

2014
Trial Higher School Certificate
Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen only Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Number: _____

Teacher: _____

Total marks – 100

Section I: Pages 1-3

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II: Pages 4-11

90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Teachers: Mr Sedgman Mr Johansen* Ms Tran Mr Vuletich Mr Ockenden Mr Salmon

Write your Board of Studies Student Number, your name and your teacher's name on the front cover of each writing booklet

This paper MUST NOT be removed from the examination room

Number of Students in Course: 127

BLANK PAGE

Section I

10 marks Attempt questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1	What is 4.09784 correct to three significant figures?						
	(A) 4.09						
	(B) 4.10						
	(C) 4.097						
	(D) 4.098						
2	The quadratic equation $x^2 + 3x - 1 = 0$ has roots α and β . What is the value of $\alpha\beta + (\alpha + \beta)$?						
	(A) 4						
	(B) 2						
	(C) –4						
	(D) –2						
3	The diagram shows the line ℓ .						
	v						

What is the slope of the line ℓ ?

- (A) $\sqrt{3}$
- (B) $-\sqrt{3}$

(C)
$$\frac{1}{\sqrt{3}}$$

(D)
$$-\frac{1}{\sqrt{3}}$$

4

What is the derivative of $\frac{x}{\cos x}$?

(A)
$$\frac{\cos x + x \sin x}{\cos^2 x}$$

(B)
$$\frac{\cos x - x \sin x}{\cos^2 x}$$

(C)
$$\frac{x \sin x - \cos x}{\cos^2 x}$$

(D)
$$\frac{-x \sin x - \cos x}{\cos^2 x}$$

5

What is the sum of the first ten terms of the series 96-48+24-12+...?

- (A) 63.9375
- (B) 191.8125
- (C) -32.736
- (D) 98.208

6 Which of the following statements is INCORRECT?

- (A) $\log a^n = n \log a$
- (B) $\log ab = \log a + \log b$
- (C) $\log(a-b) = \frac{\log a}{\log b}$
- (D) $\log e = 1$

7 The curve $y = ax^2 - 6x + 3$ has a stationary point at x = 1. What is the value of a?

- (A) 2
- (B) -1
- (C) 3
- (D) –3

8

What is the value of $\int_{1}^{4} \frac{1}{3x} dx$?

- (A) $\frac{1}{3}\ln 3$
- (B) $\frac{1}{3}\ln 4$
- (C) ln9
- (D) ln12

The equation of the graph sketched above could be:

- (A) $y = 1 + \sin 2x$
- (B) $y = 1 \sin 2x$
- $(C) \quad y = 1 + 2\sin 2x$
- (D) $y=1-2\sin x$

10 What is the range of the function y = |x| - x?

- (A) All real y
- (B) $y \ge 0$
- (C) $y \leq 0$
- (D) y = 0

End of Section I

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a)	Factorise $2x^2 - 7x + 3$.	2

(b) Solve
$$|3x-1| < 2$$
. 2

(c) Find the equation of the tangent to the curve $y = x^2$ at the point where x = 3. 2

(d) Differentiate
$$(3+e^{2x})^5$$
. 2

(e)	Find the coordinates of the focus of the parabola $x^2 = 16(y-2)$.	2
(f)	The area of a sector of a circle of radius 6 cm is 50 cm^2 . Find the length of the arc of the sector.	2

(g) Find
$$\int_{0}^{\frac{\pi}{2}} \sec^2 \frac{x}{2} \, dx.$$
 3

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram shows the points P(0,2) and Q(4,0). The point *M* is the midpoint of *PQ*. The line *MN* is perpendicular to *PQ* and meets the *x* axis at *G* and the *y* axis at *N*.

(i)	Show that the gradient of PQ is $-\frac{1}{2}$.	1
(ii)	Find the coordinates of M .	2
(iii)	Find the equation of the line MN.	2
(iv)	Show that <i>N</i> has coordinates $(0, -3)$.	1
(v)	Find the distance NQ.	1
(vi)	Find the equation of the circle with centre N and radius NQ .	2
(vii)	Hence show that the circle in part (vi) passes through the point P .	1
(viii)	The point R lies in the first quadrant, and $PNQR$ is a rhombus. Find the coordinates of R .	2

(b) The gradient of a curve is given by
$$\frac{dy}{dx} = \frac{2x}{x^2 + e}$$
. The curve passes through 3
the point (0,2). What is the equation of the curve?

