

Knox Grammar School 2016 TRIAL HSC Examination

Name: _____

Teacher: _____

Year 12 Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- The official BOSTES reference sheet is provided
- In questions 11 16 show relevant mathematical reasoning and/or calculations

Teachers:

Vuletich M. Mulray I. Ruff E. Willcocks A. Section I ~ Pages 1 – 5

- 10 marks
- Attempt Questions 1 10
- Allow about 15 minutes for this section
- Use the Multiple Choice Answer Sheet

Section II ~ Pages 6 – 14

- 90 marks
- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section
- Answer each question in a separate writing book

Examiner: Ms Ruff

Write your Name, your Board of Studies Student Number and your Teacher's Name on the front cover of each answer booklet

This paper MUST NOT be removed from the examination room. Number of Students in Course: 98 **BLANK PAGE**

Section I

10 marks Attempt questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

Question1

What is the value of r, correct to 3 significant figures, if $\frac{4}{3}\pi r^3 = 200$?

- (A) 1.40
- (B) 3.62
- (C) 3.628
- (D) 3.63

Question 2

The diagram shows the line l.

What is the slope of the line *l*?

(A) $-\sqrt{3}$

(B)
$$-\frac{1}{\sqrt{3}}$$

(C)
$$\frac{1}{\sqrt{3}}$$

(D)
$$\sqrt{3}$$

(D) 30

Question 4

Which of the following statements is true for the equation $1-4x-5x^2=0$?

- No real roots. (A)
- (B) One real root.
- (C) Two real and rational roots.
- (D) Two real and irrational roots.

Question 5

Questi	on 5
Evalua	te $\lim_{h \to 4} \frac{4-h}{16-h^2}.$
(A)	0
(B)	$\frac{1}{8}$
(C)	$\frac{1}{4}$
(D)	4

In the diagram AE is parallel to BD, AB = x cm, BC = 3x cm and EC = 24 cm.

The length of *DC* is:

- (A) 6 cm
- (B) 8 cm
- (C) 12 cm
- (D) 18 cm

Question 7

If
$$y = (x+1)^3(x-3)$$
 then $\frac{dy}{dx}$ is equal to:

- (A) $-2(x+1)^2(x+4)$
- (B) $4(x+1)^2(x-2)$
- (C) $2(x+1)^2(5-x)$
- (D) $2(x+1)^2(x-1)$

What is the value of $\int \frac{\sin x}{\cos x} dx ?$ (A) $\sec^2 x + C$ (B) $\frac{1}{2} \tan^2 x + C$ (C) $\log_e \cos x + C$ (D) $\log_e \sec x + C$

Question 9

How many solutions of the equation $\cos 2x(\tan x - 1) = 0$ lie in the domain $0 \le x \le \pi$?

(A) 2

(B) 3

(C) 4

(D) 5

Which of the following correctly finds the shaded area in this diagram?

(A)
$$\int_{b}^{a} f(x)dx$$

(B)
$$\int_{b}^{0} f(x)dx + \int_{0}^{a} f(x)dx$$

(C)
$$\int_{b}^{0} f(x)dx - \int_{0}^{a} f(x)dx$$

(D)
$$\int_0^a f(x)dx - \int_b^0 f(x)dx$$

End of Section I

Section II

90 marks Attempt questions 11 – 16 Allow about 2 hours 45 minutes for this section Answer each question in a separate writing booklet. Extra writing booklets are available. All necessary working should be shown in every question.

Que	stion 11 (15 marks) Use a SEPARATE writing booklet.	Marks
(a)	Factorise fully $8x^3 + 27$.	1
(b)	Write $\frac{\sqrt{7}}{\sqrt{7}+2}$ with a rational denominator.	2
(c)	Find the coordinates of the focus for the parabola $y^2 = -8x + 24$.	2
(d)	Differentiate $\frac{\cos x}{x^2}$ with respect to x.	2
(e)	Differentiate $(e^x + x)^5$.	2
(f)	Evaluate $\int_0^{\frac{\pi}{2}} \sin \frac{x}{2} dx$.	3
(g)	Find $\int \frac{1}{x^2} dx$.	2
(h)	The diagram shows the graph $y = f(x)$.	1
	What is the value of <i>a</i> , where $a > 0$, so that $\int_{a}^{y} f(x) dx = 0$?	

Question 12 (15 marks) Use a SEPARATE Writing Booklet.

