

THE KING'S SCHOOL

2008 Higher School Certificate Course Trial Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1-10
- All questions are of equal value

Blank Page

Total marks – 120 Attempt Questions 1-10 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Que	stion 1 (12 marks) Use a SEPARATE writing booklet.	Marks
(a)	Differentiate xe^x	2
(b)	$f(x) = x^3 - 3x^2 - 6x - 6$	
	Find $f'(-1)$	2
(c)	Solve $(x - \sqrt{2})^2 = 4$	2
(d)	Find a primitive of $\sec^2 2x$	2
(e)	Find, correct to two decimal places, $\log_{12} 2008$	2
(f)	Factorise $a^3 + 8b^3$	2

End of Question 1

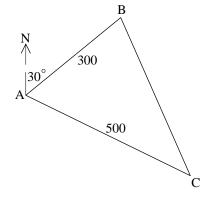
(a) Solve $\tan \theta + 1 = 0$ for $0 < \theta < 2\pi$

(b) Find

(i)
$$\int \frac{x}{x^2 + 1} dx$$

(ii)
$$\int \frac{x^2 + 1}{x} dx$$

(c)



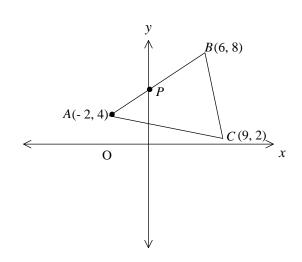
A ship sails from A for 300 km on a bearing of 030° to B. Another ship sails from A for 500 km on a bearing of 150° to C.

(i)	Show that $\angle BAC = 120^{\circ}$.	1
(ii)	Use the cosine rule to show that $BC = 700$ km.	2
(iii)	Use the sine rule to find the bearing of C from B. Give your answer correct to the nearest degree.	3

End of Question 2

2

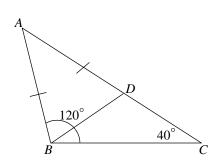
2



The vertices of $\triangle ABC$ are (-2, 4), (6, 8), (9, 2), respectively. The line AB meets the y axis at P.

(i)	Find the gradient of <i>AB</i> .	1
(ii)	Hence, or otherwise, find the <i>y</i> coordinate of <i>P</i> .	2
(iii)	By finding the gradient of <i>BC</i> , or otherwise, show that $\angle ABC = 90^{\circ}$.	2
(iv)	Find the area of $\triangle ABC$.	2
(v)	Hence find the height of the triangle using BC as its base.	1

(b)



In the diagram, $\angle BCA = 40^{\circ}$, $\angle ABC = 120^{\circ}$, AB = AD

- (i) Prove that $\angle ADB = 80^{\circ}$ 2
- (ii) Deduce that BD = CD

End of Question 3

2

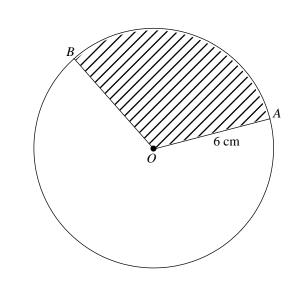
Marks

3

(a) The roots of
$$x^2 - 12x + 6 = 0$$
 are α , β .

Evaluate
$$\alpha + \beta + \frac{1}{\alpha} + \frac{1}{\beta}$$

(b)



The diagram shows a sector of a circle, centre *O*, and radius 6 cm. The area of the sector is 12π cm².

(i) Find
$$\angle AOB$$
2(ii) Find the length of the arc AB of the sector.1

(c) A particular curve y = f(x) has a stationary point (0, 0). Also, $f''(x) = 2e^{2x} - 2$.

(i) Show that at (0, 0) there is a horizontal point of inflection.2(ii) Show that
$$f'(x) = e^{2x} - 2x - 1$$
2(iii) Find $f(1)$ 2

End of Question 4

4

- (a) (i) Sketch the hyperbola $y = \frac{1}{x+1}$ showing any intercepts made on the axes. 2
 - (ii) The region bounded by the hyperbola $y = \frac{1}{x + 1}$ and the x axis from x = 0 to x = k > 0 is revolved about the x axis.

Prove that the volume of the solid of revolution is less than π for all values of k > 0.

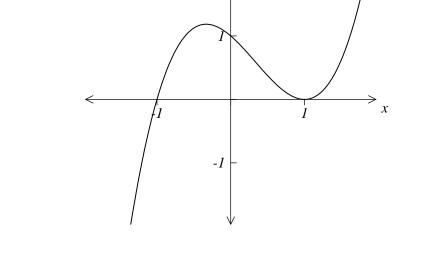
- (b) Let $P(x) = -x^2 + (k + 2)x 1$
 - (i) Sketch y = P(x) for k = -4 **2**
 - (ii) For what values of k does P(x) = 0 have real roots?

End of Question 5

(a) Find the equation of the tangent to the curve $y = sin(x^2 + 2x)$ at the point where x = -2.

y = f(x)

y



The diagram shows the sketch of y = f(x).

Sketch the graph of y = f'(x).

(b)

(c) P(198, 998) is a point on the parabola $(x + 2)^2 = 4000 (1008 - y)$. The directrix of the parabola is the line y = 2008.

