

2014

Trial Higher School Certificate Examination

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen only Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Teachers:
Mr Sedgman
Mr Johansen*
Ms Tran
Mr Vuletich
Mr Ockenden
Mr Salmon

Number: \qquad
Teacher: \qquad

BLANK PAGE

Section I

10 marks

Attempt questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 What is 4.09784 correct to three significant figures?
(A) 4.09
(B) 4.10
(C) 4.097
(D) 4.098

2 The quadratic equation $x^{2}+3 x-1=0$ has roots α and β.
What is the value of $\alpha \beta+(\alpha+\beta)$?
(A) 4
(B) 2
(C) -4
(D) -2

3 The diagram shows the line ℓ.

What is the slope of the line ℓ ?
(A) $\sqrt{3}$
(B) $-\sqrt{3}$
(C) $\frac{1}{\sqrt{3}}$
(D) $-\frac{1}{\sqrt{3}}$
$4 \quad$ What is the derivative of $\frac{x}{\cos x}$?
(A) $\frac{\cos x+x \sin x}{\cos ^{2} x}$
(B) $\frac{\cos x-x \sin x}{\cos ^{2} x}$
(C) $\frac{x \sin x-\cos x}{\cos ^{2} x}$
(D) $\frac{-x \sin x-\cos x}{\cos ^{2} x}$

5 What is the sum of the first ten terms of the series $96-48+24-12+\ldots$?
(A) 63.9375
(B) 191.8125
(C) -32.736
(D) 98.208

6 Which of the following statements is INCORRECT?
(A) $\log a^{n}=n \log a$
(B) $\log a b=\log a+\log b$
(C) $\log (a-b)=\frac{\log a}{\log b}$
(D) $\log e=1$

7 The curve $y=a x^{2}-6 x+3$ has a stationary point at $x=1$. What is the value of a ?
(A) 2
(B) -1
(C) 3
(D) -3
$8 \quad$ What is the value of $\int_{1}^{4} \frac{1}{3 x} d x$?
(A) $\frac{1}{3} \ln 3$
(B) $\frac{1}{3} \ln 4$
(C) $\ln 9$
(D) $\ln 12$

9

The equation of the graph sketched above could be:
(A) $y=1+\sin 2 x$
(B) $y=1-\sin 2 x$
(C) $y=1+2 \sin 2 x$
(D) $y=1-2 \sin x$

10 What is the range of the function $y=|x|-x$?
(A) All real y
(B) $y \geq 0$
(C) $y \leq 0$
(D) $y=0$

End of Section I

Section II

90 marks
 Attempt Questions 11 - 16
 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Factorise $2 x^{2}-7 x+3$.
(b) Solve $|3 x-1|<2$.
(c) Find the equation of the tangent to the curve $y=x^{2}$ at the point where $x=3$.
(d) Differentiate $\left(3+e^{2 x}\right)^{5}$.
(e) Find the coordinates of the focus of the parabola $x^{2}=16(y-2)$.
(f) The area of a sector of a circle of radius 6 cm is $50 \mathrm{~cm}^{2}$.

Find the length of the arc of the sector.
(g) Find $\int_{0}^{\frac{\pi}{2}} \sec ^{2} \frac{x}{2} d x$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram shows the points $P(0,2)$ and $Q(4,0)$. The point M is the midpoint of $P Q$. The line $M N$ is perpendicular to $P Q$ and meets the x axis at G and the y axis at N.
(i) Show that the gradient of $P Q$ is $-\frac{1}{2}$. 1
(ii) Find the coordinates of M.
(iii) Find the equation of the line $M N$.
(iv) Show that N has coordinates $(0,-3)$.
(v) Find the distance $N Q$.
(vi) Find the equation of the circle with centre N and radius $N Q$.
(vii) Hence show that the circle in part (vi) passes through the point P.
(viii) The point R lies in the first quadrant, and $P N Q R$ is a rhombus.

Find the coordinates of R.
(b) The gradient of a curve is given by $\frac{d y}{d x}=\frac{2 x}{x^{2}+e}$. The curve passes through the point $(0,2)$. What is the equation of the curve?

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) For an arithmetic progression, the fifth term is 16 and the eleventh term is 40 .
(i) Find the first term and the common difference. 3
(ii) How many terms in the sequence must be added to reach a sum of 312 ?
(b) Solve the following equation for x :

$$
e^{2 x}+3 e^{x}-10=0
$$

(c) Find the exact value of $\cos \theta$ given that $\tan \theta=7$ and $\sin \theta<0$.
(d) Let $f(x)=(x+2)\left(x^{2}+4\right)$.
(i) Show that the graph $y=f(x)$ has no stationary points.
(ii) Find the values of x for which the graph $y=f(x)$ is concave down, and the values for which it is concave up.
(iii) Sketch the graph $y=f(x)$, indicating the values of the x and y intercepts.

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Simplify $1-\sin ^{2} \theta$. $\quad 1$
(ii) Prove the identity $\tan \theta\left(1-\sin ^{2} \theta\right)=\sin \theta \cos \theta$.
(b) A particle is moving on the x axis with displacement x metres after t seconds given by the function

$$
x=2 t^{2}-25 t+50
$$

(i) What was the initial position of the particle? 1
(ii) What was the initial velocity of the particle? $\mathbf{1}$
(iii) At what times was the particle at the origin? $\mathbf{2}$
(iv) At what time was the particle instantaneously at rest? $\mathbf{1}$
(v) How far did the particle travel between its visits to the origin? $\mathbf{2}$
(c) Henry borrows $\$ 200000$ which is to be repaid in equal monthly instalments. The interest rate is 7.2% per annum reducible, calculated monthly.