(a) Find the equation of the normal to the curve $y = 4\sqrt{x}$ at the point (9, 12). 3

(b) The quadratic equation $5x^2 + 3x - 10 = 0$ has the roots α and β . Find $\alpha^2 + \beta^2$. 2

(c) In the diagram below the points A(4,3), B(3,7), C(6,5) and D(7,1) form a parallelogram, *ABCD*.

(i) Show that the equation of the line AD is $2x+3y-17=0$.	1
(ii) Find the exact length of BC.	1
(iii) Find the perpendicular distance from C to the line AD .	2

- (iv) Hence, or otherwise, find the area of parallelogram *ABCD*. 1
- (d) Use Simpson's rule with three function values to find an approximation for $\int_{2}^{6} \frac{x}{\ln x} dx$, 2 giving your answer correct to 1 decimal place.

Question 12 continues on next page

Marks

(e)

The diagram below shows the curves $y = 3\cos x$ and $y = \sin 2x$.

Find the area between the curves $y = 3\cos x$ and $y = \sin 2x$ in the domain $0 \le x \le \pi$.

Question 13 (15 marks) Use a SEPARATE Writing Booklet.

(a)	(i) Find the domain and range of the function $f(x) = \sqrt{9 - x^2}$.	2
	(ii) On a number plane, shade the region where the points (x, y) satisfy both of the inequalities $y \le \sqrt{9-x^2}$ and $y \ge x$.	2
(b)	Initially there are 1200 individuals in a population. After <i>t</i> years the number of individuals in the population is given by $N(t) = 1200e^{kt}$ for some constant $k > 0$. After 18 years there are 3000 individuals in the population.	
	(i) Show that $k = 0.0509$ correct to 4 decimal places.	2
	 (ii) Find the number of years required for the number of individuals to increase from 1200 to 2400. Give your answer correct to the nearest year. 	2
(c)	The derivative of a function $f(x)$ is $f'(x) = 8x + 3$. The line $y = 4 - 5x$ is a	3

Find the function f(x).

tangent to the graph of f(x).

(d) The diagram below shows the curve $y = \frac{1}{x+2}$ for x > -2. $y = \frac{1}{x+2}$ $y = \frac{1}{x+2}$ $y = \frac{1}{x+2}$

(i) Show that
$$x^2 = \frac{1}{y^2} - \frac{4}{y} + 4$$
. 1

(ii) Calculate the exact volume of the solid of revolution formed when the shaded region bounded by the *y*-axis, the line y = 2 and the curve is rotated about the *y*-axis. 3

End of Question 13

Marks

Question 14 (15 marks) Use a SEPARATE Writing Booklet.		Marks	
(a)	Con (i)	nsider the function $f(x) = x^3 + 6x^2 - 135x$. Find the coordinates of the stationary points of the curve $y = f(x)$ and determine their nature.	3
	(ii)	Show that there is a point of inflexion at $x = -2$.	1
	(iii)	Sketch the graph of $y = f(x)$ showing all important features.	2
(b)	The tow	e rate (<i>R</i>) at which greenhouse gases are released into the atmosphere from a on in tonnes/hour is given by $R = 20 + \frac{100}{(1+2t)^2}$, where <i>t</i> is in hours.	
	(i)	At what rate are the greenhouse gases released initially?	1
	(ii)	What is the rate at which greenhouse gases are released as time increases indefinitely?	1
	(iii)	Without using calculus, sketch a graph of R as a function of time.	1
	(iv)	How much gas was released into the atmosphere in the first 2 hours?	2
(c)	The	e velocity, \dot{x} , in m/s of a particle moving in a straight line is given by:	

$$\dot{x} = 3 - \frac{9}{t-2}$$
 for $t > 2$,

where t is the time in seconds.

(i) In whi	ich direction is the particle travelling when $t = 3$?	1
(ii) Find the	he time when the particle changes direction.	1
(iii) Hence and t	e, or otherwise, find the distance travelled by the particle between $t=3$ =7. Give your answer correct to 2 decimal places.	2

Question 15 (15 marks) Use a SEPARATE Writing Booklet.

- (i) Sketch the graph y = |2x-3|. 1 (a)
 - (ii) Using the graph from part (i) or otherwise, find the values of *m* for which the 2 equation |2x-3| = mx+1 has exactly 1 solution.
- In the diagram *BE* is parallel to *CD*, AB = 4, CD = 13.5, BE = x, CE = y and (b) $\angle BAE = \angle EBC = \angle CED$.

