The King's School

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-10
- All questions are of equal value

Blank Page

Y12 THSC Mathematics 0808

Total marks - 120
Attempt Questions 1-10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Differentiate $x e^{x}$
(b) $f(x)=x^{3}-3 x^{2}-6 x-6$

Find $f^{\prime}(-1)$
(c) Solve $(x-\sqrt{2})^{2}=4$
(d) Find a primitive of $\sec ^{2} 2 x$
(e) Find, correct to two decimal places, $\log _{12} 2008$
(f) Factorise $a^{3}+8 b^{3}$2

End of Question 1

(a) Solve $\tan \theta+1=0$ for $0<\theta<2 \pi$
(b) Find
(i) $\int \frac{x}{x^{2}+1} d x$
(ii) $\int \frac{x^{2}+1}{x} d x$
(c)

A ship sails from A for 300 km on a bearing of 030° to B . Another ship sails from A for 500 km on a bearing of 150° to C.
(i) Show that $\angle \mathrm{BAC}=120^{\circ}$.
(ii) Use the cosine rule to show that $\mathrm{BC}=700 \mathrm{~km}$.
(iii) Use the sine rule to find the bearing of C from B.

Give your answer correct to the nearest degree.

End of Question 2

(a)

The vertices of $\triangle A B C$ are $(-2,4),(6,8),(9,2)$, respectively. The line $A B$ meets the y axis at P.
(i) Find the gradient of $A B$.
(ii) Hence, or otherwise, find the y coordinate of P.
(iii) By finding the gradient of $B C$, or otherwise, show that $\angle A B C=90^{\circ}$.
(iv) Find the area of $\triangle A B C$.
(v) Hence find the height of the triangle using BC as its base.
(b)

In the diagram, $\angle B C A=40^{\circ}, \angle A B C=120^{\circ}, A B=A D$
(i) Prove that $\angle A D B=80^{\circ}$
(ii) Deduce that $B D=C D$

End of Question 3

(a) The roots of $x^{2}-12 x+6=0$ are α, β.

Evaluate $\alpha+\beta+\frac{1}{\alpha}+\frac{1}{\beta}$
(b)

The diagram shows a sector of a circle, centre O, and radius 6 cm . The area of the sector is $12 \pi \mathrm{~cm}^{2}$.
(i) Find $\angle A O B \quad 2$
(ii) Find the length of the arc $A B$ of the sector.
(c) A particular curve $y=f(x)$ has a stationary point $(0,0)$. Also, $f^{\prime \prime}(x)=2 e^{2 x}-2$.
(i) Show that at $(0,0)$ there is a horizontal point of inflection.
(ii) Show that $f^{\prime}(x)=e^{2 x}-2 x-1$
(iii) Find $f(1)$

End of Question 4

(a) (i) Sketch the hyperbola $y=\frac{1}{x+1}$ showing any intercepts made on the axes.
(ii) The region bounded by the hyperbola $y=\frac{1}{x+1}$ and the x axis from $x=0$ to $x=k>0$ is revolved about the x axis.

Prove that the volume of the solid of revolution is less than π for all values of $k>0$.
(b) Let $P(x)=-x^{2}+(k+2) x-1$
(i) Sketch $y=P(x)$ for $k=-4$
(ii) For what values of k does $P(x)=0$ have real roots?

End of Question 5

(a) Find the equation of the tangent to the curve $y=\sin \left(x^{2}+2 x\right)$ at the point where $x=-2$.
(b)

The diagram shows the sketch of $y=f(x)$.
Sketch the graph of $y=f^{\prime}(x)$.
(c) $P(198,998)$ is a point on the parabola $(x+2)^{2}=4000(1008-y)$. The directrix of the parabola is the line $y=2008$.

Find the distance from P to the focus.
(d) Simplify $\frac{a}{(a-b)(a-c)}-\frac{b}{(b-c)(a-b)}+\frac{c}{(a-c)(b-c)}$
(e) Find the range of the function $y=\ln (2+\sin x)$.

