Knox 2003 Trial HSC

```
Total marks (84)
Attempt questions 1 - 7
All questions are of equal value
```

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
(a) Find $\frac{d}{d x}\left(x \tan ^{-1} 2 x\right)$
(b) The parametric equations of a curve are given by $x=t^{2}, y=t^{3}+t$.

Find the Cartesian equation of the curve (that is y in terms of x).
(c) Write down the general solution of $\sin x=\frac{1}{2}$.
(d) The interval $A B$ has end points $A(5,4)$ and $B(x, y)$. The point $P(-1,3)$ divides $A B$ internally in the ratio $2: 3$. Find the coordinates of B.
(e) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\sin 3 x}{4 x}\right)$.
(f) Use the table of standard integrals to find the exact value of

$$
\int_{0}^{1} \frac{1}{\sqrt{4+x^{2}}} d x
$$

Question 2 (12 Marks) Use a SEPARATE Writing Booklet.
(a) Find, correct to the nearest degree, the obtuse angle between the lines

$$
x+y-4=0 \text { and } y=2 x+1 .
$$

(b) Solve $\frac{2 x+3}{x-4} \leq 1$.
(c) Use the substitution $u=2-x$ to evaluate $\int_{0}^{1} x \sqrt{2-x} d x$.
(d) (i) Write down the domain and range of the function $y=\frac{\pi}{2}-\sin ^{-1} \frac{x}{2}$.
(ii) Hence sketch the function.

Question 3 (12 Marks) Use a SEPARATE Writing Booklet.
(a) Find the exact value of $\cos \left(\frac{7 \pi}{12}\right)$ in simplest surd form, with a rational denominator.
(b)

The diagram above shows a sketch of the gradient function of the curve $y=f(x)$.

Copy this diagram into your writing booklet.

On the same diagram, draw a possible sketch of the function $y=f(x)$, given that $f(0)=3$ and $\lim _{x \rightarrow \infty} f(x)=6$.
(c) Consider the point $P\left(2 a p, a p^{2}\right)$ on the parabola $x^{2}=4 a y$.
(i) Show that the equation of the normal to the parabola $x^{2}=4 a y$ at the point P is given by $x+p y=2 a p+a p^{3}$.
(ii) Find the equation of the line which passes through the focus $S(0, a)$ and is perpendicular to the normal.
(iii) If the line found in part (ii) meets the normal at N, find the coordinates of N.
(iv) Show that the locus of N is a parabola and find its vertex.

Question 4 ($\mathbf{1 2}$ Marks) Use a SEPARATE Writing Booklet.
(a) Determine the exact value of $\cos \left(2 \sin ^{-1}\left(\frac{12}{13}\right)\right)$.
(b) (i) Show that the equation $x-\tan ^{-1} 3 x=0$ has a root lying between $x=1$ and $x=2$.
(ii) By taking $x=1.5$ as an initial approximation to the root of $x-\tan ^{-1} 3 x=0$, in the interval $1<x<2$, use one application of Newton's method to find a second approximation to this root.
(c) The velocity of a particle moving in a straight line is given by

$$
v=4 x+1
$$

where x is the displacement (in metres) from a fixed point 0 , and v is the velocity in metres per second.

Find the acceleration of the particle when it is 5 metres to the right of the origin.
(d) Newton's law of cooling states that the rate of cooling of a body is proportional to the excess of the temperature of a body above the surrounding room temperature. The temperature of a cup of chocolate drink satisfies an equation of the form $T=B+A e^{k t}$ where T is the temperature of the drink, t is time in minutes, A and k are constants and B is the temperature of the surroundings.

The drink cools from $85^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in three minutes in a room of temperature of $22^{\circ} \mathrm{C}$.
(i) Find the value of A.
(ii) Find the value of k, correct to 3 decimal places.
(iii) Find the temperature of the cup of chocolate, to the nearest degree, after a further 9 minutes have passed.

Question 5 (12 Marks) Use a SEPARATE Writing Booklet.
(a) Suppose $\frac{\alpha}{r}, \alpha$ and αr are the real roots of the cubic equation $2 x^{3}-3 x^{2}-3 x+2=0$.
(i) Write down the value of the sum of all three roots.
(ii) Write down the value of the product of all three roots.
(iii) Deduce that r can take on two real non-zero values and find them.
(b) Anna (A) is standing due south of Phillip (P) who is assisting an injured bush walker. A rescue helicopter (H) is hovering directly over P and lowering a stretcher. Anna measures the angle of elevation of the helicopter to be 60° from her position. Belinda (B) is 1 kilometre due east of A and measures the angle of elevation of the helicopter to be 30°. The height of the helicopter above P is x metres.

South
(i) Write expressions for both $A P$ and $B P$ in terms of x.
(ii) Hence or otherwise find the height of the helicopter correct to the nearest 10 m .
(c) Use the Principle of Mathematical Induction to show that $9^{n+2}-4^{n}$ is divisible by 5 for all positive integers n.

Question 6 (12 Marks) Use a SEPARATE Writing Booklet.
(a) (i) State the domain and range for $f(x)=4-\sqrt{x-1}$.
(ii) Find the inverse function $f^{-1}(x)$ and state the domain and range for which it exists.
(iii) Sketch the graph of $f(x)=4-\sqrt{x-1}$ and its inverse function $f^{-1}(x)$ on the same number plane.
(b)

NOT TO SCALE

A bulk container for emptying grain into rail trucks is in the shape of an inverted cone with base radius 8 metres and height 10 metres. The grain is released from the apex of the cone at a constant rate of $35 \mathrm{~m}^{3} / \mathrm{s}$. The depth of grain in the container at any given time is h metres and the radius of the circle formed by the top of the grain at that same time is r metres.

If the grain is released continuously until the container is empty, calculate the rate at which the radius (r) is decreasing when the depth (h) is 0.65 metres.

Question 7 ($\mathbf{1 2}$ Marks) Use a SEPARATE Writing Booklet.
(a) By using the $t-$ method (that is, let $t=\tan \frac{x}{2}$) solve the equation

$$
\cos x+\frac{1}{\sqrt{2}} \sin x=-1
$$

for x such that $0^{\circ} \leq x \leq 360^{\circ}$
(b) Find the volume of the solid formed by rotating about the x axis, the region bounded by $y=\cos 2 x$, the x axis, from $x=0$ to $x=\frac{\pi}{2}$.
(c)

In the diagram above A, B and C are three points on a circle, centre O. The tangent at A meets $B C$ produced at T. D is the midpoint of $B C$.

Copy this diagram into your writing booklet.

(i) Prove that $A O D T$ is a cyclic quadrilateral.
(ii) Explain why $\angle A O T=\angle A D T$.

End of Paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\quad \ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\quad \ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note $\ln x=\log _{e} x, \quad x>0$