(i) Prove that $\triangle CED \parallel \triangle BAE$.	2
(ii) Prove that $\triangle CEB \parallel \mid \triangle EBA$.	2
(iii) Using parts (i) and (ii) show that 4, <i>x</i> , <i>y</i> , 13.5 are the first 4 terms of a geometric series.	1
(iv) Hence find the values of x and y.	2

Question 15 continues on next page.

Marks

Question 15 (continued)

- Wilfred borrows \$500 000 in order to purchase a unit. Reducible interest is charged at 4.8% per annum, calculated monthly. At the end of the first month Wilfred makes a loan repayment of \$*M*. At the end of each subsequent month Wilfred makes a loan repayment that is 1% more than the previous repayment.
 - (i) Show that Wilfred's balance at the end of the second month is:

$$A_2 = 500000 \times 1.004^2 - M(1.004 + 1.01)$$

(ii) Given $A_4 = 500000 \times 1.004^4 - M(1.004^3 + 1.004^2(1.01) + 1.004(1.01)^2 + 1.01^3)$, **1** write an expression for the amount owing at the end of 5 years.

1

(iii) What will Wilfred's initial repayment, \$*M*, need to be in order for the balance **3** of his loan to be \$400 000 at the end of 5 years?

Question 16 (15 marks) Use a SEPARATE Writing Booklet.

(a) A cable link is to be constructed between two points *L* and *N*, which are situated on opposite banks of a river of width 1 km. *L* lies 3 km upstream from *N*. It costs three times as much to lay a length of cable underwater as it does to lay the same length overland. The following diagram is a sketch of the cables where θ is the angle *NM* makes with the direct route across the river.

- (i) Show $MN = \sec \theta$ and $MT = \tan \theta$.
- (ii) If segment LM costs *c* dollars per km, show the total cost (*T*) of laying the cable from *L* to *M* to *N* is given by:

$$T = 3c - c\tan\theta + 3c\sec\theta.$$

(iii) At what angle, θ , should the cable cross the river in order to minimise the total cost of laying the cable? 3

Question 16 continues on next page

1

In the diagram above, the vertices on the top face of a cube are *A*, *B*, *C* and *D* and the corresponding vertices on the bottom face of the cube are *E*, *F*, *G* and *H*.

A robotic device travels along the edges of this cube always starting at A and **never** repeating an edge. This defines a *trail* of edges. For example, *ABFE* and *ABCDAE* are trails, but *ABCB* is not a trail. The number of edges is called its *length*.

At each vertex, the robotic device must proceed along one of the edges that has not yet been traced, if there is one. If there is a choice of untraced edges, the following probabilities for taking each of them apply:

- I. If only one edge at a vertex has been traced and that edge is vertical, then the probability of the robot taking each horizontal edge is $\frac{1}{2}$.
- **II.** If only one edge at a vertex has been traced and that edge is horizontal, then the probability of the robot taking the vertical edge is $\frac{2}{3}$ and the probability of

the robot taking the horizontal edge is $\frac{1}{3}$.

III. If no edge at a vertex has been traced, then the probability of the robot taking the vertical edge is $\frac{2}{3}$ and the probability of the robot taking either of the horizontal edges is $\frac{1}{6}$.

(i)	Given the robot starts from A , what is the probability it moves to B ?	1
(ii)	Show that the probability of the robot taking the trail <i>ABCG</i> is $\frac{1}{27}$.	2
(iii)	List the six trails of length 3 from A to G.	1

2

- (iv) Determine the probability that the robot will trace a trail of length 3 from A to G.
- (v) Two robots attempt to travel on the cube at the same time and pace. Robot Alpha starts at *A* and robot Beta starts at *G*. Unfortunately, if they both want to use the same edge at the same time, then they crash and they cannot continue their trail. They cannot crash on the first edge of their trails.

What is the probability of them *not* crashing on the second edge of their trails?

