

Knox Grammar School

2016

Name:

Teacher: \qquad

Year 12

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- The official BOSTES reference sheet is provided
- In questions 11 - 16 show relevant mathematical reasoning and/or calculations

Teachers:

Vuletich M.
Mulray I.
Ruff E.
Willcocks A.

Section I~Pages 1 - 5

- 10 marks
- Attempt Questions 1 - 10
- Allow about 15 minutes for this section
- Use the Multiple Choice Answer Sheet

Section II ~Pages 6 - 14

- 90 marks
- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section
- Answer each question in a separate writing book

Examiner: Ms Ruff

Write your Name, your Board of Studies Student Number and your Teacher's Name on the front cover of each answer booklet

This paper MUST NOT be removed from the examination room.
Number of Students in Course: 98

BLANK PAGE

Section I

10 marks
Attempt questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 - 10.

Question1

What is the value of r, correct to 3 significant figures, if $\frac{4}{3} \pi r^{3}=200$?
(A) 1.40
(B) 3.62
(C) 3.628
(D) 3.63

Question 2

The diagram shows the line l.

What is the slope of the line l ?
(A) $-\sqrt{3}$
(B) $-\frac{1}{\sqrt{3}}$
(C) $\frac{1}{\sqrt{3}}$
(D) $\sqrt{3}$

Question 3

What is the value of $\sum_{k=1}^{4}(-1)^{k} k^{2}$?
(A) $\quad-30$
(B) $\quad-10$
(C) 10
(D) 30

Question 4

Which of the following statements is true for the equation $1-4 x-5 x^{2}=0$?
(A) No real roots.
(B) One real root.
(C) Two real and rational roots.
(D) Two real and irrational roots.

Question 5

Evaluate $\lim _{h \rightarrow 4} \frac{4-h}{16-h^{2}}$.
(A) 0
(B) $\frac{1}{8}$
(C) $\frac{1}{4}$
(D) 4

Question 6

In the diagram $A E$ is parallel to $B D, A B=x \mathrm{~cm}, B C=3 x \mathrm{~cm}$ and $E C=24 \mathrm{~cm}$.

The length of $D C$ is:
(A) 6 cm
(B) 8 cm
(C) 12 cm
(D) 18 cm

Question 7

If $y=(x+1)^{3}(x-3)$ then $\frac{d y}{d x}$ is equal to:
(A) $\quad-2(x+1)^{2}(x+4)$
(B) $\quad 4(x+1)^{2}(x-2)$
(C) $\quad 2(x+1)^{2}(5-x)$
(D) $\quad 2(x+1)^{2}(x-1)$

Question 8

What is the value of $\int \frac{\sin x}{\cos x} d x$?
(A) $\sec ^{2} x+C$
(B) $\frac{1}{2} \tan ^{2} x+C$
(C) $\quad \log _{e} \cos x+C$
(D) $\quad \log _{e} \sec x+C$

Question 9

How many solutions of the equation $\cos 2 x(\tan x-1)=0$ lie in the domain $0 \leq x \leq \pi$?
(A) 2
(B) 3
(C) 4
(D) 5

Question 10

Which of the following correctly finds the shaded area in this diagram?

(A) $\int_{b}^{a} f(x) d x$
(B) $\int_{b}^{0} f(x) d x+\int_{0}^{a} f(x) d x$
(C) $\int_{b}^{0} f(x) d x-\int_{0}^{a} f(x) d x$
(D) $\quad \int_{0}^{a} f(x) d x-\int_{b}^{0} f(x) d x$

Section II

90 marks

Attempt questions 11-16
Allow about 2 hours 45 minutes for this section
Answer each question in a separate writing booklet. Extra writing booklets are available.
All necessary working should be shown in every question.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Factorise fully $8 x^{3}+27$.
(b) Write $\frac{\sqrt{7}}{\sqrt{7}+2}$ with a rational denominator.
(c) Find the coordinates of the focus for the parabola $y^{2}=-8 x+24$.
(d) Differentiate $\frac{\cos x}{x^{2}}$ with respect to x.
(e) \quad Differentiate $\left(e^{x}+x\right)^{5}$.
(f) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin \frac{x}{2} d x$.
(g) Find $\int \frac{1}{x^{2}} d x$.
(h) The diagram shows the graph $y=f(x)$.