Find the distance from P to the focus.

(d) Simplify
$$\frac{a}{(a-b)(a-c)} - \frac{b}{(b-c)(a-b)} + \frac{c}{(a-c)(b-c)}$$
 2

(e) Find the range of the function
$$y = \ln(2 + \sin x)$$
.

End of Question 6

4

2

2

2

(a) Use Simpson's Rule with three function values to give a two decimal place approximation to $\int_{0}^{\frac{\pi}{3}} 2\tan^{3} x \, dx.$

(b) (i) Show that
$$\frac{d}{dx}(\tan^2 x) = 2\tan x + 2\tan^3 x$$
 2

(ii) Hence, or otherwise, find
$$\frac{d}{dx}(\sec^2 x)$$
 1

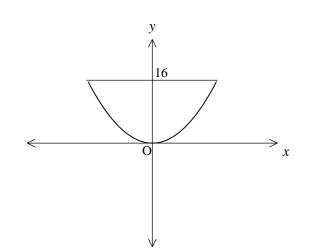
(iii) Use (i) to show that
$$\int_{0}^{\frac{\pi}{3}} 2\tan^{3} x \, dx = 3 - 2\ln 2$$
 3

(c) $1 + 2x + 4x^2 + \dots$ is a geometric series.

(i)	For what values of <i>x</i> does the limiting sum exist?	1
(ii)	Is it possible for the limiting sum to be 12? Give reasons.	2

End of Question 7

(a)



The diagram shows the region enclosed between the curve $y = 16x^4$ and the line y = 16. Find the area of the region.

- (b) (i) Albert deposited \$2 000 each year for 20 years into a fund paying 12% p.a. simple interest. Find the interest Albert made over the 20 years.
 - (ii) Betty deposited \$2 000 each year for 20 years into a fund paying 7% p.a. compound interest. The interest was compounded annually.

Who made the better financial decision? Albert or Betty?

(c) Solve $\ln x^2 - \ln x - 12 = 0$

End of Question 8

2

4

3

(a) A cylinder, open at one end, is to have a volume of 1728π cm³.

$$[V = \pi r^2 h$$
, Curved Surface Area = $2\pi rh$]

Let the radius of the cylinder be r cm and the height h cm.

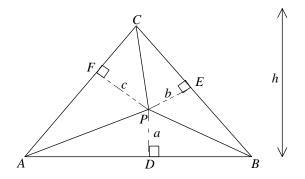
- (i) Show that the total surface area S is given by $S = \pi \left(r^2 + \frac{3456}{r} \right)$. 2
- (ii) Prove that the minimum surface area is 432π cm². 4

(b) Sketch the curve
$$y = -\cos\left(\frac{x}{2}\right)$$
 for $-4\pi \le x \le 4\pi$. 2

(c) (i) Solve
$$|x + 2| \le 5$$
. 1

(ii) Hence, or otherwise, solve $1 \le |x + 2| \le 5$. 3

End of Question 9

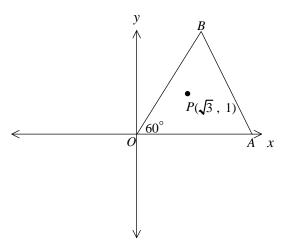


 $\triangle ABC$ is equilateral and *P* is any point interior to the triangle.

Perpendiculars PD, PE and PF are drawn to the sides AB, BC and CA, respectively.

Let PD = a, PE = b and PF = c

If *h* is the altitude of the triangle, by considering areas of triangles, show that h = a + b + c.

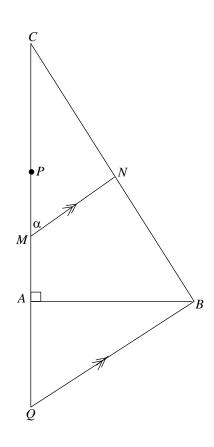


 $\triangle OAB$ is equilateral. O is the origin. A is on the x axis and B has the x coordinate 2.

 $P(\sqrt{3}, 1)$ is a point interior to the triangle.

- (ii) Show that the equation of *OB* is $y = \sqrt{3} x$.
- (iii) Find the perpendicular distance from $P(\sqrt{3}, 1)$ to the line *OB*. 2
- (iv) Hence, or otherwise, find the perpendicular distance from $P(\sqrt{3}, 1)$ to the line AB. 2

Question 10 continues on next page



The diagram shows $\triangle ABC$, right-angled at A. P is the point on CA so that CP = AB.

M is the mid-point of *AP* and *N* is the mid-point of *BC*.

Q is the point on CA produced so that QB is parallel to MN.

Let
$$\angle CMN = \alpha$$
.

Prove that α is a fixed value.

