[\cos \pi-\cos 0] \\
& =-\frac{1}{3} x-2 \\
& =\frac{2}{3}-1 \text { off each error }
\end{aligned}
$$

(d)

$$
\begin{aligned}
x+2 y & =-2 \\
2 x-y & =11
\end{aligned}
$$

(2) $x<\quad 4 x-2 y=22 \ldots$ (3)
(1) + (2) $\quad 5,1=20$

$$
x=4
$$

subs in (2) $P-y=11 \quad$ - 1 off lach error

$$
\left\{\begin{array}{l}
y=-3 \\
x=4 \\
y=-3
\end{array}\right\}
$$

Question: 3
(a)

$$
\begin{aligned}
i, \quad m & =\frac{2-0}{0--4} \\
& =\frac{2}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

(ii) coords of $M=\left(\frac{0+-4}{2}, \frac{2+0}{2}\right)$

$$
=(-2,1)-1 \text { mash each coordinate }
$$

(iii)

$$
\begin{aligned}
y-1 & =-2(x--2) \quad-1 \text { off each eve } \\
& =-2 x-4 \\
y & =-2 x-3
\end{aligned}
$$

(iv, cuts y-anus where $ル=0$

$$
\begin{aligned}
y & =0-3 \\
& =-3
\end{aligned}
$$

- 1 mark
cordenalís of N are $(0,-3)$
(v)

$$
\begin{aligned}
N Q & =\sqrt{(-4-0)^{2}+(0--3)^{2}} \\
& =\sqrt{25} \\
& =5 \text { unis }
\end{aligned}
$$

- 1 mark
(vi)

$$
\begin{aligned}
P N & =Q R \\
& =S_{\text {unit }}
\end{aligned}
$$

Coordinate of R are $(-4,5)-1$ mark
(vii)

$$
\begin{aligned}
\text { area } & =b L \\
& =4 \times 5 \\
& =20 \mathrm{w}^{2}
\end{aligned}
$$

-1 mark
(b)

$$
\begin{aligned}
\frac{d y}{a x} & =e^{x^{2}} \cdot 2 x \\
& =2 x \cdot e^{x^{2}}
\end{aligned}
$$

- 1 mark
where $x=1, y=e$

$$
\begin{aligned}
& \frac{d y}{d x}=2 e-1 \operatorname{mar} h \\
y-e & =2 e(x-1) \\
& =2 e x-2 e \\
y & =2 e x-e \quad-1 \text { mark }
\end{aligned}
$$

Question 4
(a)

$$
\begin{aligned}
\angle A D B & =\angle D B C C \quad(\text { base } \angle A, \operatorname{css} \triangle A D B) \\
& =40^{\circ} \quad-1 \text { mark } \\
\angle D C B & =40^{\circ}\left(\triangle D C B \text { is } 1 \dot{s}^{\circ} \theta^{\circ}\right)-1 \text { mark } \\
\therefore \angle A & =100^{\circ}(\angle \text { sur of } \triangle D C B)-1 \text { mark }
\end{aligned}
$$

(b) iy

$$
\begin{aligned}
& \angle T L P=50^{\circ}(a / t \angle N T \| Q P) \\
& \angle P L R=30^{\circ}(\angle Q L P A T \angle) \\
& \therefore \angle T L R=80^{\circ}-1 \text { mash }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
T R^{2} & =50^{2}+75^{2}-2 \times 50 \times 75 \times \cos 80^{\circ}-1 \text { marh } \\
& =6822.6 .387 \\
\therefore T R & =83 \mathrm{~km} \text { (rearest } \mathrm{km} \text {) }-1 \text { mark }
\end{aligned}
$$

(c)

$$
\begin{gathered}
\log _{2} x+\log _{2}(x-1)=1 \\
\therefore x(x-1)=2,-1 \text { marh } \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
x=2,-1,-1 \text { marh } \\
\therefore x \neq 2, x \neq 1-1 \text { manh }
\end{gathered}
$$