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a)	For an arithmetic progression, the fifth term is 16 and the eleventh term is 40.			
	(i) Find the first term and the common difference.	3		
	(ii) How many terms in the sequence must be added to reach a sum of 312?	2		
(b)	Solve the following equation for x: $e^{2x} + 3e^{x} - 10 = 0.$	2		
(c)	Find the exact value of $\cos \theta$ given that $\tan \theta = 7$ and $\sin \theta < 0$.	2		
(d)	Let $f(x) = (x+2)(x^2+4)$.			

and the values for which it is concave up.

(iii) Sketch the graph y = f(x), indicating the values of the x and y intercepts. 2

2

2

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a)	(i)	Simplify $1 - \sin^2 \theta$.	
-----	-----	--------------------------------	--

(ii) Prove the identity
$$\tan \theta (1 - \sin^2 \theta) = \sin \theta \cos \theta$$
. 2

(b) A particle is moving on the *x* axis with displacement *x* metres after *t* seconds given by the function

$$x = 2t^2 - 25t + 50$$

(i)	What was the initial position of the particle?	1
(ii)	What was the initial velocity of the particle?	1
(iii)	At what times was the particle at the origin?	2
(iv)	At what time was the particle instantaneously at rest?	1
(v)	How far did the particle travel between its visits to the origin?	2

(c) Henry borrows \$200 000 which is to be repaid in equal monthly instalments. The interest rate is 7.2 % per annum reducible, calculated monthly.

It can be shown that the amount, A_n , owing after the *n*th month is given by the formula

$$A_{n} = 200\ 000\ r^{n} - M\left(1 + r + r^{2} + \dots + r^{n-1}\right),$$

where r = 1.006 and \$M is the monthly repayment. (Do NOT show this.)

- (i) The minimum monthly repayment is the amount required to repay the 3 loan in 300 instalments.
 Find the minimum monthly repayment.
- (ii) Henry decides to make repayments of \$2800 each month from the start 2 of the loan.
 How many months will it take for Henry to repay the loan?

Question 15 (15 marks) Use a SEPARATE writing booklet.

- (a) Show that $3x^2 + 4x + 5$ is positive definite.
- (b) Xena and George compete in a series of games. The series finishes when one player has won two games. In any game, the probability that Xena wins is $\frac{2}{3}$

and the probability that George wins is $\frac{1}{3}$.

Part of the tree diagram for the series of games is shown.

(i) Copy and complete the tree diagram showing the possible outcomes.
(ii) What is the probability that George wins the series?
(iii) What is the probability that three games are played in the series?
2

(c) The rate of elimination $\frac{dQ}{dt}$ of a drug by the kidneys is given by the equation

$$\frac{dQ}{dt} = -kQ$$

where k is a constant and Q is the quantity of drug present in the blood. In this question, t is measured in minutes and Q in milligrams.

(i) Show that
$$Q = Q_0 e^{-kt}$$
 satisfies the equation $\frac{dQ}{dt} = -kQ$. 1

(ii) The initial quantity of the drug present was mesasured to be 100 mg and at time t = 20 minutes, the quantity was 74 mg. Find the values of Q_0 and k.

Give k correct to five decimal places and Q_0 to the nearest mg.

- (iii) What is the initial rate of elimination of the drug? Give your answercorrect to one decimal place?
- (iv) How long is it until only half the original quantity of drug remains?Give your answer correct to the nearest minute?

Question 15 continues on page 9

2

2

(d) Use Simpson's rule with three function values to find an approximation to the value of $\int_{0.5}^{1.5} (\log_e x)^3 dx$.

2

Give your answer correct to three decimal places.

End of Question 15

(a)

5

3

In the diagram, the shaded region is bounded by $y = \log_e (x-2)$, the x axis and the line x = 7.

Find the exact value of the area of the shaded region.

(b)

A cone is inscribed in a sphere of radius a, centred at O. The height of the cone is x and the radius of the base is r, as shown in the diagram.

(i) Show that the volume, V, of the cone is given by
$$V = \frac{1}{3}\pi (2ax^2 - x^3)$$
. 2

(ii) Find the value of x for which the volume of the cone is a maximum.You must give reasons why your value of x gives the maximum volume.

Question 16 continues on page 11

ABCD is a square of side length 2 units. *P* is the midpoint of *AD*. *CQ* is drawn perpendicular to *PB* and $\angle APB = x^{\circ}$.