End of paper

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggested Solution (s) Question M(:) 1. $\frac{4}{3} \pi r^3 = 2\infty$ $r = \sqrt{\frac{600}{4\pi}}$ 3C 4C 5B r = 3.6278316 5B r = 3.63(3sf) <u>D</u> 6D 7B 8D 9A 10C 2. m = tand m = tan120 9A 10C $3. (-1)^{k} k^{2}$ $-1\kappa l^{2} + (-1)^{2} \times 2^{2} + (-1)^{3} \times 3^{2} + (-1)^{2} \times 3^{2} + (-1)$	l) ⁴ ×4 ²	Suggested Solution (s) 7. $y = (x+1)^{3}(x-3)$ $u = (x+1)^{3}$ $v = x-3$ $u' = 3(x+1)^{2}$ $v' = 1$ $\frac{dy}{dx} = 3(x-3)(x+1)^{2} + (x+1)^{3}$ $= (x+1)^{2} [3(x-3) + x+1]$ $= (x+1)^{2} (3x - 9 + x+1)$ $= (x+1)^{2} (4x - 8)$ $= 4(x+1)^{2} (x-2)$ 8. $\int \frac{\sin x}{\cos x} dx$ $= -\int \frac{-\sin x}{\cos x} dx$ $= -\int \frac{-\sin x}{\cos x} dx$ $= -\ln(\cos x) + C$ $= \ln \frac{1}{\cos x} + C$ $= \ln (\sec x) + C$	Comments
$ = 5 \cdot \lim_{h \to 4} \frac{4 - h}{16 - h^2} $ $ = \lim_{h \to 4} \frac{4 - h}{(4 + h)(4 + h)} $ $ = \lim_{h \to 4} \frac{1}{4 + h} $ $ = \frac{1}{8} \qquad \qquad$	ð	$T_{4} \xrightarrow{3\pi}{4} 2 \text{ solutions}$ $tan x = 1$ $x = T_{4} \text{ solution already}$ $accounted for$ $f(x) dx - \int_{0}^{a} f(x) dx$ \subseteq	5

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question II a) $8x^{3} + 27 = (2x + 3)(4x^{2} - 6x + 9)\sqrt{6}$ b) $\sqrt{77} \times \sqrt{77 - 2}$ (mare multiply $\sqrt{77 + 2} \times \sqrt{77 - 2}$ (mare multiply $\sqrt{77 + 2} \times \sqrt{77 - 2}$ (order to compute $= \frac{7 - 2\sqrt{7}}{7 - 4}$ $= \frac{7 - 2\sqrt{7}}{7 - 4}$) mare convectants c) $y^{2} = -8x + 24$ $y^{2} = -8(x - 3)$ a = 2 / 1 mark tenris $\sqrt{y^{2} = -8(x - 3)}$ a = 2 / 1 mark tenris $\sqrt{y^{2} = -8(x - 3)}$ $\sqrt{y^{2} = -8(x -$	ying by Iti wer ng equation wing redex	$f) \int_{0}^{\frac{1}{2}} \sin\left(\frac{x}{2}\right) dx = \left[-2\cos\frac{x}{2}\right]_{0}^{\frac{1}{2}}$ $= -2\cos\frac{\pi}{4}2\cos\frac{\pi}{4}$ $= -2x\frac{1}{\sqrt{2}} + 2x1$ $= 2 - \frac{2}{\sqrt{2}}$ $= 2 - \sqrt{2}$ $g) \int \frac{1}{x^{2}} dx = \int x^{-2} dx$ $= -x^{-1} + C$ $= -\frac{1}{x} + C$ $Mush$ $be a$	have for 2nd K to Warded.
$\frac{d}{dx}\left(\frac{\omega_{x^2}}{x^2}\right) = -\frac{x^2 \sin x - 2x \cos x}{x^4} db$ $= -\frac{x \sin x - 2 \cos x}{x^3} \text{ for}$ e) $\frac{d}{dx} \left(e^x + x\right)^5 = 5 \left(e^x + x\right)^4 \left(e^x + 1\right)$ $= 5 \left(e^x + 1\right) \left(e^x + x\right)^4$	not need simplify full marks // marks // marks attempting to we the Chain nule 2 marks Wirect answer.	h) $3 \div 2 = 1.5$ $3 \div 1.5 = 4.5$ $\alpha = 4.5$	