What is the value of a, where $a>0$, so that $\int_{-a}^{a} f(x) d x=0$?

End of Question 11

(a) Find the equation of the normal to the curve $y=4 \sqrt{x}$ at the point $(9,12)$.
(b) The quadratic equation $5 x^{2}+3 x-10=0$ has the roots α and β. Find $\alpha^{2}+\beta^{2}$.
(c) In the diagram below the points $A(4,3), B(3,7), \mathrm{C}(6,5)$ and $\mathrm{D}(7,1)$ form a parallelogram, $A B C D$.

(i) Show that the equation of the line $A D$ is $2 x+3 y-17=0$.
(ii) Find the exact length of BC.
(iii) Find the perpendicular distance from C to the line $A D$.
(iv) Hence, or otherwise, find the area of parallelogram $A B C D$.
(d) Use Simpson's rule with three function values to find an approximation for $\int_{2}^{6} \frac{x}{\ln x} d x, \quad \mathbf{2}$ giving your answer correct to 1 decimal place.

Question 12 (continued)
(e) The diagram below shows the curves $y=3 \cos x$ and $y=\sin 2 x$.

Find the area between the curves $y=3 \cos x$ and $y=\sin 2 x$ in the domain $0 \leq x \leq \pi$.

End of Question 12
(a) (i) Find the domain and range of the function $f(x)=\sqrt{9-x^{2}}$.
(ii) On a number plane, shade the region where the points (x, y) satisfy both of

2

2 the inequalities $y \leq \sqrt{9-x^{2}}$ and $y \geq x$.
(b) Initially there are 1200 individuals in a population. After t years the number of individuals in the population is given by $N(t)=1200 e^{k t}$ for some constant $k>0$. After 18 years there are 3000 individuals in the population.
(i) Show that $k=0.0509$ correct to 4 decimal places.
(ii) Find the number of years required for the number of individuals to increase from 1200 to 2400. Give your answer correct to the nearest year.
(c) The derivative of a function $f(x)$ is $f^{\prime}(x)=8 x+3$. The line $y=4-5 x$ is a tangent to the graph of $f(x)$.

Find the function $f(x)$.
(d) The diagram below shows the curve $y=\frac{1}{x+2}$ for $x>-2$.

(i) Show that $x^{2}=\frac{1}{y^{2}}-\frac{4}{y}+4$.
(ii) Calculate the exact volume of the solid of revolution formed when the shaded region bounded by the y-axis, the line $y=2$ and the curve is rotated about the y-axis.

End of Question 13

(a) Consider the function $f(x)=x^{3}+6 x^{2}-135 x$.
(i) Find the coordinates of the stationary points of the curve $y=f(x)$ and determine their nature.
(ii) Show that there is a point of inflexion at $x=-2$.
(iii) Sketch the graph of $y=f(x)$ showing all important features.
(b) The rate (R) at which greenhouse gases are released into the atmosphere from a town in tonnes/hour is given by $R=20+\frac{100}{(1+2 t)^{2}}$, where t is in hours.
(i) At what rate are the greenhouse gases released initially?
(ii) What is the rate at which greenhouse gases are released as time increases indefinitely?
(iii) Without using calculus, sketch a graph of R as a function of time.
(iv) How much gas was released into the atmosphere in the first 2 hours?
(c) The velocity, \dot{x}, in m / s of a particle moving in a straight line is given by:

$$
\dot{x}=3-\frac{9}{t-2} \text { for } t>2
$$

where t is the time in seconds.
(i) In which direction is the particle travelling when $t=3$?
(ii) Find the time when the particle changes direction.
(iii) Hence, or otherwise, find the distance travelled by the particle between $t=3$ and $t=7$. Give your answer correct to 2 decimal places.

End of Question 14

(a) (i) Sketch the graph $y=|2 x-3|$.
(ii) Using the graph from part (i) or otherwise, find the values of m for which the equation $|2 x-3|=m x+1$ has exactly 1 solution.
(b) In the diagram $B E$ is parallel to $C D, A B=4, C D=13.5, B E=x, C E=y$ and $\angle B A E=\angle E B C=\angle C E D$.

(i) Prove that $\triangle C E D \| \triangle \mathrm{BAE}$. 2
(ii) Prove that $\triangle C E B\|\| \mathrm{EBA}$.
(iii) Using parts (i) and (ii) show that $4, x, y, 13.5$ are the first 4 terms of a geometric series.
(iv) Hence find the values of x and y.