(i) Prove that
$$\angle APB = \angle QBC$$
. 1

(ii) Hence, or otherwise, show that
$$QC = \frac{4}{\sqrt{5}}$$
 units. 2

(iii) Show that
$$QD = CD$$
. 2

End of paper

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$\int x^n \ dx$	=	$\frac{1}{n+1} x^{n+1},$	$n \neq -1; x \neq 0$, if $n < 0$
$\int \frac{1}{x} dx$	=	$\ln x$,	<i>x</i> > 0
$\int e^{ax} dx$	=	$\frac{1}{a}e^{ax},$	$a \neq 0$
$\int \cos ax \ dx$	=	$\frac{1}{a}\sin ax$,	$a \neq 0$
$\int \sin ax \ dx$	=	$-\frac{1}{a}\cos ax$,	$a \neq 0$
$\int \sec^2 ax \ dx$	=	$\frac{1}{a} \tan ax$,	$a \neq 0$
$\int \sec ax \tan ax \ dx$	x =	$\frac{1}{a} \sec ax$,	$a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	=	$\frac{1}{a}\tan^{-1}\frac{x}{a},$	$a \neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	=	$\sin^{-1}\frac{x}{a},$	a > 0, -a < x < a
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	=	$\ln\left(x+\sqrt{x^2}\right)$	$\overline{-a^2}$), $x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	=	$\ln\left(x+\sqrt{x^2}\right)$	$\overline{+a^2}$

Note $\ln x = \log_e x, \quad x > 0$

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\frac{\text{Section I}}{1 \cdot 4.09784} = 4.10 \Rightarrow B$		$S = 96 - 48 + 24 - 12 +$ $q = 96, r = -\frac{1}{2}, S_{10}$ $S_{10} = 96 \left[\left(-\frac{1}{2} \right)^{10} - 1 \right]$ $-\frac{1}{2} - 1$	_ ?
$\lambda \cdot \lambda + \beta = -3$ $\lambda \beta = -1$ $\therefore \lambda \beta + (\lambda + \beta) = -1 - 3$ $= -4 \rightarrow$ $3 \cdot m_{L} = -h_{10} - 60^{\circ}$ $= -\sqrt{3} \rightarrow$ $1 \cdot \frac{4}{10} \left(\frac{3L}{\cos 3L}\right)$	© ®	$= (3 \cdot 1375)$ $(1 \cdot 10g(a-b) \neq \frac{10g}{10g}$ $(3 \cdot 10g(a-b) \neq \frac{10g}{10g}$ $7 \cdot \frac{4x}{4x} = 2gx - 6$ $4x = 2gx - 6$ $4x = 0 \text{ when } 2a$ $x = 1 \Rightarrow 2a(1) - 6 = 1$ $g = 3 = 3$	→A) - → C) n-(=0 0 → C)
$= \frac{(c,s)c}{(s)} (1) - (2) (-single)$ $= \frac{(c,s)c}{(c,s)} + \frac{(s)c}{(c,s)} + \frac{(c,s)c}{(c,s)} + \frac{(c,s)c}{$	-) ->A)	8. $\int_{1}^{4} \frac{1}{3n} dn$ $= \frac{1}{3} \left[\ln n \right]_{1}^{4}$ $= \frac{1}{3} \left[\ln 4 - \ln 4 \right]$ $= \frac{1}{3} \ln 4$	[] →®

Y12 Mathematics (HSC	CASSESSMENT TASK 4:	TRIAL HSC EXAMINATION) - Term 3 2014
----------------------	---------------------	-----------------------	-----------------

Y12 Mathematics (H	ISC ASSESSMENT TAS	K 4: TRIAL HSC EX	AMINATION) - Term 3 20)14
--------------------	--------------------	-------------------	------------------------	-----

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Section I could 9. $y = 1 + \sin 2\pi$ Period = $\frac{2\pi}{2}$ = π	→ ()		
Amplifude = 1) 10. 2170, y = 21-21 = 0 ->	R: y=0		
$\frac{1}{2} \left(0, y = -2 \right) - 3 \left(-\frac{1}{2} \right)$	R : y7		
" Konge of function is y	7,0 →(B	