Question 12. a) $y = 4\sqrt{2}$. b) $y = 4\sqrt{2}$. $y = 12 = -\frac{3}{2}(2x - 9)$. 2y - 24 = -3x + 27. $3x + 2y - 51 = 0\sqrt{26}$. $y = -\frac{2}{2}(x - 9)$. 2y - 24 = -3x + 27. $3x + 2y - 51 = 0\sqrt{26}$. $y = -\frac{2}{2}(x - 9)$. $y = 4\sqrt{2}$. $y = 4\sqrt{2}$. y = 10. $y = 4\sqrt{2}$. y = 10. $y = 4\sqrt{2}$. y = 10. y =	Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$y-1 = -\frac{2}{3}(x-7)$ $working mustbe shown$	Suggested Solution (s) Question 12 a) $y = 4\sqrt{2}$ (9,12) $y = 4\sqrt{2}$ $\frac{dy}{dx} = 2x^{-\frac{1}{2}}$ $= \frac{2}{\sqrt{x}}$ rhen $x = 9$ $\frac{dy}{dx} = \frac{2}{\sqrt{9}}$ $= \frac{2}{\sqrt{3}}$ grodient of tangent at (9,12) is $\frac{2}{3}$ gradient of normal: $y - 12 = -\frac{3}{2}(x - 9)$ 2y - 24 = -3x + 27 $3x + 2y - 51 = 0$ or $y = -\frac{3}{2}x + 5\frac{2}{2}$ b) $5x^{2} + 3x - 10 = 0$ a = 5, b = 3, c = -10 $x + b = -\frac{3}{5}$ $x = \frac{-10}{5} = -2$ $x + b^{2} = (x + b)^{2} - 2x b$ $= (-\frac{3}{5})^{2} - 2x(-2)$ $= \frac{9}{25} + 4$ $= \frac{109}{25} = 4.36$ Ci) $M_{AD} = \frac{1-3}{7-4}$ $= -\frac{2}{3}$	Comments	Suggested Solution (s) ii) $d_{BC} = \sqrt{(b-3)^2 + (5-7)^2}$ $= \sqrt{9+4}$ $= (13 \sqrt{13})$ iii) $d_1 = \frac{12xb + 3x5 - 171}{\sqrt{2^2 + 3^2}}$ $= \frac{102 + 15 - 171}{\sqrt{13}}$ $= \frac{10}{\sqrt{13}}$ iii) $A = \frac{10}{\sqrt{13}} \times \sqrt{13}$ $= 10 \text{ units}^2 \sqrt{13}$ d) $\int_{2}^{6} \frac{x}{\ln x} dx$ $\frac{2x - 2}{\ln x} + \frac{4}{\ln 6}$ $\int_{2}^{6} \frac{x}{\ln x} dx = \frac{2}{3} \left(\frac{1}{\ln 2} + 4x\frac{4}{\ln 4} + \frac{6}{\ln 6}\right)$ $\int_{2}^{6} \frac{x}{\ln x} dx = \frac{2}{3} \left(\frac{1}{\ln 2} + 4x\frac{4}{\ln 4} + \frac{6}{\ln 6}\right)$ $= 11 \cdot 850 \text{ AD} \cdots$ $= 11 \cdot 9 (1 \text{ dp}) \text{ no period}$	Comments () atty for rounding
as realized	$y - 1 = -\frac{2}{3}(x - 7)$ working must 3y - 3 = -2x + 14 be shown 2x + 3y - 17 = 0 as required			