Question 15 (continued)
(c) Wilfred borrows $\$ 500000$ in order to purchase a unit. Reducible interest is charged at 4.8% per annum, calculated monthly. At the end of the first month Wilfred makes a loan repayment of $\$ M$. At the end of each subsequent month Wilfred makes a loan repayment that is 1% more than the previous repayment.
(i) Show that Wilfred's balance at the end of the second month is:

$$
A_{2}=500000 \times 1.004^{2}-M(1.004+1.01)
$$

(ii) Given $A_{4}=500000 \times 1.004^{4}-M\left(1.004^{3}+1.004^{2}(1.01)+1.004(1.01)^{2}+1.01^{3}\right)$, write an expression for the amount owing at the end of 5 years.
(iii) What will Wilfred's initial repayment, $\$ M$, need to be in order for the balance 3 of his loan to be $\$ 400000$ at the end of 5 years?

End of Question 15

(a) A cable link is to be constructed between two points L and N, which are situated on opposite banks of a river of width 1 km . L lies 3 km upstream from N. It costs three times as much to lay a length of cable underwater as it does to lay the same length overland. The following diagram is a sketch of the cables where θ is the angle $N M$ makes with the direct route across the river.

Not to scale
(i) Show $M N=\sec \theta$ and $M T=\tan \theta$.
(ii) If segment LM costs c dollars per km , show the total cost (T) of laying the cable from L to M to N is given by:

$$
T=3 c-c \tan \theta+3 c \sec \theta
$$

(iii) At what angle, θ, should the cable cross the river in order to minimise the total cost of laying the cable?
(b)

In the diagram above, the vertices on the top face of a cube are A, B, C and D and the corresponding vertices on the bottom face of the cube are E, F, G and H.

A robotic device travels along the edges of this cube always starting at A and never repeating an edge. This defines a trail of edges. For example, $A B F E$ and $A B C D A E$ are trails, but $A B C B$ is not a trail. The number of edges is called its length.

At each vertex, the robotic device must proceed along one of the edges that has not yet been traced, if there is one. If there is a choice of untraced edges, the following probabilities for taking each of them apply:
I. If only one edge at a vertex has been traced and that edge is vertical, then the probability of the robot taking each horizontal edge is $\frac{1}{2}$.
II. If only one edge at a vertex has been traced and that edge is horizontal, then the probability of the robot taking the vertical edge is $\frac{2}{3}$ and the probability of the robot taking the horizontal edge is $\frac{1}{3}$.
III. If no edge at a vertex has been traced, then the probability of the robot taking the vertical edge is $\frac{2}{3}$ and the probability of the robot taking either of the horizontal edges is $\frac{1}{6}$.
(i) Given the robot starts from A, what is the probability it moves to B ?
(ii) Show that the probability of the robot taking the trail $A B C G$ is $\frac{1}{27}$.
(iii) List the six trails of length 3 from A to G.
(iv) Determine the probability that the robot will trace a trail of length 3 from A to G.
(v) Two robots attempt to travel on the cube at the same time and pace. Robot Alpha starts at A and robot Beta starts at G. Unfortunately, if they both want to use the same edge at the same time, then they crash and they cannot continue their trail. They cannot crash on the first edge of their trails.

What is the probability of them not crashing on the second edge of their trails?