シ

Suggested Solution (s)	Comments		Suggested Solution (s)	ľ	Comments
Section II		d)	Let y= (3te 2nc)	5	
Q11:			$\frac{dy}{dn} = 5\left(3 + e^{kn}\right)$	4	en /
$a) 2n^2 - 7_{31} + 3$			$= 10e^{2n} \left(3t\right)$	$-e^{3c}$	- /
$= (2)(-1)(3) \sqrt{2}$		e)	$\lambda^{\perp} = 16(\gamma - \lambda)$		
b) 3x-1 <2			44 = 16		
-2< 3n-1<2			q=4 v		
-1 < 32 < 3			tocos is (0,	6) .	
$-\frac{1}{3} \leq n \leq 1$		F)	$50 = \frac{1}{2} (c)^2 \Theta$		
c) x= 3, y=9			$\Theta = \frac{s_0}{18}$		
$\frac{dy}{dx} = 2x$			$=\frac{15}{9}$		
$\begin{array}{c} Af x=3, \ \frac{dy}{dy} = 6 \\ \frac{dy}{dy} = 1 \\ \frac{dy}{dy} = 1$			$\therefore L = \binom{25}{9}$		
"tingent			= <u>50</u>	, 16	13 cm 1
$\begin{array}{ccc} & y - y = 6 (y - 3) \\ y - g = (y - 18) \end{array}$		z)	$\int_{0}^{\frac{\pi}{2}} \sec^{2} \frac{n}{2} dn =$	[k	1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 = 611-7-9		¥ *		= 1	I lan T-
	3	/		= 1	· +

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Q12:		vi. Centre (0,-3), r= 5	
9) $m_{PQ} = \frac{0-2}{4-0} /$		$\left(x^{-1}\right)^{2} + \left(y+3\right)^{2} = 5^{2}$	
		or	V
$ II = M_{PQ} = \left(\frac{0+4}{2}, \frac{2+0}{2}\right) $		x2+y2+6y-16=	Ø
= (2,1)		vii. $(o_1 2) \rightarrow n^2 + (\gamma + 3)^2$	= 15 2
$m_{\rm HN} = 2 ({\rm HN} - {\rm L})$	β <i>φ</i>) √	0 ⁻ + (2+3) (5)	= 25 /
$y - 1 = \lambda (x - \lambda)$ $y - 1 = \lambda y - 4$		· Circle passes the	, P
$o = 2\pi - y - 3$		viii. IF PNQR 15 a	chombus,
$ (x = c) \rightarrow 0 = 2(c) - (x = c) \rightarrow y = -\frac{1}{2} $	7-3	$\eta(2,1)$ is the matrix $\eta(2,1)$	dpoint of
ie N is (0,-3)		$\therefore \mathcal{K}(\mathbf{x}, \mathbf{y}) \mathcal{N}(\mathbf{v})^{-1}$	$(a, i) \rightarrow \pi(a, i)$
\vee $N(o, -3) G(4, o)$		$\frac{1}{2} \frac{21+0}{2} = 2 a^{-1}$	y-3 = 1
$d_{NQ} = \sqrt{(4)^{2} + (3)^{2}}$		n=4, y= [or simil	$S \rightarrow R(4, 5)$
= 5 units /		b) $y = \int \frac{2n}{x^2 + e} dx$	
		$4 = \ln(x^{t} te)$	FC V
		(0)2) 7 2 - 140 y= h(x+e	, ⊂ → c=[_) + [√
		l	1

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 3 2014

Y12 Mathematics (HSC ASSESSM	ENT TASK 4	: TRIAL HSC EXAMINATION) - Term	3 2014
Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
(413): (-4) i: $T_5 = 9+44 = 16$ (i)		c) $\xrightarrow{-1} \gamma' \longrightarrow x$ $\overrightarrow{\theta} -7$	
$T_{11} = 9 + 10d = 40 (2)$ (2)-(1) -> (d=24)		$r = \sqrt{l^2 + 7^2}$ $= \sqrt{50}$	-1 150 0404
$d=4 \checkmark$ $d=4 \rightarrow q+16 = 16$		= $5\sqrt{2}$ / \therefore $\cos \theta = -1$ or	<u></u>
9= T ₁ =0 /		55 1) · · · · · · ·	. 10
ii. $S_n = 312$ 312 = - [2(0) + (n-1)]	+7		x+8
$312 = \frac{1}{2} [4n-4]$ $312 = 1n^{2} - 1n$		$\frac{4y}{4x} = 3x^{2} + 4x + 4$	4 ✓ (+),
$u = n^{2} - n - 156$ u = (n - 13)(n + 13)	=0	= -32< No real root	f.,- 44
n = 13 only (/ n>°) v	- No stationar	points
$\frac{10}{13} = 312$		$\begin{array}{rcl} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	(
b) Let $u = e^{-1}$ $u^{2} + 3u - 10 = 0$			612-4
$\frac{(u+5)(u-2)}{u=-5}$	 =	5 / Similarly cincar	
" ex=-5 / No sol N (c"7	$e^{ic} = 2 \rightarrow ic$	on required	1