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggested Solution (s) Question 12 e) $A = 2\pi \int_{0}^{V_{2}} (3\cos x - \sin 2\pi) d\pi$ $= 2 [(3\sin \frac{\pi}{2} + \frac{1}{2}\cos \pi) - (3\sin 0 + \frac{1}{2}\cos \pi) - (-\frac{1}{2}\cos 2\pi) - (3\sin 0 + \frac{1}{2}\cos \pi) - (-\frac{1}{2}\cos 2\pi) - (3\sin 0 + \frac{1}{2}\cos \pi) - (-\frac{1}{2}\cos 2\pi) - (3\sin 0 + \frac{1}{2}\cos \pi) - (-\frac{1}{2}\cos 2\pi) - (3\sin 0 + \frac{1}{2}\cos \pi) - (-\frac{1}{2}\cos 2\pi) - (3\sin 0 + \frac{1}{2}\cos \pi) - (-\frac{1}{2}\cos 2\pi) - (3\sin 0 + \frac{1}{2}\cos \pi) - (-\frac{1}{2}\cos 2\pi) - (-\frac{1}{2}\cos 2\pi) - (3\sin 0 + \frac{1}{2}\cos 2\pi) - (-\frac{1}{2}\cos 2\pi) - (3\sin 0 + \frac{1}{2}\cos 2\pi) - (-\frac{1}{2}\cos 2\pi) - (-\frac{1}{$	Comments (250)	Suggested Solution (s) b) $N(t) = 1200 e^{kt}$ (200 N(0) = 1200 $N(0) = 1200 e^{18k}$ $\frac{3000}{5} = e^{18k}$ Adags $\frac{5}{5} = e^{18k}$ Adags $\frac{5}{2} = e^{18k}$ Adags $\frac{5}{2} = e^{18k}$ Adags $\frac{5}{2} = e^{18k}$ Adags $\frac{10}{5} = 10 e^{18k}$ Must $\ln(\frac{5}{2}) = 10 e^{18k}$ Must $\ln(\frac{5}{2}) = 18k$ Sha $k = 0.0509050 \dots$ $\therefore k = 0.0509050 \dots$ $\therefore k = 0.0509 (4dp)$ (i) $2400 = 1200 e^{0.0509t}$ $2 = e^{0.0509t}$ $h2 = h e^{0.0509t}$ 10.0509t = h2 $t = 1200 e^{0.0509t}$ 10.0509t = h2 $t = 13.6178 \dots$ \therefore 14 years are required for the number of individually to increase from 1200 to 1400 (correct to The nearest year	ate of noring be wrn.
1 mar Vorrect	k for shading	.:	

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 13		Question 14a	
c) $f'(x) = 8n + 3$		$u = \chi^{3} + 6\chi^{2} - 135\chi$	
y=4-5x = tangent.		in due a series las	
$M_{(\text{transmith})} = -5$		$dnL = 3\chi^{2} + 12\chi - 135$	
(inigent)		$n = 3x^2 + 12x - 135$	
-5-87673		$h = x^2 + 4x - 45$	
-8=8x		l = (x + q)(x - 5)	
x=-1 V		$\gamma = -95$	
when x = -1		$\lambda = \frac{9}{100}$	
$y = 4 - 5 \times (-1)$		when $\mathcal{X} = -1$	
y - y		$g = (-4)^{-1} (-1)^{-1} (-1)^{-1}$	
: point of writer (-1, -1)		= 912 (-9,972)	
f'(x) = 8x + 3		when $\mathcal{H} = 5$	
$f(\pi) = 4\pi^2 + 3\pi + C$		y=5-76x5-135x5	
$f(-1) = 9 = 4(-1)^2 + 3(-1) + 6$		(5, -400)	
9 - 4 - 2 + c		$d^2y = bx + 12$	
8=0		dal2	
$f(x) = 4x^2 + 3x + 8$		When $\kappa = -9$	
		dzy = -42 - local maximum	
$d) y = \frac{1}{12}$	5	dal?	
(1, 0, 0, 0) = 1	0	in the set of a local numinum	N
Adequate steps	of	$\frac{a}{da} = 42$	
(a+2) = y working	must		
$\chi = \frac{1}{2} - 2$ be 8	hown	(-9,972) Max, (5,-400) min	min V
$r^2 = \left(\frac{1}{r} - 2\right)^2$	dad	$ii) d^2y = bay + i2$	
$\chi = (g - f)$ and χ	veer.	dhe2 - ORTIZ	
$\chi^{2} = \frac{1}{y^{2}} - \frac{1}{y} + \frac{1}{y}$		0=626+12	
in the		-12=62	
$(1) \sqrt{=\pi} \int x^2 dy$		x=-2	2
$2\pi(2 - 4 - 4)$, pussion principality concarrity	
"][g2 g T1) ay		check for change in any	- required
		x -3 -2 -1 E	tor
$\pi [-\frac{1}{2} - 4 \ln y + 4 y],$		$\frac{d^2y}{dot^2}$ - 6 0 1 b	be anardo
$=\pi(1-4-4\ln 2+8)-(-2-4\ln 2+2)$			10
		.: Change in Loncanny at n=-	-2
$=\pi(72 - 4\ln 2 - 4\ln 2)$		- point of inflexionat x=	-2
= (5 - 8/n2) T writs 3		v v J	