End of Examination

Blank Page

Blank Page

Standard Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

Note: $\ln x = \log_e x$, x > 0

THE KING'S SCHOOL

2008 Higher School Certificate Trial Examination

Mathematics

Question	Algebra and Number		Geometry		Functions		Trigonometry		Differential Calculus		Integral Calculus		Total
1	(c), (e), (f)	6							(a), (b)	4	(d)	2	12
2							(a), (c)	8			(b)	4	12
3			(b)	4	(a)	8							12
4					(a), (b)	6					(C)	6	12
5					(a)(i), (b)	8					(a)(ii)	4	12
6	(d)	2			(c), (e)	4			(a), (b)	6			12
7	(C)	3							(d)(i)(ii)	3	(a), (b)(i	iii) 6	12
8	(b), (c)	9									(a)	3	12
9	(c)	4					(b)	2	(a)	6			12
10	(a)	8	(b)	4									12
Total		32		8		26		10		19		25	120

TKS MATHEMATICS TRIAL 2008 SOLUTIONS

Question (

(a) re^r + e^r

(b) $f'(x) = 3x^2 - 6x - 6$

f(-1) = 3 + 6 - 6 = 3

(c) $x - \sqrt{2} = \pm 2$. $x = \sqrt{2} \pm 2$

(d) $\frac{1}{2}$ tan 2x

(e) $\log_{12} 2008 = \frac{\ln 2008}{\ln 12} = 3.06, 2d.p.$

 $(f)(a + 2b)(a^2 - 2ab + 4b^2)$

. ¥'

► .

.

.

.

·

.

.

•

. .

• · · · .

۰.

•

•

Question 2

 \therefore fand = -1 \Rightarrow $\pi/4$ (a) TV-4 $\dot{\Theta} = \frac{3\pi}{4}, \frac{7\pi}{4}$

 $\binom{b}{i} \stackrel{(i)}{=} \frac{1}{2} \int \frac{2x}{x^{2}+i} dx = \frac{1}{2} \ln(x^{2}+i)$

(") x + 1 dr (c)

500 700 700 B= 38°, reanet degree · · bearing of C from B = 360° - (150° + 38°) = 172°

.

· •

Ducotion 3

((a) (i) grd $AB = \frac{8-4}{6-2} = \frac{4}{8} = \frac{1}{2}$

(ii) take $P(0,y) \implies y^{-4} = \frac{1}{2}$

 $\therefore y - 4 = 1 , y = 5$

(iii) god $BC = \frac{6}{-3} = -2$

+ since god AB × god BC = -1, the ABLBC

=> LABC= 90°

 $(i) AB = \sqrt{8^2 + 4^2} = \sqrt{80}$

 $BC = \sqrt{3^2 + 6^2} = \sqrt{45}$

 $(V) \quad \therefore \quad 30 = \frac{1}{2} \cdot \sqrt{45} \cdot h \Rightarrow h = \frac{60}{545} \text{ will do } \begin{bmatrix} 0R & \frac{10}{55} \\ 0R & \frac{10}{55} \end{bmatrix}$ (i) [BAC = 180° - (120° + 40°), [sun SABC (\mathbf{L})

In isosceles ΔABD , $LB = LD = \frac{1}{2}(160^\circ) = 50^\circ$,

Lsun SABD

ADB = 80°

LOBC + LOCB = LADB, ext L theoren in ABDC $\Rightarrow \angle PBC = PO^{\circ} - 40^{\circ} = 40^{\circ}$. ABDC is isosceles, base angles equal $\therefore \beta D = C D$

Question 4

(a) $d+\beta = 12$, $d\beta = 6$ $\therefore d+\beta + \frac{1}{2} + \frac{1}{2} = d+\beta + \frac{d+\beta}{d\beta} = 12+2 = 14$

(b) (i) Let $\angle AOB = \Theta$ Then $\angle .6^2$, $\Theta = 12\pi \implies \Theta = \frac{12\pi}{18} = \frac{2\pi}{3}$

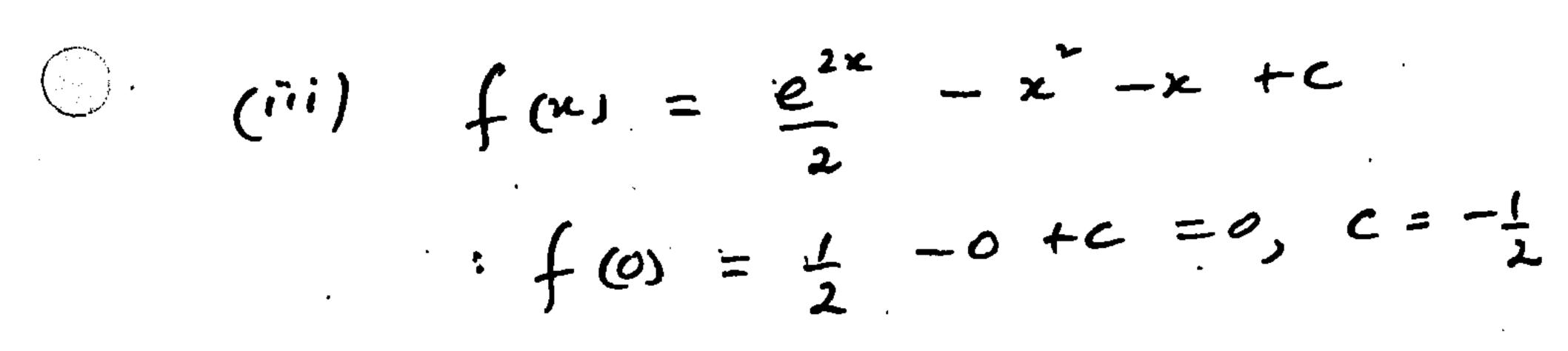
(ii)
$$AB = 6 \cdot \frac{2\pi}{3} = 4\pi = 4\pi$$