End of paper

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question $\text { 2. } \begin{aligned} m & =\tan \alpha \\ m & =\tan 120 \\ & =-\sqrt{3} \end{aligned}$ $\stackrel{A}{=}$ 3. $(-1)^{k} k^{2}$ $\begin{aligned} & -1 \times 1^{2}+(-1)^{2} \times 2^{2}+(-1)^{3} \times 3^{2}+(\\ = & -1+4-9+16 \\ = & 10 \end{aligned}$ $\stackrel{C}{C}$ 4. $\begin{aligned} & 1-4 x-5 x^{2} & =0 \\ a=-5 & \Delta & =(-4)^{2}-4(-5)(1) \\ b=-4 & & =16+20 \\ c=1 & & =36 \end{aligned}$ $\therefore 2$ real,rational roots \cong $\text { 5. } \begin{align*} & \lim _{h \rightarrow 4} \frac{4-h}{16-h^{2}} \\ = & \lim _{h \rightarrow 4} \frac{4-h}{(4-h)(4+h)} \\ = & \lim _{h \rightarrow 4} \frac{1}{4+h} \\ = & \frac{1}{8} \end{align*}$ 6. $A B: B C=E D: D C$ $\begin{aligned} 1: 3 & =E D: D C \\ D C & =\frac{3}{4} \times 24 \\ & =18 \end{aligned}$	1) ${ }^{4} \times 4^{2}$	$\text { 7. } \quad \begin{aligned} & =(x+1)^{3}(x-3) \\ u & =(x+1)^{3} \quad v=x-3 \\ u^{\prime} & =3(x+1)^{2} \quad v^{\prime}=1 \\ \frac{d y}{d x} & =3(x-3)(x+1)^{2}+(x+1)^{3} \\ & =(x+1)^{2}[3(x-3)+x+1] \\ & =(x+1)^{2}(3 x-9+x+1) \\ & =(x+1)^{2}(4 x-8) \\ & =4(x+1)^{2}(x-2) \end{aligned}$ 8. $\begin{aligned} & \int \frac{\sin x}{\cos x} d x \\ = & -\int \frac{-\sin x}{\cos x} d x \\ = & -\ln (\cos x)+c \\ = & \ln \frac{1}{\cos x}+c \\ = & \ln (\sec x)+c \end{aligned}$ D 9. $\cos 2 x(\tan x-1)=0 \quad 0 \leqslant x \leqslant \pi$ $\tan x=1$ $x=\frac{\pi}{4}$ solution already accounted for A 10. $\int_{b}^{0} f(x) d x-\int_{0}^{a} f(x) d x$	

Suggested Solution (s) ${ }^{\text {a }}$ Comments	Suggested Solution (s)	Comments
Question 11 a) $8 x^{3}+27=(2 x+3)\left(4 x^{2}-6 x+9\right) \sqrt{ }$ b) $\frac{\sqrt{7}}{\sqrt{7}+2} \times \frac{\sqrt{7}-2}{\sqrt{7}-2} \int \underset{\text { correct confingite }}{ }$ mave by $=\frac{7-2 \sqrt{7}}{7-4}$ correct conpugate $=\frac{7-2 \sqrt{7}}{3} \sqrt{ } 1$ mare conectanoprer c) $\begin{gathered} y^{2}=-8 x+24 \\ y^{2}=-8(x-3) \\ a=2 \end{gathered}$ 1 mark rewrifing equation vertex $(3,0)$ or determining setex focus $(1,0)$ $\begin{aligned} & \text { d) } \begin{aligned} \frac{\cos x}{x^{2}} \quad u=\cos x \quad & v=x^{2} \\ u^{\prime} & =-\sin x \quad v^{\prime}=2 x \end{aligned} \\ & \frac{d}{d x}\left(\frac{\cos x}{x^{2}}\right)=\frac{-x^{2} \sin x-2 x \cos x}{x^{4}} \quad \text { do not need } \\ &=\frac{-x \sin x-2 \cos x}{x^{3}} \quad \text { to } \end{aligned} \quad \text { for full marks } \text { sify }$ e) $\frac{d}{d x}\left(e^{x}+x\right)^{5}=5\left(e^{x}+x\right)^{4}\left(e^{x}+1\right)$ / mank $=5\left(e^{x}+1\right)\left(e^{x}+x\right)^{4}$ attermpting to use the chain rule 2 marks correct answer.	$\begin{aligned} \int_{0}^{\pi / 2} \sin \left(\frac{x}{2}\right) d x & =\left[-2 \cos \frac{x}{2}\right]_{0}^{\pi / 2} \\ & =-2 \cos \frac{\pi}{4}--2 \cos 0 \\ & =-2 \times \frac{1}{\sqrt{2}}+2 \times 1 \\ & \left.=2-\frac{2}{\sqrt{2}}\right\} \\ & =2-\sqrt{2} \end{aligned}$ f) g) $\begin{aligned} \int \frac{1}{x^{2}} d x & =\int x^{-2} d x \\ & =-x^{-1}+c^{\prime} \\ & \left.=-\frac{1}{x}+c\right\} \begin{array}{l} V_{\text {Must }} \\ \text { c }+c^{\prime} \end{array} \end{aligned}$ mar be a h) $\begin{aligned} & 3 \div 2=1.5 \\ & 3+1.5=4.5 \\ & a=4.5 \end{aligned}$	have for $2^{\text {nd }}$ $<$ to warded.