2016 Year 12 Mathematics Trial SOLUTIONS

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggestien solution (s) Question 14aiii) $y = x^{3} + bx^{2} - 135x$ $= \chi (x+15)(x-9)$ $\chi \text{ intercepts at 0} - 15,9$ (-1,972) AV (-1,972) AV (-	I mark for correct Shape I mark for correct labelling x intercepts not required for full marks but must go through origin	Suggested solution (s) $iN \int_{0}^{2} (20 + \frac{100}{(1+2t)^{2}}) dt$ $= \int_{0}^{2} (20 + 100 (1+2t)^{-2}) dt$ $= \left[20t + \frac{100(1+2t)^{-1}}{2\times(t^{-1})} \right]_{0}^{2}$ $= \left[20t - \frac{50}{1+2t} \right]_{0}^{2}$ $= (20\times2 - \frac{50}{5}) - (20\times0 - \frac{50}{5})$ $= 30 + 50$ $= 30 + 50$ $= 30 + 50 + $	e direction)
$(1+2t)^{2}$ i) $R = 20 + \frac{100}{(1+2\kappa_{0})^{2}}$ $= 20 + \frac{100}{1}$ $= 120$ initially released at 120 tonnes/wour ii) As $t \rightarrow \infty$ $R \rightarrow 20 + 0$ 20 tonnes/hour R_{R} $\frac{120}{120}$ $\frac{1}{120}$ $\frac{1}$	st havre mpto te and itercept elled/marked <u>k the mark</u> be awarded	ii) b+ $x = 0$ $l = 3 - \frac{9}{t-2}$ $\frac{9}{t-2} = 3$ q = 3t-6 particle l6 = 3t changes direction t = 5 v at $t = 5$ second iii) distance = $\left \int_{3}^{5} 3 - \frac{9}{t-2} dt \right + \int_{5}^{7} 3$ $\left [3t - 9\ln(t-2)]_{3}^{5} \right + [3t - 9\ln(t-2)]_{4}^{7}$ $\left [15 - 9\ln 3] - (9 - 9\ln 1) \right + [(21 - 9\ln 5) - (9 - 9\ln 5) + 9\ln 3)$ $= 16 - 9\ln 3 + 6 - 9\ln 5 + 9\ln 3$	$-\frac{9}{t-2}dt$ $-\frac{1}{t-2}dt$ $-\frac{1}{t-2}dt$

2016 Year 12 Mathematics Trial SOLUTIONS

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 15		W) 4,x,y,13.5	
ai) $y = 2x - 3 $ solution - 7y = 2x - 3	mark for 1= 2x-3)	a = 4 $ar^{3} = 13.5$	
- n	with si and y intercept labelled.	$r^{3} = 3.375$ r = 1.5 $x = 4 \times 15$ = 6 $y = 6 \times 15$	
ii) MX-2 Z Marke all 3	sol'n	$(ci) A_1 = 500000 \times 1.004 - M$	
M=-2 M=-2 J solutions	le artub identified	Az=A, × 1.004 - M× 1.01 = (500 000 × 1.004 - M)× 1.004 - M×1. = 500 000 × 1.004 ² - M×1.004 - M×1.01 = 500 000 × 1.004 ² - M (1.004 + 1.01)	DI) adreguest working must be shown
b)i) In $\triangle CED$ and $\triangle BAE$ LLED = LBAE given LLOE = LBEA corresponding angle $\therefore A CED III A BAE physiangular.$	S BEILCO	ii) $A_4 = 510000 \times 1.004^4 - M(1.004^3 + 1.004^2(1.01) + 1$ $A_{60} = 510000 \times 1.004^{60} - M(1.004^{59} + 1.004^{58}(1.01) + 1.005^{59}$	$(004(1.01)^{2}+1.01^{3})$ $(0045^{57}(1.01)^{2}+$
ii) In ACEB and AEBA LCBE = LBAE given LBEC = LECD atternate angles BEILCE LABE = LECD matching angles in sim	Mara	111) A60 = 400 000 401 100 = 570000 x1.004 ⁶⁰ - M(1.004 ⁵⁹ +1.004 ⁵⁸ (1.01) + 1.01 ⁵⁹	t .004 ⁵⁷ (1001) ² r
: LBEC = LABE : ACEBINAEBA equiangulour		$a = 1.004^{59}$ $r = \frac{1.01}{1.004}$ $n = 60$ $r = 004^{59}$	160
i) LBAE = LCED gwich :. ABIICE Corresponding angles ar with AD transversal	e equal Z	$400000 = 510000 \times 10009 - M 1.004 (1.004) - M 1.004 (1.004) - M 1.004 - M $	
busequently AFBA and ACEB are equi angular and hence simular.	ver with)	$400000 \times \left(\frac{0.006}{1.004}\right) = 510000 \times 1.004^{60} \times \left(\frac{0.006}{1.004}\right) - $ $M = 500000 \times 1.004^{60} \times \frac{0.006}{1.004} - 400000 \times \frac{0.00}{1.004}$	$M\left(1\cdot 004^{54}\right)\left(\frac{1\cdot 00}{1\cdot 004}\right)$
$\begin{array}{l} \text{(iii)} \underbrace{BE}_{BA} = \underbrace{CE}_{BE} & \text{sides of simular } \Delta & \text{are in} \\ \underbrace{CE}_{BA} = \underbrace{CD}_{E} & \text{sides of simular } \Delta & \text{are} \\ \underbrace{BE}_{BE} & \underbrace{CE}_{E} & \end{array}$	in ratio	$\frac{1.004^{59} \left(\left(\frac{1.01}{1.004} \right)^{6} - 1 \right)}{M = 42585.67 \text{ (nearest } 0)}$	ent)
$\frac{BE}{BA} = \frac{CE}{BE} = \frac{CA}{CE}$ $= \frac{C}{24} = \frac{C}{2} = \frac{13.5}{2} = \frac{17.5}{12} =$		appropriate working must be shown	
: 4,2, y, 13.5 are 4 terms in ger	ometric ser		