(c) (i) $f''(0) = 2 - 2 = 0$
 $f''(-1) = 2e^{-2} - 2 < 0 \Rightarrow change in concavity$
 $f''(1) = 2e^{2} - 2 > 0$
 $\therefore (0,0)$ is a larig. pt. of inflaction since it's a stat. pt
 $\therefore (0,0)$ is a larig. pt. of inflaction since it's a stat. pt

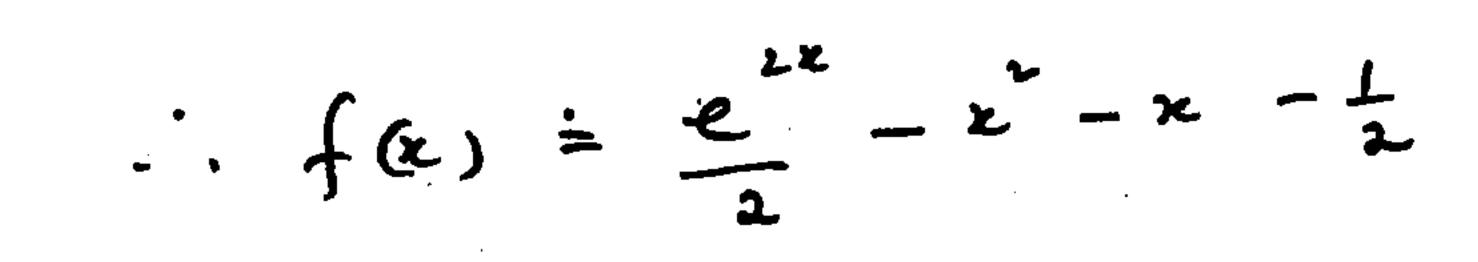
$$(ii) f(x) = 2 \frac{e^{2x}}{2} - 2x + c$$

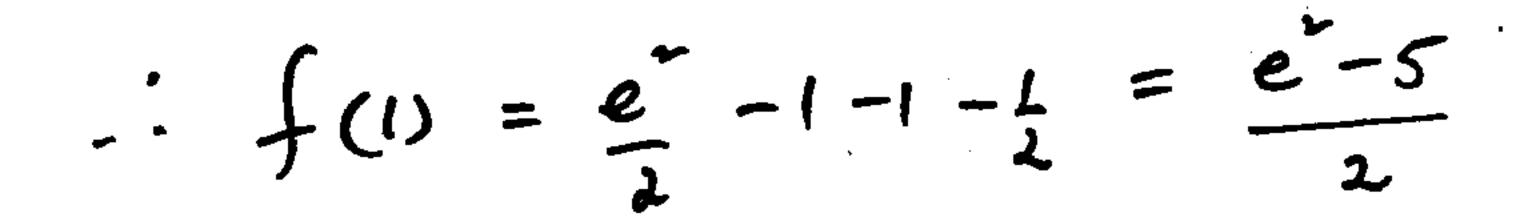
f'(0) = 1 - 0 + c = 0, c = -1

$$f(x) = e^{2x} - 2x - 1$$



•





. . .

.

Question.

.

x = 0, y = 1 $(a) (i) \times \neq$ -1, J ≠0

(ii) $V = \pi \int_{0}^{k} \left(\frac{1}{x+1}\right)^{\nu} dx = \pi \int_{0}^{k} (x+1)^{-2} dx$ $= \pi \left[\frac{(x+i)}{-i} \right]_{3}^{k}$ $= \pi \left[-\frac{1}{2+1} \right]_{0}^{k} = \pi \left(-\frac{1}{2+1} + 1 \right)$ $= \pi \left(1 - \frac{1}{k+1} \right) < \pi \text{ since } \frac{1}{k+1} > 0$

(b) (i) $y = -x^2 - 2x - 1 = -(x^2 + 2x + 1) = -(x + 1)^2$ (ii) $\Delta = (k+2)^{2} - 4(-1)(-1) = (k+2)^{2} - 4$ =k + 4k

= k(k+4) 7,0 for real roots

." • .

•

•

• . • .

-. . .