(d)

$$
\begin{aligned}
y & =\ln \sqrt{\frac{4 x-1}{2 x+3}} \\
& =\frac{1}{2} \ln \frac{4 x-1}{2 x+3} \\
& =\frac{1}{2}\{\ln (4 x-1)-\ln (2 x+3)-1 \text { eff uacherros } \\
\frac{d y}{d x} & =\frac{1}{2}\left(\frac{4}{4 x-1}-\frac{2}{2 x+3}\right)
\end{aligned}
$$

$$
=\frac{2}{4 n-1}-\frac{1}{2 n+3}
$$

Questroni 5
(a)

$$
\begin{aligned}
\text {), } \begin{aligned}
\text { arelength } & =\frac{2 \pi}{3} \times 10 \mathrm{~cm}-1 \text { mach } \\
& =\frac{20 \pi}{3} \mathrm{~cm} \\
\text { (ii) shadelarea } & =\frac{1}{2} \times 10^{2} \times \frac{2 \pi}{3}-\frac{1}{2} \times 5 \times 5 \times \sin \frac{2 \pi}{3} \\
& =\left(\frac{100 \pi}{3}-\frac{25 \sqrt{3}}{4}\right) \mathrm{cm}^{2}-1 \mathrm{marh}
\end{aligned}
\end{aligned}
$$

(b) ;

$$
\begin{aligned}
& y=\frac{1}{3} x^{3}-x^{2}+1 \\
& \frac{d y}{d x}=x^{2}-2 x \\
& \frac{d^{2} y}{d x^{2}}=2 x-2
\end{aligned}
$$

- 1 mark
where $\frac{x^{2} y}{d x^{2}}=0 ; x=1, y=\frac{1}{3}$. - 1 mark

$$
\begin{aligned}
x=\frac{1}{2}, \quad \frac{d^{2} y}{d x^{2}} & =1-2
\end{aligned}
$$

$$
\begin{aligned}
x=1 \frac{1}{2}, \begin{aligned}
a^{2} y & =3-2 \quad-1 \text { mark } \\
h^{2} & >0
\end{aligned}, 1,
\end{aligned}
$$

\therefore pt op inflesusis at $\left(1, \frac{1}{3}\right)$
(c) (i)

$$
\begin{aligned}
R & =2 t+200(t+4)^{-1} \\
\frac{d R}{d t} & =2-\frac{200}{(t+4)^{2}}-1 \text { off erch eprer }
\end{aligned}
$$

$$
\text { where } \frac{d R}{d t}=0, \quad, \quad 2=\frac{200}{(t+4)^{2}}
$$

$$
\begin{aligned}
(t+4)^{2} & =100 \\
t+4 & = \pm 10 \\
t & =6, \quad t \neq-14 \\
\frac{d^{2} h}{d t^{2}} & =\frac{4 \infty}{(t+4)^{3}} \\
& >0, t>0
\end{aligned}
$$

\therefore munat $t=6$

$$
\begin{aligned}
\text { (ii) Volempitiet } & =\int\left(2 t+\frac{200}{t+4}\right) d t \\
& =t^{2}+200 \log (t+4)+c . \\
\text { where } t & =0, V=0 \\
\therefore \quad V & =t^{2}+200 \log (t+4)-200 \log 4 \\
\text { where } t & =24 \frac{1}{2}, \quad V
\end{aligned} \begin{aligned}
&\left(24 \frac{1}{2}\right)^{2}+200 \log 28 \frac{2}{2} \\
&-200 \log 4 \\
&=992.97
\end{aligned}
$$

\therefore wpter left $=7$ litre (rearest litre)
Question 6
(a) (i) In $\triangle \triangle B P R, D Q S$
(ii) By Pythagor as $\begin{aligned} B R^{2} & =5^{2}-3^{2} \\ & =16\end{aligned}$

$$
=16
$$

$$
B R=4 \mathrm{~cm}
$$

sumilably $D S=4 \mathrm{~cm}-1$ of each eror

$$
\therefore \quad \therefore R=6 \mathrm{~cm}
$$

$$
\begin{aligned}
& B P=D Q \text { (half of equal side of passar) } \\
& \angle P B R=\angle S D Q(a / \angle \angle, A B \| D C) \\
& \angle P R B=\angle D S Q \text { (boin pt } \angle \infty) \\
& \therefore \triangle B P R \equiv \triangle D Q S[A A S] \text { - loffeacherover }
\end{aligned}
$$

(b) i, verléx $\left(2,1 \frac{1}{2}\right)$ - 1 mark
(ii, pocal lenga $=1 \frac{1}{2}$ unit. -1 varark.
(iii) x-intercept where $y=0$

$$
\begin{aligned}
& (x-2)^{2}=9 \\
& x-2= \pm 3
\end{aligned}
$$

$$
x=5,-1
$$

\therefore mircepts at $(5,0)$ and $(-1,0)$ - 1 mosh

(c) Reqd area $=\int_{0}^{4}\left(6 x-x^{2}-2 x\right) d x$

$$
\begin{aligned}
& =\int_{0}^{4}\left(4 x-x^{2}\right) d x \\
& =\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{4} \\
& =\left[32-\frac{64}{3}\right]-[0] \\
& =10 \frac{2}{3} w^{2}
\end{aligned}
$$