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\begin{array}{ccc} & \varphi \beta & conf' d \\ & \chi & int \Rightarrow & \phi = (\pi + \lambda) (\pi^2 + 4) \\ & \chi & \gamma = 0 \\ & \chi & \gamma = 8 \\ & \chi & \gamma = 8 \\ & \chi & \gamma \\ & \chi & \gamma = 8 \\ & \chi & \gamma \\ & \chi & \gamma = 8 \\ & \chi & \gamma & \gamma = 8 \\ & \chi & \chi & \gamma & \gamma \\ & \chi & \chi & \chi & \gamma \\ & \chi & \chi & \chi & \chi \\ & \chi & \chi & \chi & \chi & \chi \\ & \chi & \chi & \chi & \chi & \chi \\ & \chi & \chi & \chi & \chi & \chi & \chi \\ & \chi & \chi & \chi & \chi & \chi & \chi \\ & \chi \\ & \chi \\ & \chi & $	thope intercepts		
		6/	

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
(Q14): $(1 - sin^{2} \Theta) = cos^{2} \Theta$		c) i. Loan repaid → A300 = 0 = 200000 (1.006) 300 - H (1+1.00	0, 11 = ? 6 + + 1.00 699
ii) $LHS = I = I = 0 (1 - SI)$ = $SI = 0 co$	n'6) stav	GP shu	C A 2 1 F= 1.00% N= 300
cost = sin O cos O		0 = 200000 (1.006) 300 - M	1.00(300-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
= RHS		$M\left[\frac{1.006^{300}-1}{0.006}\right] = 200000$	p (1.006) 300
$ii \cdot v = 44 - 25$		$M = \frac{200000 (1.006)^{300} \times 1.006}{1.006^{300} - 1}$	0.00(V
t=0, v= -25 m/	s /	= \$1439.18	
$\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & &$	+ 50 = 0 +- 10] = 0 (ur f = 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$= \frac{2}{1 \cdot 006 - 1}$
iv . v=0 → 4f-25 F= 6	=0 •25 /	$0 = 200000 (1.006)^{(0.006)} - 0 = 1200 (1.006)^{(0.006)} - 2800 (1.006)^{(0.006)} - 2800 (1.006)^{(0.006)}$	-2800 [1.00[-1] 06] + 2800
v. + 2.5 6.25 JC 0 -28 g	10	$\frac{1600(1.006)^{2}}{7} = 2800$ $\frac{7}{4} = \frac{7}{4} \sqrt{1.006}$	
: Distance = d	(28.125) 56.25) $n \ln(1.006) = lr$	7 PTO

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 3 2014

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Q14 $\operatorname{conf}^2 d$: c) ii. $n = \ln \left(\frac{7}{4}\right)$			
= 93.5488	 ✓ 		
: the loan will be repa 94 months	Lin		
,			