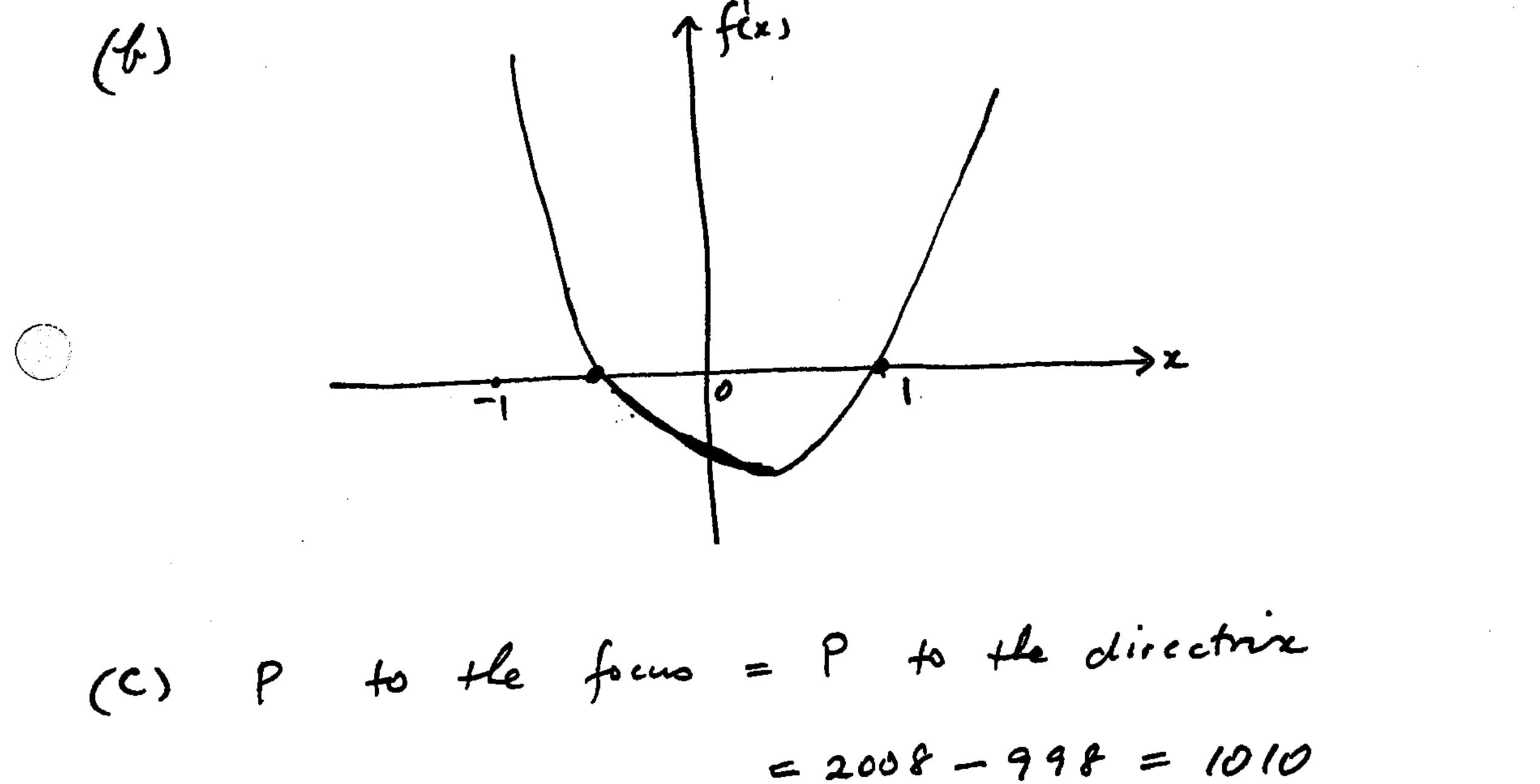
Question 6

(a) $\frac{dy}{dx} = (2x+2)\cos(x^2+2x)$

For x = -2, $y = \sin 0 = 0$, $\frac{dy}{dx} = -2\cos 0 = -2$

: fangent is y = -2(x+2)

(4)



(2) Since -1 ≤ sin ≤1 and lax is an increasing function,

range y : $l_{n}(2-1) \leq y \leq l_{n}(2+1)$ re: o≤g ≤l.3

.