End of Question 6

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) Use Simpson's Rule with three function values to give a two decimal place approximation to $\int_{0}^{\frac{\pi}{3}} 2 \tan ^{3} x d x$.
(b) (i) Show that $\frac{d}{d x}\left(\tan ^{2} x\right)=2 \tan x+2 \tan ^{3} x$
(ii) Hence, or otherwise, find $\frac{d}{d x}\left(\sec ^{2} x\right)$
(iii) Use (i) to show that $\int_{0}^{\frac{\pi}{3}} 2 \tan ^{3} x d x=3-2 \ln 2$
(c) $1+2 x+4 x^{2}+\ldots$ is a geometric series.
(i) For what values of x does the limiting sum exist?
(ii) Is it possible for the limiting sum to be 12? Give reasons.

End of Question 7

(a)

The diagram shows the region enclosed between the curve $y=16 x^{4}$ and the line $y=16$.
Find the area of the region.
(b) (i) Albert deposited $\$ 2000$ each year for 20 years into a fund paying 12% p.a. simple interest. Find the interest Albert made over the 20 years.
(ii) Betty deposited $\$ 2000$ each year for 20 years into a fund paying 7\% p.a. compound interest. The interest was compounded annually.

Who made the better financial decision? Albert or Betty?
(c) Solve $\ln x^{2}-\ln x-12=0$

End of Question 8

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) A cylinder, open at one end, is to have a volume of $1728 \pi \mathrm{~cm}^{3}$.

$$
\text { [} \left.V=\pi r^{2} h, \text { Curved Surface Area }=2 \pi r h\right]
$$

Let the radius of the cylinder be $r \mathrm{~cm}$ and the height $h \mathrm{~cm}$.
(i) Show that the total surface area S is given by $S=\pi\left(r^{2}+\frac{3456}{r}\right)$.
(ii) Prove that the minimum surface area is $432 \pi \mathrm{~cm}^{2}$.
(b) Sketch the curve $y=-\cos \left(\frac{x}{2}\right)$ for $-4 \pi \leq x \leq 4 \pi$.
(c) (i) Solve $|x+2| \leq 5$.
(ii) Hence, or otherwise, solve $1 \leq|x+2| \leq 5$.

End of Question 9

(a) (i)

$\triangle A B C$ is equilateral and P is any point interior to the triangle.
Perpendiculars $P D, P E$ and $P F$ are drawn to the sides $A B, B C$ and $C A$, respectively.
Let $P D=a, P E=b$ and $P F=c$
If h is the altitude of the triangle, by considering areas of triangles, show that $h=a+b+c$.

$\Delta O A B$ is equilateral. O is the origin. A is on the x axis and B has the x coordinate 2. $P(\sqrt{3}, 1)$ is a point interior to the triangle.
(ii) Show that the equation of $O B$ is $y=\sqrt{3} x$.
(iii) Find the perpendicular distance from $P(\sqrt{3}, 1)$ to the line $O B$.
(iv) Hence, or otherwise, find the perpendicular distance from $P(\sqrt{3}, 1)$ to the line $A B$.
(b)

The diagram shows $\triangle A B C$, right-angled at $A . P$ is the point on $C A$ so that $C P=A B$. M is the mid-point of $A P$ and N is the mid-point of $B C$.
Q is the point on $C A$ produced so that $Q B$ is parallel to $M N$.
Let $\angle C M N=\alpha$.
Prove that α is a fixed value.

End of Examination

Blank Page

Y12 THSC Mathematics 0808

Blank Page

Y12 THSC Mathematics 0808

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { Note: } \ln x=\log _{e} x, \quad x>0
$$

The King's School

Mathematics

			$\begin{aligned} & \overparen{\rightharpoonup} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$										쥰
1	(c), (e), (f)								(a), (b)	4	(d)	2	12
2							(a), (c)				(b)	4	12
3			(b)	4	(a)	8							12
4					(a), (b)	6					(c)	6	12
5					(a)(i), (b)	8					(a)(ii)	4	12
6	(d)	2			(c), (e)	4			(a), (b)	6			12
7	(c)	3							(d)(i)(ii)	3	(a), (b)		12
8	(b), (c)	9									(a)	3	12
9	(c)	4					(b)	2	(a)	6			12
10	(a)	8	(b)	4									12
Total		32		8		26		10		19		25	120