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 12 $\begin{aligned} \text { a) } y & =4 \sqrt{x} \quad(9,12) \\ y & =4 x^{1 / 2} \\ \frac{d y}{d x} & =2 x^{-1 / 2} \\ & =\frac{2}{\sqrt{x}} \end{aligned}$ when $x=9$ $\frac{d y}{d x}=\frac{2}{\sqrt{9}}$ $=\frac{2}{3} \quad \therefore \text { gradient of tangent }$ $\text { at }(9,12) \text { is } \frac{2}{3}$ gradient of normal is $-\frac{3}{2}$ equation of normal: $\begin{aligned} & y-12=-\frac{3}{2}(x-9) \\ & 2 y-24=-3 x+27 \\ & 3 x+2 y-51=0 \quad O R y=-\frac{3}{2} x+\frac{51}{2} \end{aligned}$ b) $\begin{aligned} & 5 x^{2}+3 x-10=0 \\ & a=5, b=3, c=-10 \\ & \alpha+\beta=-\frac{3}{5} \\ & \alpha \beta=\frac{-10}{5}=-2 \\ & \begin{aligned} \alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\ & =\left(-\frac{3}{5}\right)^{2}-2 \times(-2) \\ & =\frac{9}{25}+4 \\ & =\frac{109}{25}=4.36 \end{aligned} \end{aligned}$ $\text { (i) } \left.\left.\begin{array}{rl} m_{A D} & =\frac{1-3}{7-4} \\ & =-\frac{2}{3} \\ y-1 & =-\frac{2}{3}(x-7) \\ 3 y-3 & =-2 x+14 \end{array}\right\} \begin{array}{l} \text { Adeguate } \\ \text { working must } \\ \text { be shawn } \end{array}\right\}$		ii) $\begin{aligned} d_{B C} & =\sqrt{(6-3)^{2}+(5-7)^{2}} \\ & =\sqrt{9+4} \\ & =\sqrt{13} \end{aligned}$ $\text { iii) } \begin{aligned} d_{\perp} & =\frac{\|2 \times 6+3 \times 5-17\|}{\sqrt{2^{2}+3^{2}}} \\ & =\frac{\|12+15-17\|}{\sqrt{13}} \\ & =\frac{10}{\sqrt{13}} \end{aligned}$ iv) $\begin{aligned} A & =\frac{10}{\sqrt{13}} \times \sqrt{13} \\ & =10 \text { units }^{2} \end{aligned}$ d) $\int_{2}^{6} \frac{x}{\ln x} d x$ $\begin{aligned} \int_{2}^{6} \frac{x}{\ln x} d x & \doteqdot \frac{2}{3}\left(\frac{2}{\ln 2}+4 \times \frac{4}{m 4}+\frac{6}{\ln b}\right. \\ & =11.85040 \ldots \\ & =11.9(1 d p) \text { no pend } \end{aligned}$	Hy for rounding