It can be shown that the amount, $\$ A_{n}$, owing after the nth month is given by the formula

$$
A_{n}=200000 r^{n}-M\left(1+r+r^{2}+\ldots+r^{n-1}\right)
$$

where $r=1.006$ and $\$ M$ is the monthly repayment. (Do NOT show this.)
(i) The minimum monthly repayment is the amount required to repay the loan in 300 instalments.
Find the minimum monthly repayment.
(ii) Henry decides to make repayments of $\$ 2800$ each month from the start of the loan.

How many months will it take for Henry to repay the loan?

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) Show that $3 x^{2}+4 x+5$ is positive definite.
(b) Xena and George compete in a series of games. The series finishes when one player has won two games. In any game, the probability that Xena wins is $\frac{2}{3}$ and the probability that George wins is $\frac{1}{3}$.

Part of the tree diagram for the series of games is shown.

First	Second game	Third game

(i) Copy and complete the tree diagram showing the possible outcomes.
(ii) What is the probability that George wins the series? $\mathbf{2}$
(iii) What is the probability that three games are played in the series?
(c) The rate of elimination $\frac{d Q}{d t}$ of a drug by the kidneys is given by the equation

$$
\frac{d Q}{d t}=-k Q
$$

where k is a constant and Q is the quantity of drug present in the blood. In this question, t is measured in minutes and Q in milligrams.
(i) Show that $Q=Q_{0} e^{-k t}$ satisfies the equation $\frac{d Q}{d t}=-k Q$.
(ii) The initial quantity of the drug present was mesasured to be 100 mg and at time $t=20$ minutes, the quantity was 74 mg . Find the values of Q_{0} and k.

Give k correct to five decimal places and Q_{0} to the nearest mg.
(iii) What is the initial rate of elimination of the drug? Give your answer correct to one decimal place?
(iv) How long is it until only half the original quantity of drug remains?

Give your answer correct to the nearest minute?
Question 15 continues on page 9

Question 15 (continued)
(d) Use Simpson's rule with three function values to find an approximation to the value of $\int_{0.5}^{1.5}\left(\log _{e} x\right)^{3} d x$.

Give your answer correct to three decimal places.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a)

In the diagram, the shaded region is bounded by $y=\log _{e}(x-2)$, the x axis and the line $x=7$.
Find the exact value of the area of the shaded region.
(b)

A cone is inscribed in a sphere of radius a, centred at O. The height of the cone is x and the radius of the base is r, as shown in the diagram.
(i) Show that the volume, V, of the cone is given by $V=\frac{1}{3} \pi\left(2 a x^{2}-x^{3}\right)$.
(ii) Find the value of x for which the volume of the cone is a maximum.

You must give reasons why your value of x gives the maximum volume.
(c)

NOT TO SCALE
$A B C D$ is a square of side length 2 units. P is the midpoint of $A D$.
$C Q$ is drawn perpendicular to $P B$ and $\angle A P B=x^{\circ}$.
(i) Prove that $\angle A P B=\angle Q B C$.
(ii) Hence, or otherwise, show that $Q C=\frac{4}{\sqrt{5}}$ units.
(iii) Show that $Q D=C D$.

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$
\text { Note } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014
Suse
Section
OI:
a)

$$
\begin{aligned}
& 2 x^{2}-7 x+3 \\
& =(2 x-1)(x-3)
\end{aligned}
$$

b) $|3 x-1|<2$

$$
\begin{aligned}
& -2<3 x-1<2 \\
& -1<3 x<3 \\
& -\frac{1}{3}<x<1
\end{aligned}
$$

c)

$$
\begin{aligned}
x=3, y & =9 \\
\frac{d y}{d x} & =2 x \\
\text { At } x=3, \frac{d y}{d x} & =6 \\
& =m_{\text {tangent }} \\
\therefore y-9 & =6(x-3) \\
y-9 & =6 x-18 \\
0 & =6 x-y-9
\end{aligned}
$$

c)

$$
\begin{gathered}
\lambda^{2}=16(y-2) \\
4 a=16 \\
a=4
\end{gathered}
$$

\therefore Focus is $(0,6) / \checkmark$
f) $50=\frac{1}{2}(6)^{2} \theta$

$$
\theta=\frac{50}{18}
$$

$$
=\frac{25}{9}
$$

$$
\therefore L=6\left(\frac{25}{9}\right)
$$

$$
\begin{gathered}
=\frac{50}{3} \text { or }\left[16 \frac{2}{3} \mathrm{~cm} v\right. \\
\sec ^{2} \frac{x}{2} d x=\left.\left[2 \tan \frac{x}{2}\right]\right|_{0} ^{\frac{\pi}{2}} .
\end{gathered}
$$

$$
=2\left[\tan \frac{\pi}{4}-\beta\right] V
$$

$$
\begin{aligned}
& =2(1-c) \\
& =2
\end{aligned}
$$

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

11) \therefore Cone has a maximum volume when $x=\frac{4 \pi a}{3}$

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 32014