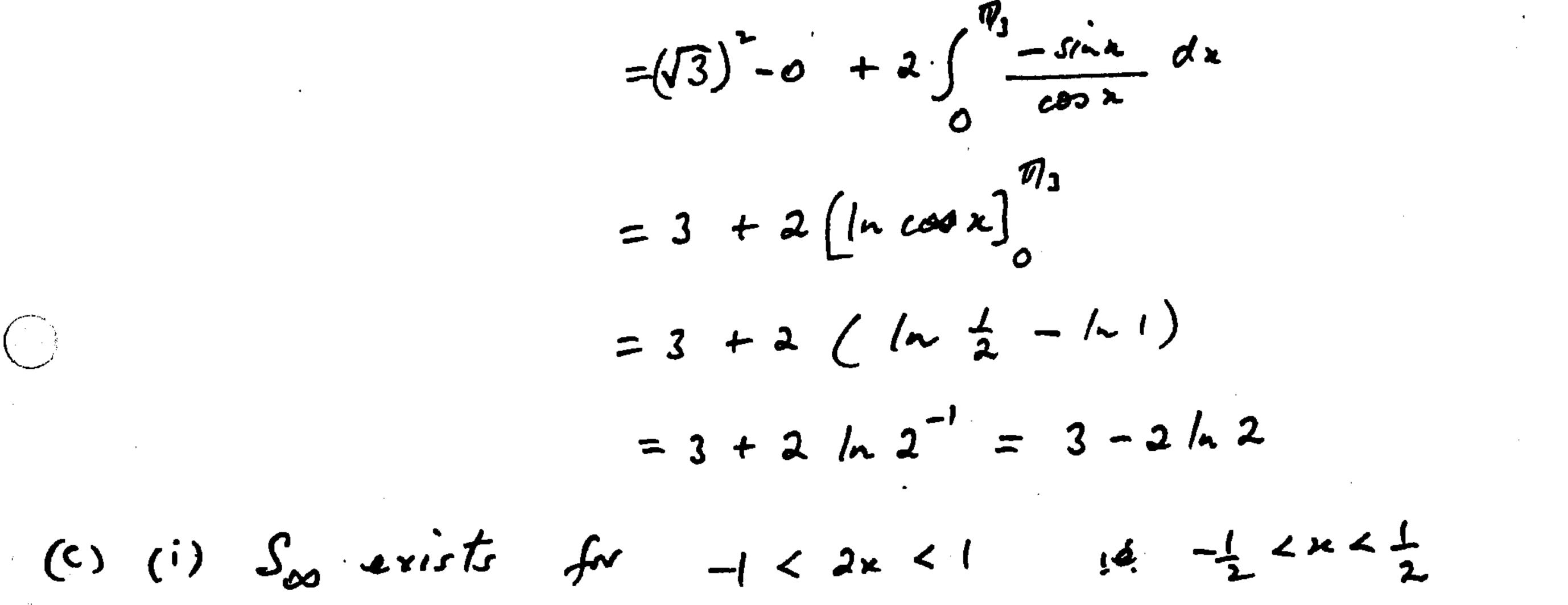
Question 7

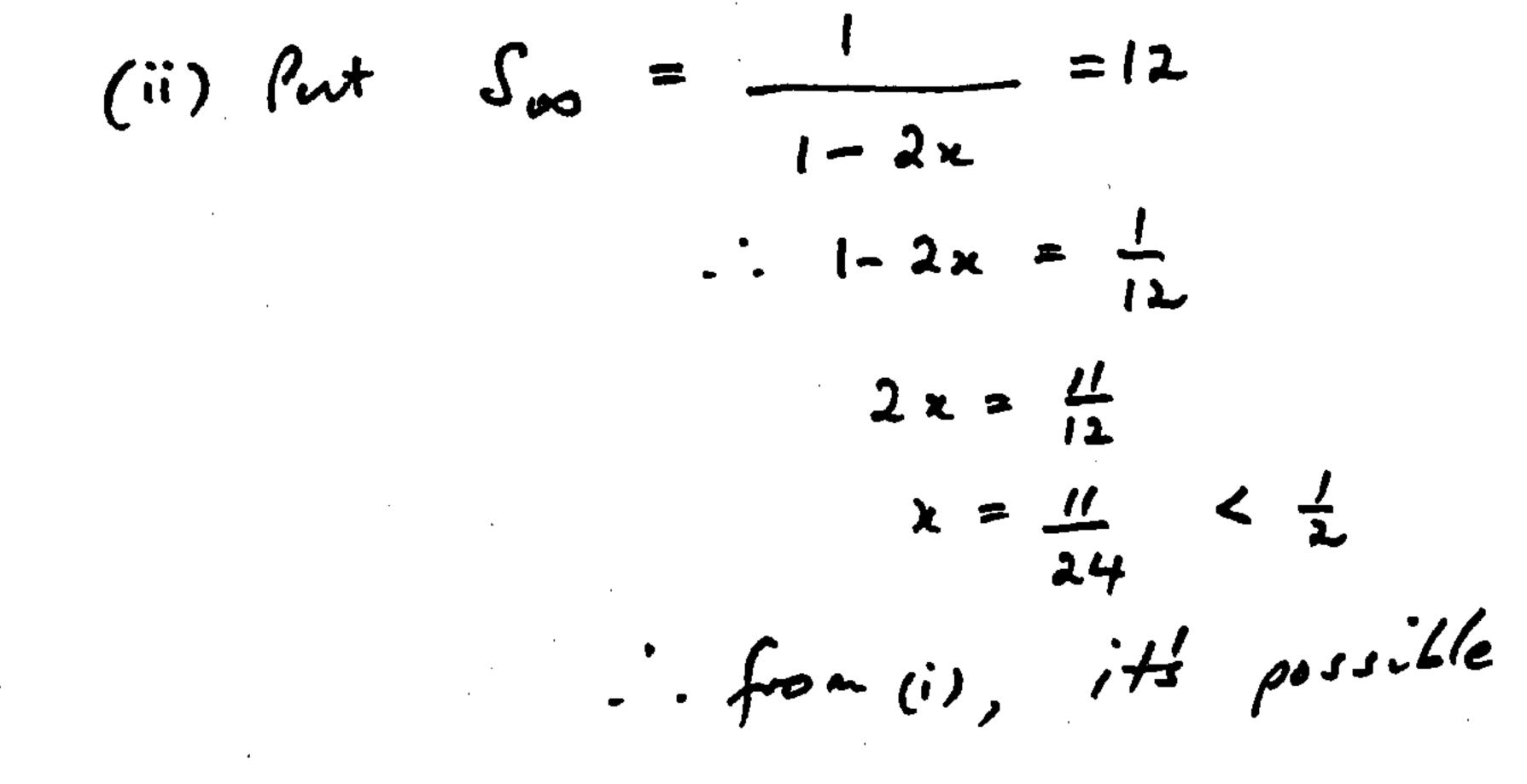
 $\binom{a}{\int} \int_{0}^{\frac{\pi}{3}} 2\tan x \, dx \approx \frac{1}{6} \cdot \frac{\pi}{3} \left(0 + 2\tan \frac{\pi}{3} + 8 \tan \frac{\pi}{6} \right)$