Suggested Solution (s) Comments $^{\text {a }}$	Suggested Solution (s) ${ }^{\text {a }}$ Comments
Question 12 e) $\begin{aligned} A & =2 x \int_{0}^{\pi / 2}(3 \cos x-\sin 2 x) d x \\ & =2\left[3 \sin x+\frac{1}{2} \cos 2 x\right]_{0}^{\pi / 2} \\ & =2\left[\left(3 \sin \pi / 2+\frac{1}{2} \cos \pi\right)-\left(3 \sin 0+\frac{1}{2} \operatorname{cps} 0\right)\right. \\ & =2\left(\frac{5}{2}-\frac{1}{2}\right) \end{aligned}$ $=4 \text { units }^{2}$ Atternate solution: $\begin{aligned} A= & \int_{0}^{\pi / 2}(3 \cos x-\sin 2 x) d x+\int_{\pi / 2}^{\pi}(\sin 2 x-3 \cos x) d x \\ = & {\left[3 \sin x+\frac{1}{2} \cos 2 x\right]_{0}^{\pi / 2}+\left[-\frac{1}{2} \cos 2 x-3 \sin 2 x\right]_{T / 2}^{\pi} } \\ = & {\left[\left(3 \sin \pi / 2+\frac{1}{2} \cos \pi\right)-\left(3 \sin \theta+\frac{1}{2} \cos 0\right)\right] } \\ & +\left[\left(-\frac{1}{2} \cos 2 \pi-3 \sin \pi\right)-\left(-\frac{1}{2} \cos \pi-3 \sin \pi / 2\right)\right] \\ = & {\left[\left(3 \times 1+\frac{1}{2} \times(-1)\right)-\left(3 \times 0+\frac{1}{2} \times 1\right)\right]+\left[\left(-\frac{1}{2} \times 1-3 \times p\right)-\left(-\frac{1}{2} \times(-1)-3 \times 0\right]\right.} \\ = & \frac{5}{2}-\frac{1}{2}-\frac{1}{2}+\frac{5}{2} \\ = & \text { uncts }^{2} \end{aligned}$ Question 13 ai) $f(x)=\sqrt{9-x^{2}}$ domain: $-3 \leqslant x \leqslant 3$ range: $0 \leqslant y \leqslant 3$ ii) 1 mapk fer correct swetch of functions	b) $\begin{aligned} & N(t)=1200 e^{k t} \quad k>0 \\ & N(18)=3000 \\ & N(0)=1200 \end{aligned}$ i) $\begin{aligned} 3000 & =1200 e^{18 k} \\ \frac{3000}{1200} & =e^{18 k} \\ \frac{5}{2} & =e^{18 k} \end{aligned}$ Adequate $\ln \left(\frac{5}{2}\right)=\ln e^{18 k}$ steps of warking must be $\ln \left(\frac{5}{2}\right)=18 k$ shown. $k=\frac{\ln \left(\frac{5}{2}\right)}{18}$ $=0.0509050$ $\therefore k=0.0509(4 d p)$ i) $\begin{gathered} 2400=1200 e^{0.0509 t} \\ 2=e^{0.0509 t} \\ \ln 2=\ln e^{0.0509 t} \\ 0.0509 t=\ln 2 \\ t=\frac{\ln 2}{0.0509} \\ t=13.6178 \ldots \end{gathered}$ $\therefore 14$ years are required for the number of individuals to increase from 1200 to 1400 (correct to the nearest yeal)

Suggested Solution (s)	Comments	Suggested So	Comments
Question 14aiii) $y=x^{3}+6 x^{2}-135 x$ $=x(x+15)(x-9)$ x intercepts at $0,-15,9$ Also accept 14b) $R=20+\frac{100}{(1+2 t)^{2}}$ i) $\begin{aligned} R & =20+\frac{100}{(1+2 \times 0)^{2}} \\ & =20+\frac{100}{1} \\ & =120 \end{aligned}$ initially released at 120 tonnes/hour ii) Ast $\rightarrow \infty$ $R \rightarrow 20+0$ 20 tonnes/hour 120	1 mark for correct shape 1 mank for correct labelling x interepts not required for full mank. ont must go through origin have upto te and tercept lled/manled the mane	$\text { iv) } \begin{aligned} & \int_{0}^{2}\left(20+\frac{100}{(1+2 t)^{2}}\right) d t \\ = & \int_{0}^{2}\left(20+100(1+2 t)^{-2}\right) d t \\ = & {\left[20 t+\frac{100(1+2 t)^{-1}}{2 \times(-1)}\right]_{0}^{2} } \\ = & {\left[20 t-\frac{50}{1+2 t}\right]_{0}^{2} } \\ = & \left(20 \times 2-\frac{50}{5}\right)-\left(20 \times 0-\frac{50}{1}\right) \\ = & 30+50 \end{aligned}$ $=80$ tonnes C) $\dot{x}=3-\frac{9}{t-2}$ i) $t=3$ $\begin{aligned} \dot{x} & =3-\frac{9}{3-2} \\ & =-6 \end{aligned}$ \therefore particle moving to the left (or particle moving in the negatu $\begin{aligned} & \text { ii) } 6 t \dot{x}=0 \\ & 0=3-\frac{9}{t-2} \\ & \frac{9}{t-2}=3 \\ & 9=3 t-6 \\ & 15=3 t \\ & t=5 \end{aligned}$ \therefore particle changes direction at $t=5$ second $\text { iii) } \begin{aligned} & \operatorname{distan} 6=\left\|\int_{3}^{5} 3-\frac{9}{t-2} d t\right\|+\int_{5}^{7} 3 \\ &=\left\|[3 t-9 \ln (t-2)]_{3}^{5}\right\|+[3 t-9 \ln (t-2)] \\ &=\|(15-9 \ln 3)-(9-9 \ln 1)\|+[(21-9 \ln 5 \\ &=\|6-9 \ln 3\|+6-9 \ln 5+9 \ln 3 \end{aligned}$	drectran) $\begin{aligned} & \frac{9}{t-2} d t \\ & V \\ & (15-9 \ln 3)] \end{aligned}$
	aword	$=5.29(2 d p)$	