TKS MATHGMATICS TRIAL 2008 SOLUTONS
Question 1
(a) $x e^{x}+e^{x}$
(b)

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-6 \\
& \therefore f^{\prime}(-1)=3+6-6=3
\end{aligned}
$$

(c) $x-\sqrt{2}= \pm 2 \quad \therefore x=\sqrt{2} \pm 2$
(d) $\frac{1}{2} \tan 2 x$
(e) $\log _{12} 2008=\frac{\ln 2008}{\ln 12}=3.06$, 2 d.p.

$$
\text { (f) }(a+2 b)\left(a^{2}-2 a b+4 b^{2}\right)
$$

Question 2
(a) $\therefore \tan \theta=-1$

(b)
(i) $\frac{1}{2} \int \frac{2 x}{x^{2}+1} d x=\frac{1}{2} \ln \left(x^{2}+1\right)$
(ii) $\int x+\frac{1}{x} d x=\frac{x^{2}}{2}+\ln x$
(c)
(i)

$$
\angle B A C=\angle N A C-\angle N A B=150^{\circ}-30^{\circ}=120^{\circ}
$$

(ii)

$$
\begin{aligned}
B C^{2} & =300^{2}+500^{2}-2 \times 300 \times 500 \cos 120^{\circ} \\
& =490000 \\
\Rightarrow B C & =\sqrt{490000}=700
\end{aligned}
$$

(iii)

$$
\frac{\sin \beta}{500}=\frac{\sin 120^{\circ}}{700}
$$

$$
\therefore \sin B=\frac{500 \sin 120^{\circ}}{700}
$$

$$
\hat{B}=38^{\circ} \text {, neanat degue }
$$

\therefore bearing of C from $B=360^{\circ}-\left(150^{\circ}+38^{\circ}\right)$

$$
=172^{\circ}
$$

Question 3
(a) (i) grd $A B=\frac{8-4}{6--2}=\frac{4}{8}=\frac{1}{2}$
(ii) take

$$
\begin{aligned}
& P(0, y) \Rightarrow \frac{y-4}{0--2}=\frac{1}{2} \\
& \therefore y-4=1, y=5
\end{aligned}
$$

(ii) grd $B C=\frac{6}{-3}=-2$

* since gnd $A B \times$ grd $B C=-1$, tha $A B+B C$

$$
\Rightarrow \angle A B C=90^{\circ}
$$

(ii)

$$
\begin{aligned}
& A B=\sqrt{8^{2}+4^{2}}=\sqrt{80} \\
& B C=\sqrt{3^{2}+6^{2}}=\sqrt{45} \\
& \therefore \text { Area } \triangle A B C=\frac{1}{2} \cdot \sqrt{80} \cdot \sqrt{45}=30
\end{aligned}
$$

(v) $\therefore 30=\frac{1}{2} \cdot \sqrt{45} . h \Rightarrow h=\frac{60}{\sqrt{45}}$ will do $\left[\begin{array}{ll}0 R & \frac{20}{\sqrt{5}} \\ 0 R & 4 \sqrt{5}\end{array}\right]$
(b) (i)

$$
\begin{aligned}
\angle B A C & =180^{\circ}-\left(120^{\circ}+40^{\circ}\right), \angle \operatorname{sum} \triangle A B C \\
& =20^{\circ}
\end{aligned}
$$

In isosceles $\triangle A B D, \angle B=\angle D=\frac{1}{2}\left(160^{\circ}\right)=80^{\circ}$, $\angle \operatorname{sum} \triangle A B D$

$$
\therefore \angle A D B=80^{\circ}
$$

(ii) $\angle D B C+\angle D C B=\angle A D B$, ext \angle theoren in $\triangle \beta D C$

$$
\Rightarrow \angle D B C=80^{\circ}-40^{\circ}=40^{\circ}
$$

$\therefore \triangle B D C$ is isusceles, base argles equal

$$
\therefore B D=C D
$$

Question 4
(a) $\alpha+\beta=12, \alpha \beta=6$

$$
\therefore \alpha+\beta+\frac{1}{\alpha}+\frac{1}{\beta}=\alpha+\beta+\frac{\alpha+\beta}{\alpha \beta}=12+2=14
$$