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Q16 confid :		$\therefore \frac{GC}{J} = \frac{1}{\sqrt{5}} \checkmark$	
c) i. $LAIB = 2C$,	$\widetilde{Q_{c}} = \frac{4}{\sqrt{5}}$	
LAPB = LQBC (alternale		ABLD is or	
or (anglos , no	<i>// [#]C</i> /	a square by similar	A'S ABP, BCG
~ L L A D L ~ ~ (0 °	Inglesom	of DAPB) (PROOF	
$\lambda F [Ab F + 10 = 180]$	and LA:	90° /	
$\therefore LABP = 90 - \pi$	ABCD is	a square	
$LOBC = 90^{\circ} - LABP \left(L \right)$	B= 90°)	iii. LOCB = 90 - 2 ("7!	c sum
= 10° - (10° - 20)		l i l a h	AGBC
$\therefore LABP = LQBC$	5 26	$\int \mathbf{L} \mathbf{U} \mathbf{C} \mathbf{D} = \mathbf{X} \left(\mathbf{L} \mathbf{C} \mathbf{C} \right)$	900
		$Qp^2 = QC^2 + cp^2 - 2(QC)(d$	o) and pe
$H \cdot PB = \sqrt{AP} + AB^{*}$	AP=1 A	$= \frac{16}{5} + 4 - 2\left(\frac{4}{\sqrt{5}}\right)\left(2\right)$	$\begin{pmatrix} \pm \\ \sqrt{5} \end{pmatrix} \sqrt{f_{inm}}$
= \sqrt{5}	d	$= \frac{16}{16} + 4 - \frac{16}{16}$	
$\sin y t = \frac{AB}{Y} = \frac{2}{\sqrt{5}} (1)$		$\begin{array}{c} 5 & 5 \\ = 4 \end{array}$	
$r_{W} = \frac{1}{2} \frac{1}$: 01 - 2	
1B V5		$\int GO = CO = 2$	
$h \Delta OBC, sinx = \frac{QC}{BC}$	$=\frac{1}{\sqrt{5}}$	(m ()	
······································		12/	

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 3 2014

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments	
Suggested Solution (s) Q15 and ^{2}L : iii. $f=0$, $Q=Q_{0} = 100$ $\frac{dQ}{dt} = -k Q_{0}$ $\frac{dQ}{dt} = -k Q_{0}$ = -(0.01506) = -1.5 mg/ N. $Q=50$, $Q_{0} = 100$, $50 = 100 e^{-kt}$ $e^{-kt} = \frac{1}{2}$ $-kt = \ln \frac{1}{4}$	Comments x 100 min H= P ·	Suggested Solution (s) $\frac{JC}{Y} = \frac{0.5}{(h \circ 5)^3} \frac{1}{(h \circ 5)^3} \frac{1}{(h$	Comments 5 + 0 + (k + 1) 39 + 2 4	3. 1-5]
$F = \frac{h_{\lambda}}{-\sigma \cdot \sigma 1506}$ $= 46 \text{ min}$	7012			

10/

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Q16 :		$v = \frac{1}{3}\pi r^2 h$	
a) y= loge (x-2)		$= \frac{1}{3}\pi r^{2} r^{2}$	
n-2 = et		$= \frac{1}{3} \pi \left(\frac{2}{3} - x^{-1} \right)^{2}$	trom ()
$n = e^{t} + 2$		$=\frac{1}{3}\pi \left(2_{9}x^{2}-x^{3}\right)$	
Area = $(7 \times l_{1} 5) - \int_{0}^{l_{1} 5} (e^{T} + 2)$	4 /	ii. $V = \frac{1}{3}\pi \left(2\eta n^2 - \eta n^2\right)$	
= 7 ln 5 - [e ^y + 2 j	7 ^{1~5}	$\frac{dV}{dy} = \frac{1}{3}\pi \left(4ayc - \pi\right)$ $= \frac{4\pi}{3}ayc - \pi$	3,12)
$= 7 \ln 5 - \left[\left(e^{\ln 5} \right) \right]$	+2/15)	$-\left(e^{\circ}t^{\circ}\right) = \sigma \text{ when } \frac{47}{3}$	4)L~TTSL=0
= 7 / 5 - 5 -	21-5 F	$1 \sqrt{\frac{i}{2}} \pi_{3} \left(\frac{4}{3}\right)$	-11)=0
$= (5 l_{n} 5 - 4) $	ifs ²)(= 0 0	$\frac{49}{3}$
h) x-q		$\frac{d^2 V}{dx^2} = \frac{4\pi q}{3} - \frac{4\pi q}{3}$	セアッレ
r r		: n= 44 only as su	70
$q^{L} = (n-q) + r^{L}$ $q^{L} = n^{2} - \lambda q n + q^{L}$	trl	$\frac{d^2v}{dv^2} = \frac{4\pi q}{3}$	$\left 2TT \left(\frac{4}{3} \right) \right _{1}$
$\therefore r^2 = \lambda_{a,1} - x^2$	10	$\frac{4\pi}{3}$	< <i>c</i> √
	1	1/ .: Conched a max	imum volum
		when x = <u>yTTa</u>	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Y12 Mathematics (HSC ASSESSMENT TASK 4: TRIAL HSC EXAMINATION) - Term 3 2014