Question 7
(a)
(i) 0.75 - 1 marh

$$
\text { (ii) } \int_{0}^{4} 5 x e^{-\pi} d x \div \frac{1}{3}\{0+4 \times 1.84+2 \times 1.35+4 \times 0.75+0.37
$$

$$
=4.5\left(t_{0} \text { ldee } p t\right)-1 \text { mart }
$$

(b) ii where $t=0, N=120$. - 1 mark
(ii) $360=120 e^{8 k}$

$$
\begin{aligned}
3 & =e^{8 k} \\
\log _{e} 3 & =8 k-1 \text { work } \\
k & =0.137 \text { (to } 3 \text { dee pi) - } 1 \text { mash }
\end{aligned}
$$

(iii) where $t=12, N=120 e^{0.137 \times 12}$ or $N=120 e^{\frac{1}{3} \ln 3 \times 12}$

$$
=620 \text { (nearest 10) - } 1 \text { mark }
$$

civ, $\frac{d N}{d t}=120 e^{0.137 t} \times 0.137$ or $\frac{d N}{d t}=120 e^{\frac{1}{3} \ln 3 t} \times \frac{1}{8} \ln 3$
where $t=18, \frac{d N}{d t}=194 \quad t=18 \frac{d N}{d t}=195$ (nearest whale number)

- Ines.

Question 8

$$
\begin{aligned}
& y=x \\
& y=e^{x}-2 \quad \text { lark } \\
& \therefore e^{x}-x-2=0 \quad 1 \text { mark }
\end{aligned}
$$

$\therefore 2$ solutions
(b) (i) For $s=500$

$$
\begin{aligned}
& \frac{n}{2}[2+(n-1) 1]=500 \\
& \frac{n}{2}(n+1)=500 \quad \text { off each } \\
& n^{2}+n-1000=0 \quad \text { root } \\
& n \\
& =\frac{1 \pm \sqrt{1-4 \times 1 \times-1000}}{2} \\
& \\
& =\frac{-1 \pm \sqrt{4001}}{2} \\
& \\
& \equiv 31.13,-32.13
\end{aligned}
$$

\therefore but w ss a posture integer

$$
\begin{aligned}
& \therefore \mu=31 . \\
& i=31 \text { layers. }
\end{aligned}
$$

ii, $\quad \int=\frac{31}{2}(1+31)$

$$
=496 \quad-1 \text { mark }
$$

$\therefore 4$ burch left awed
(c) i) initial velocity $=0 \mathrm{~m} / \mathrm{s} \quad$ - 1 mark
(ii, between $5(t$ and 10 th seconds - 1 mark
iii, parhite moves 19 m - 1 mark (iv)

- Imarh for base shape
-1 mosh for interupto at 5 arp 10

Question 9

$$
\text { (a) } \left.\begin{array}{rl}
a x^{2}+12 x+b & =a(x-3)(x+7) \\
& =a x^{2}+4 a x-21 a-1 \text { marh } \\
4 a & =12 \\
a & =3 \\
b & =-21 a \\
& =-63 \\
\{a & =3 \\
b & =-63
\end{array}\right\}
$$

(b) (i,

$$
\begin{aligned}
A_{1} & =75 \times 1.005^{240} \\
& =\$ 248.27
\end{aligned}
$$

$$
\text { - } 1 \text { marh }
$$

ii, $A_{5}=75\left[\frac{1.005\left(1.005^{240}-1\right)}{1.005-1}\right]-1$ off ench

$$
=\$ 34826.63
$$

(c)

$$
\begin{aligned}
2 \cos ^{2} x-3 \cos x-2 & =0 \\
(2 \cos x+1)(\cos x-2) & =0 \quad-1 \text { marh } \\
\cos x & =-\frac{1}{2}, \cos x \neq 2-1 \text { mark } \\
x & =\frac{2 \pi}{3}, \frac{4 \pi}{3}-1 \text { warh }
\end{aligned}
$$