(b) (i) Let $\angle A O B=\theta$

Then $\frac{1}{2} \cdot 6^{2} \cdot \theta=12 \pi \Rightarrow \theta=\frac{12 \pi}{18}=\frac{2 \pi}{3}$
(ii) $A B=6 \cdot \frac{2 \pi}{3} \mathrm{~cm}=4 \pi \mathrm{~cm}$
(c) (i)

$$
\begin{aligned}
& f^{\prime \prime}(0)=2-2=0 \\
& f^{\prime \prime}(-1)=2 e^{-2}-2<0 \\
& f^{\prime \prime}(1)=2 e^{2}-2>0
\end{aligned}
$$

$\therefore(0,0)$ is a Lorig. pt. of inflection since it's a stat. pt
(ii)

$$
\begin{aligned}
& f^{\prime}(x)=2 \frac{e^{2 x}}{2}-2 x+c \\
& : f^{\prime}(0)=1-0+c=0, c=-1 \\
& \therefore f^{\prime}(x)=e^{2 x}-2 x-1
\end{aligned}
$$(iii)

$$
\begin{aligned}
& f(x)=\frac{e^{2 x}}{2}-x^{2}-x+c \\
& \therefore f(0)=\frac{1}{2}-0+c=0, c=-\frac{1}{2} \\
& \therefore f(x)=\frac{e^{2 x}}{2}-x^{2}-x-\frac{1}{2} \\
& \therefore f(1)=\frac{e^{2}}{2}-1-1-\frac{1}{2}=\frac{e^{2}-5}{2}
\end{aligned}
$$

Question 5
(a) $(i) x \neq-1, y \neq 0 ; x=0, y=1$

(ii)

$$
\begin{aligned}
V=\pi \int_{0}^{k}\left(\frac{1}{x+1}\right)^{k} d x & =\pi \int_{0}^{k}(x+1)^{-2} d x \\
& =\pi\left[\frac{(x+1)^{-1}}{-1}\right]_{0}^{k} \\
& =\pi\left[-\frac{1}{x+1}\right]_{0}^{k}=\pi\left(-\frac{1}{k+1}+1\right) \\
& =\pi\left(1-\frac{1}{k+1}\right)<\pi \text { sine } \frac{1}{k+1}>0
\end{aligned}
$$

(l) (i) $y=-x^{2}-2 x-1=-\left(x^{2}+2 x+1\right)=-(x+1)^{2}$

(ii)

$$
\begin{aligned}
& \Delta=(k+2)^{2}-4(-1)(-1)=(k+2)^{2}-4 \\
&=k^{2}+4 k \\
&=k(k+4) \geqslant 0 \text { for real roots } \\
& \therefore k \leqslant-4 \text { or } k \geqslant 0
\end{aligned}
$$

Question 6
(a)

$$
\begin{aligned}
& \frac{d y}{d x}=(2 x+2) \cos \left(x^{2}+2 x\right) \\
& \text { For } x=-2, y=\sin 0=0, \frac{d y}{d x}=-2 \cos 0=-2
\end{aligned}
$$

\therefore tangent is $y=-2(x+2)$
(b)

(c)

$$
\begin{aligned}
P \text { to the fous } & =P \text { to the directrix } \\
& =2008-998=1010
\end{aligned}
$$

OR (sady) $V=(-2,100 f) ; a=1000 \Rightarrow S=(-2, e)$

(d) $\frac{a(b-c)-b(a-c)+c(a-b)}{(a-c)(a-c)(b-c)}=\frac{a b-a c-a b+b c+a c-b c}{(a-c)(a-c)(b-c)}=0$
(e) Since $-1 \leq \sin x \leq 1$ ade $\ln x$ is an increaring function,

$$
\begin{aligned}
\text { range } y: \ln (2-1) & \leq y \leq \ln (2+1) \\
\text { se: } 0 & \leq y \leq \ln 3
\end{aligned}
$$