= 2.08, 2 d.p.

$$(b)$$
 (i) $d(tan^{2}x) = 2tanx sec^{2}x$
 $dx = 2tanx (1+tan^{2}x) = 2tanx + 2tan x$

(ii)
$$d(\sec x) = d(1 + \tan^{2} x) = 2 \tan x + 2 \tan^{3} x$$
 or equivalant
 dx
(iii) $2 \tan^{3} x = d(\tan^{2} x) - 2 \tan x$
 dx
 $\vdots \int_{0}^{\frac{\pi}{3}} 2 \tan^{3} x \, dx = \left[\tan^{2} x\right]_{0}^{\frac{\pi}{3}} - 2 \int_{0}^{\frac{\pi}{3}} \tan x \, dx$





·

.

 $\frac{\hat{Q}_{ueshin}}{(a)} \frac{8}{A = 2} \int_{0}^{16} x \, dy \, yz \, z \, z \, o \quad : \ x^{4} = \frac{y}{16}$ ie. $x = \frac{y}{4} \frac{z}{2}$ $A = \int_{0}^{16} y^{\frac{4}{9}} dy = 4 \left[\frac{y^{\frac{5}{4}}}{5} \right]_{0}^{16} = \frac{4}{5} \cdot \frac{2^{5}}{5} = \frac{127}{5}$

•

$$= \$ 240 (1 + 2 + \dots + 19 + 20)$$

= \ \ 240. \ \ \ 20. \ 21 = \ \ 50 400 interest

(ii) Betty's total over the 20 years
=\$2000
$$(1.07)^{20}$$
 + 2000 $(1.07)^{19}$ + ... + 2000 $(1.07)^{2}$ + 2000 (1.07)

=\$2000 (1.07)
$$[1 + 1.07 + 1.07^{2} + \cdots + 1.07^{14}]$$

= \$2000 (1.07) $1.07^{20} - 1$ = \$\$7730, nearest dollar
 0.07
: Inderest made = \$\$7770 -\$2000 × 20 = \$\$47730
: Albert's decision was better

.

(c)
$$\frac{1}{2} - \frac{1}{2} = 0$$

IN R EIL

12 X = C

. . •

. .

• 5469 C • .

•

,

. · • .

· · · . .

-

.

.

· · ·

•

Juestion 9

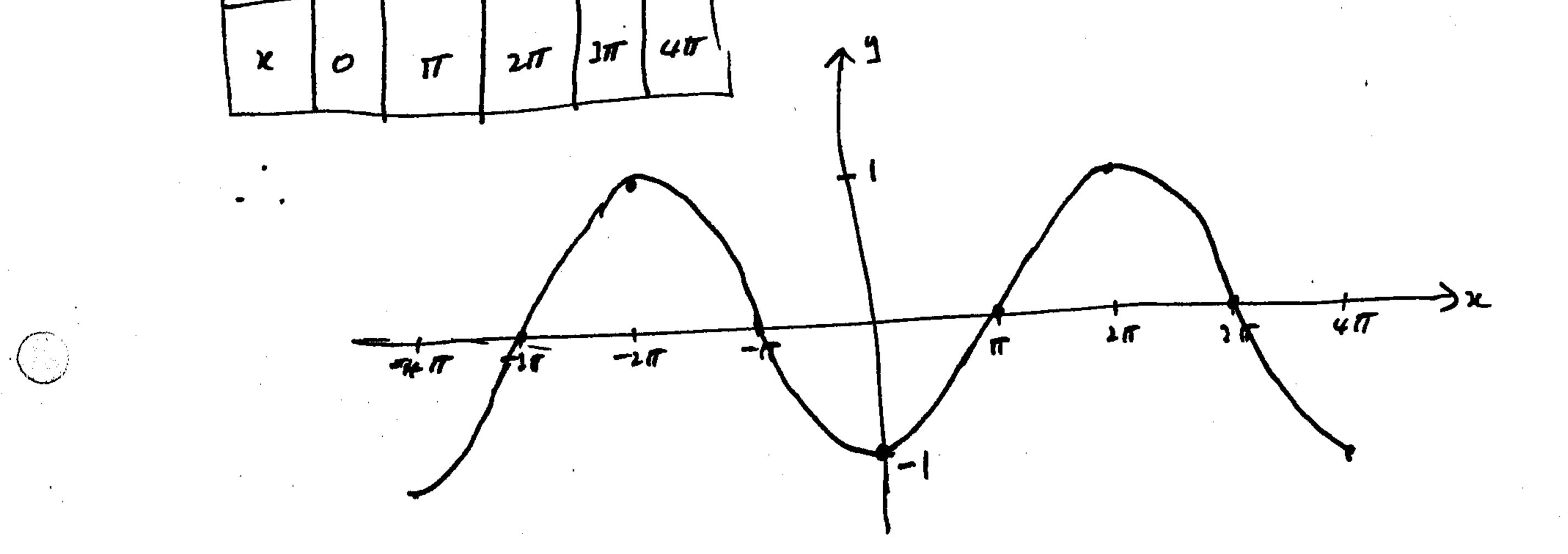
(a) (i) $S = 2\pi rh + \pi r^2$: $\pi r^2 h = 1728\pi$ $\lambda = \frac{1728}{r^2}$