(d)

$$
\text { where } \begin{aligned}
& x=\log _{e} 4, y \\
&=e^{\log } \\
&=4 \\
& x=0, y=1 \\
& \therefore \quad v=\pi \int_{1}^{4} x^{2} d y \\
& y=e^{x} \\
& \therefore x=\log _{e} y \\
& v=\pi \int_{1}^{4}\left(\log _{e} y\right)^{2} d y
\end{aligned}
$$

lackerror

Question 10

$$
\begin{aligned}
& \text { a, i, } \frac{d}{d \theta}\left(\tan ^{3} \theta\right)=3 \tan ^{2} \theta \sec ^{2} \theta \quad-1 \mathrm{marh} \\
& =3 \sec ^{2} \theta\left(\sec ^{2} \theta-1\right) \\
& =3 \sec ^{4} \theta-3 \sec ^{2} \theta-1 \operatorname{marh} \\
& \text { iii) } \quad \int_{0}^{\frac{\pi}{4}} \sec ^{4} \theta d \theta=\frac{1}{3} \int_{0}^{\frac{\pi}{4}}\left(3 \sec ^{4} \theta-3 \sec ^{2} \theta\right) d \theta \\
& +4 \int \sec ^{2} \theta-d \theta \\
& =\frac{1}{3}\left[\tan ^{3} \theta\right]_{0}^{\frac{\pi}{4}}+[\tan \theta]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{3}+1 \\
& =\frac{4}{3}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& \pi^{2} r^{2}\left(r^{2}+r^{2}\right)=k^{2} \\
& \pi^{2} r^{4}+\pi^{2} r^{2} h^{2}=k^{2} \\
& h^{2}=\frac{k^{2}-\pi^{2} r^{4}}{\pi^{2} r^{2}}-1 m w h \\
& r=\frac{1}{3} \pi r^{2} L \\
& \therefore v^{2} \\
& \left.=\frac{1}{9} \pi^{2} r^{4} \times \frac{\left(k^{2}-\pi^{2} r^{4}\right)}{\pi^{2} r^{2}}\right) \\
& \\
& =\frac{1}{9} r^{2}\left(k^{2}-\pi^{2} r^{4}\right)-1 m \cos L
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \begin{aligned}
& Q=\frac{1}{9} k^{2} r^{2}-\frac{1}{9} \pi^{2} r^{6} \\
& \frac{d Q}{d r}= \frac{2}{9} k^{2} r-\frac{2}{3} \pi^{2} r^{5} \\
&= \frac{2}{9} r\left(k^{2}-3 \pi^{2} r^{4}\right)-1 w h k
\end{aligned} \\
& \text { where } \frac{d Q}{d r}=0, k^{2}-3 \pi^{2} r^{4}=0 \\
& k^{2}=3 \pi^{2} r^{4}-1 \text { wa h } \\
& r^{4}=\frac{k^{2}}{3 \pi^{2}}, r \neq 0
\end{aligned}
$$

(iii) $\frac{d^{2} d}{d r^{2}}=\frac{2}{9} k^{2}-\frac{10 \pi^{2}}{3} r^{6}$
where $r^{4}=\frac{k^{2}}{3 \pi^{2}} \frac{d^{2} \alpha}{d r^{2}}=\frac{2}{9} k^{2}-\frac{10 \pi^{2}}{3} \times \frac{k^{2}}{3 \pi^{2}}$.

$$
=\frac{2 k^{2}}{9}-\frac{10 k^{2}}{9}
$$

\therefore max at $r^{<0}=\frac{k^{2}}{3 \pi^{2}}-1$ oft ear
but $k^{2}=\pi^{2} r^{2}\left(r^{2}+h^{2}\right)$

$$
\begin{aligned}
\therefore r^{4} & =\frac{\pi r^{2}\left(r^{2}+h^{2}\right)}{3 \pi^{2}} \\
3 r^{4} & =r^{4}+r^{2} h^{2} \\
3 r^{4} & =r^{2} L^{2} \\
L^{2} & =2 r^{2}, \quad, \quad \text { rand } h>0
\end{aligned}
$$

The King’s School

Mathematics

$\begin{aligned} & \text { 듷 } \\ & \text { O } \\ & \text { O } \end{aligned}$					気							
1	(a), (b), (e), (f) 18					(d)	12			(c)	12	12
2	(d) 12					(a)	12	(b)	14	(c)	14	12
3				(a)	19			(b)	13			12
4	(c) 13	(a)	(3)			(b)	13	(d)	13			12
5						(a)	13	(b)	13	(c)	16	12
6		(a)	14	(b)	15					(c)	13	12
7						(c)	13	(b)	16	(a)	13	12
8	(b) 14			(a)	13			(c)	15			12
9	(b) 14			(a)	12	(c)	13			(d)	13	12
10								(b)	18	(a)	14	12
Marks	121		17		119		116		133		124	120