Question 7
(a)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{3}} 2 \tan ^{3} x d x & \approx \frac{1}{6} \cdot \frac{\pi}{3}\left(0+2 \tan ^{3} \frac{\pi}{3}+8 \tan ^{3} \frac{\pi}{6}\right) \\
& =2 \cdot 08,2 d \cdot p .
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
\frac{d}{d x}\left(\tan ^{2} x\right) & =2 \tan x \sec ^{2} x \\
& =2 \tan x\left(1+\tan ^{2} x\right)=2 \tan x+2 \tan ^{3} x
\end{aligned}
$$

(ii) $\frac{d\left(\sec ^{2} x\right)}{d x}=\frac{d\left(1+\tan ^{2} x\right)}{d x}=2 \tan x+2 \tan ^{3} x$ or equiratar
(iii)

$$
\begin{aligned}
2 \tan ^{3} x= & \frac{d\left(\tan ^{2} x\right)}{d x}-2 \tan x \\
\therefore \int_{0}^{\frac{\pi}{3}} 2 \tan ^{2} x d x & =\left[\tan ^{2} x\right]_{0}^{\frac{\pi}{3}}-2 \int_{0}^{\frac{\pi}{3}} \tan x d x \\
& =(\sqrt{3})^{2}-0+2 \cdot \int_{0}^{\pi_{3}} \frac{-\sin x}{\cos x} d x \\
& =3+2[\ln \cos x]_{0}^{\pi_{3}} \\
& =3+2\left(\ln \frac{1}{2}-\ln 1\right) \\
& =3+2 \ln 2^{-1}=3-2 \ln 2
\end{aligned}
$$

(c) (i) S_{∞} exists for $-1<2 x<1$ ab. $-\frac{1}{2}<x<\frac{1}{2}$
(ii) Put

$$
\begin{aligned}
& S_{\infty}=\frac{1}{1-2 x}=12 \\
& \therefore 1-2 x=\frac{1}{12} \\
& 2 x=\frac{11}{12} \\
& x=\frac{11}{24}<\frac{1}{2}
\end{aligned}
$$

\therefore from (i), it's possible

Question 8
(a)

$$
\begin{gathered}
A=2 \int_{0}^{16} x d y, x \geqslant 0: x^{4}=\frac{y}{16} \\
\text { ie. } x=\frac{y^{\frac{1}{4}}}{2} \\
\therefore A=\int_{0}^{16} y^{\frac{1}{4}} d y=\frac{4}{5}\left[y^{\frac{5}{4}}\right]_{0}^{16}=\frac{4}{5} \cdot 2^{5}=\frac{128}{5}
\end{gathered}
$$

(b) (i) Albert made \$ $2000(\cdot 12)(20)+2000(\cdot 12)(19)+\cdots+2000(0.12)$

$$
\begin{aligned}
& =\$ 240(1+2+\cdots+19+20) \\
& =\$ 240 \cdot \frac{20}{2} .21=\$ 50400 \text { interest }
\end{aligned}
$$

(ii) Betty's total over the 20 years

$$
\begin{aligned}
& =\$ 2000(1.07)^{20}+2000(1.07)^{19}+\cdots+2000(1.07)^{2}+2000(1.07) \\
& =\$ 2000(1.07)\left[1+1.07+1.07^{2}+\cdots+1.07^{19}\right) \\
& =\$ 2000(1.07) \frac{1.07^{20}-1}{.07}=\$ 87730 \text {, nearest dollar }
\end{aligned}
$$$\therefore$ Imberent made $=\$ \$ 7730-\$ 2000 \times 20=\$ 47730$

\therefore Albert's decision was better
(c)

$$
\begin{gathered}
\therefore \quad 2 \ln x-\ln x-12=0 \\
\ln x=12 \\
x=e^{12}
\end{gathered}
$$