 $S = 2\pi r \cdot \frac{1728}{r^2} + \pi r^2 = \pi \left(r^2 + \frac{3456}{r} \right)$

(ii) $S = \pi (r' + 3456 r')$ $\frac{dS}{dr} = \pi \left(2r - 3456 r^{-2} \right)$ $\frac{d^{2}S}{d} = \pi \left(2 + 69/2 r^{-3} \right)$ $\frac{dS}{dr} = 0 \implies r - \frac{1728}{r^2} = 0 \qquad r^2 = 1728$ =)r= 1/128 =12

For r=12, $\frac{d^2 S}{dr} > 0$ (indeed $\frac{d^2 S}{dr} > 0$ for all r > 0) ⇒ minimum S when r=12 $\lim_{n \to \infty} \int = \pi \left(12^2 + \frac{3456}{12} \right) cn^2 = 432\pi cn^2$

(4) エ ジョン ビーレ 0 0 | -1



· (C) (i) -5 ≤ x+2 ≤5

. -7 ≤ x ≤ 3

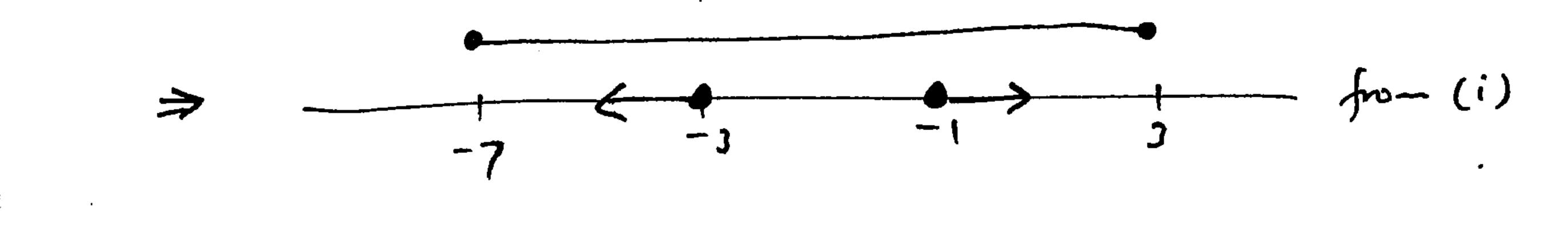
• .

.

· ·

•

ve have -1 > ル+2 > 1 1ë. x≤-3 or x 7,-1 -3 % × 3 -1



 $|\leq|x+2|\leq 5$ OR

.

 \Rightarrow 1 \leq x + 2 \leq 5 $or -5 \le x+2 \le -1$ \sim $-7 \leq \kappa \leq -3$ $-1 \leq x \leq 3$

:

•

▲

· · ·

. •

х. .

• · .

.

> . . н ,

> > .

. .

Question 10

 $(a)(i) : \frac{1}{2} AB.h = \frac{1}{2} AB.a + \frac{1}{2} BC.b + \frac{1}{2} AC.c$ where AB = BC = AC, Δ equilateral

h = a + b + c

(ii) OB is $y=0 = 4a_{0}60^{\circ}(x=0)$ is $y = \sqrt{3}x$

(iii)
$$\perp$$
 distance from $P(J_3, I)$ to $J_3 \times -\gamma = 0$ is

$$\frac{\sqrt{3}.\sqrt{3}-1}{\sqrt{5^{2}+1^{2}}} = \frac{3-1}{\sqrt{4}} = 1$$

(iv) Using notation in (i),
$$C = 1$$
 from (iii)
 $a = 1$ since $P = (J_3, 1)$

$$a + B, x = 2$$
 .: $y = 2\sqrt{3} = h$

. distance from P to AB = $2\sqrt{3} - 1 - 1 = 2\sqrt{3} - 2$

LBQA = [NMC = d, corresponding LS in 11 lines

 $\frac{BN}{NC} = \frac{BM}{MC} = 1:1, \text{ nation intercept}$ $\frac{BN}{NC} = \frac{BM}{MC} = 1:1, \text{ nation intercept}$ $\frac{BN}{MC} = \frac{BM}{MC} = 1:1, \text{ nation intercept}$

. QM = MC

Q

But AM = MP, data $\therefore QA = PC = AB, data$. AABC is night-angled and isosceles. ⇒ LQ = LB = 45°, base agles equal . . I is she fixed value 45°