$=\frac{x}{4}=\frac{y}{x}=\frac{13.5}{y} \Rightarrow \frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\frac{T_{4}}{T_{3}}$
$\therefore 4, x, y, 13.5$ are 4 terms in geometric sene

$\theta=0.3398 \ldots$ radians
(19.47122°)

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 16 bi) $\frac{1}{6}$ $\left.\begin{array}{l}\text { ii) } A B \rightarrow \frac{1}{6} \\ \text { then } B C \rightarrow \frac{1}{3} \\ \text { then } C G \rightarrow \frac{2}{3}\end{array}\right\}$ $\begin{aligned} P(A B C G) & =\frac{1}{6} \times \frac{1}{3} \times \frac{2}{3} \\ & =\frac{1}{27} \end{aligned}$ iii) $\left.\begin{array}{rl} & A B C G \\ & A B F G \\ A D C G \\ & A D A G \\ A E H G \\ A E F G\end{array}\right\} b$ trails $\begin{array}{rlrl} \text { iv) } \begin{aligned} A B C G & =\frac{1}{27} \end{aligned} & H H V \\ A B F G & =\frac{1}{6} \times \frac{2}{3} \times \frac{1}{2} & H V H \\ & =\frac{1}{18} & \\ A D C G & =\frac{1}{27} & H H V \\ A D H G & =\frac{1}{18} & H V H \\ A E H G & =\frac{2}{3} \times \frac{1}{2} \times \frac{1}{3} & \text { VHH } \\ & =\frac{1}{9} \\ \begin{array}{rlrl} \text { AEFG } & =\frac{1}{9} & V H H \\ P(\text { length } 3 & A+0 G) & =\frac{1}{27}+\frac{1}{18}+\frac{1}{27}+\frac{1}{18}+\frac{1}{9} \\ & =\frac{2}{27}+\frac{2}{18}+\frac{2}{9} \end{array} \end{array}$		v) They can only crash on the second edge of their trails and so the second and third letters of a trail need to be the same but reverse order for a crash to occur. $\begin{array}{\|l\|l\|} A E H=\frac{1}{6} \times \frac{2}{3}=\frac{1}{9} & G H E=\frac{1}{6} \times \frac{2}{3}=\frac{1}{9} \\ A D C=\frac{1}{6} \times \frac{1}{3}=\frac{1}{18} & G C D=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3} \\ A B F=\frac{1}{6} \times \frac{2}{3}=\frac{1}{9} & G F B=\frac{1}{6} \times \frac{2}{3}=\frac{1}{9} \\ A B C=\frac{1}{6} \times \frac{1}{3}=\frac{1}{18} & G C B=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3} \\ A E H=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3} & G H E=\frac{1}{6} \times \frac{1}{3}=\frac{1}{18} \\ A E F=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3} & G F E=\frac{1}{6} \times \frac{1}{3}=\frac{1}{18} \end{array}$ P (crashing on second edge) $\begin{aligned} & =\frac{1}{9} \times \frac{1}{9}+\frac{1}{18} \times \frac{1}{3}+\frac{1}{9} \times \frac{1}{9} \\ & \quad+\frac{1}{18} \times \frac{1}{3}+\frac{1}{3} \times \frac{1}{18}+\frac{1}{3} \times \frac{1}{18} \\ & =\frac{1}{81} \times 2+\frac{1}{54} \times 4 \\ & = \\ & \frac{8}{81} \end{aligned}$ P not crashing on second 1 $\begin{aligned} & =1-\frac{8}{81} \\ & =\frac{73}{81} \end{aligned}$	\checkmark g)