Question 9
(\quad) (i)

$$
\begin{gathered}
S=2 \pi r h+\pi r^{2}: \pi r^{2} h=1728 \pi \\
h=\frac{1728}{r^{2}} \\
\therefore S=2 \pi r \cdot \frac{1728}{r^{2}}+\pi r^{2}=\pi\left(r^{2}+\frac{3456}{r}\right)
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& S=\pi\left(r^{2}+3456 r^{-1}\right) \\
& \frac{d S}{d r}=\pi\left(2 r-3456 r^{-2}\right) \\
& \frac{d^{2} S}{d r^{2}}=\pi\left(2+6912 r^{-3}\right) \\
& \frac{d S}{d r}=0 \Rightarrow r-\frac{1728}{r^{2}}=0 \quad o r r^{3}=1728 \\
& \quad \Rightarrow r=\sqrt[3]{1728}=12
\end{aligned}
$$

For $r=12, \frac{d^{2} s}{d r^{2}}>0$ (indeed $\frac{d^{2} s}{d r^{2}}>0$ for all $r>0$)
\Rightarrow minimum S when $r=12$

$$
\therefore \min \delta=\pi\left(12^{2}+\frac{3456}{12}\right) \mathrm{cm}^{2}=432 \pi \mathrm{~cm}^{2}
$$

(b)

$\frac{x}{2}$	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
y	-1	0	1	0	-1
x	0	π	2π	3π	4π

(C) (i)

$$
\begin{aligned}
& -5 \leq x+2 \leq 5 \\
& \therefore-7 \leq x \leq 3
\end{aligned}
$$

(ii) For $|x+2| \geqslant 1$
we have $-1 \geqslant x+2 \geqslant 1$

$$
-3 \geqslant x \geqslant-1 \quad \text { ie. } x \leqslant-3 \text { or } x \geqslant-1
$$

$$
\therefore \quad-7 \leq x \leq-3 \text { or }-1 \leq x \leq 3
$$

OR $\quad 1 \leqslant|x+2| \leqslant 5$

$$
\begin{array}{ll}
\Rightarrow 1 \leq x+2 \leq 5 & \text { or }-5 \leq x+2 \leq-1 \\
\therefore-1 \leq x \leq 3 & \text { or } \\
\therefore-7 \leq x \leq-3
\end{array}
$$

Question 10
(a) (i) $\therefore \frac{1}{2} \cdot A B \cdot h=\frac{1}{2} \cdot A B \cdot a+\frac{1}{2} \cdot B C \cdot b+\frac{1}{2} \cdot A C \cdot c$,
where $A B=B C=A C, \Delta$ equilateral

$$
\therefore \quad h=a+b+c
$$

(ii) $O B$ is $y-0=\tan 60^{\circ}(x-0)$
se $y=\sqrt{3} x$
(iii) 1 distance from $P(\sqrt{3}, 1)$ to $\sqrt{3} x-y=0$ is

$$
\frac{\sqrt{3} \cdot \sqrt{3}-1}{{\sqrt{\sqrt{3}^{2}+1^{2}}}^{2}}=\frac{3-1}{\sqrt{4}}=1
$$

(iv) Using notation in (i), $c=1$ from (iii)
$a=1$ since $P=(\sqrt{3}, 1)$

$$
\text { at } B, x=2 \quad \therefore y=2 \sqrt{3}=L
$$

\therefore distance from P to $A B=2 \sqrt{3}-1-1=2 \sqrt{3}-2$
(b)

$\angle B Q A=\angle N M C=\alpha$, corresponding $\angle S i$ /II lines
$\frac{B N}{N C}=\frac{Q M}{M C}=1: 1$, ratio intercept.

$$
\therefore \alpha M=M C
$$

But $A M=M P$, data

$$
\therefore Q A=P C=A B \text {, data }
$$

$\therefore \triangle A B C$ is right-angled and isosceles.
$\Rightarrow \angle Q=\angle B=45^{\circ}$, base arles equal
$\therefore \alpha$ is the fired value 45°