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggested Solution (s) Question 1b $ai() cos \theta = \frac{1}{MN}$ $\therefore MN = \frac{1}{Cos \theta}$ $MN = Sec \theta$ $tan \theta = \frac{MT}{1}$ $MT = tan \theta$ ii) Total cost = Cost LM + Cost MN $T = d_{LM} \times C + 3c \times d_{MN}$ $d_{LM} = 3 - MT$	Comments	Suggested Solution (s) Check it is a minimum Radians $\overline{(\theta \ 0.3 \ 0.329 \ 0.4})$ $\overline{(dT \ -0.124)} \ 0 \ 0.1983$ $\overline{(dD \ -0.124)} \ 0 \ 0.1983$ $\overline{(dD \ -0.124)} \ 0 \ 0.1983$ $\overline{(dD \ -0.124)} \ 0 \ 0.1983$	Comments
$= 3 - \tan \theta$ $= 3 - \tan \theta$ $d_{MN} = \sec \theta$ $T = (3 - \tan \theta)c + 3c (\sec \theta)$ $= 3c - \cot \theta + 3\csc \theta$ $iii) \frac{dt}{d\theta} = 0 \text{for Minimized cost}$ $0 < \theta < \frac{\pi}{2}$ $T = 3c - \cot \theta + 3c \sec \theta$ $= 3c - \cot \theta + 3c \sec \theta$			((to 2 dp)
$dT = -Csec^{2}\theta + -3C(cos\theta)^{-2}(-sin\theta)$ $dT = -Csec^{2}\theta + -3C(cos\theta)^{-2}(-sin\theta)$ $= -Csec^{2}\theta + 3Csin\theta$ $cos^{2}\theta$ $= -Csec^{2}\theta + 3csin\theta sec^{2}\theta$ $= Csec^{2}\theta (-1 + 3sin\theta)$ $0 = Csec^{2}\theta (-1 + 3sin\theta)$ $0 = Csec^{2}\theta (-1 + 3sin\theta)$ $Csec^{2}\theta = 0 \qquad 3sin\theta - 1 = 0$ No solution $Sin\theta = \frac{1}{3}$ $\theta = 0.3398 - 16$	dianj		
(19.47/22°)	2		

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggested Solution (s) Question $ _{b}$ b) $\frac{1}{6}$ ii) $AB \rightarrow \frac{1}{6}$ then $BC \rightarrow \frac{1}{3}$ then $cG \rightarrow \frac{1}{3}$ $P[ABCG] = \frac{1}{6} \times \frac{1}{3} \times \frac{2}{3}$ $= \frac{1}{27}$ iii) $AB(G = \frac{1}{27}$ $ABFG = \frac{1}{6} \times \frac{2}{3} \times \frac{1}{2}$ $ABFG = \frac{1}{6} \times \frac{2}{3} \times \frac{1}{2}$ $ABFG = \frac{1}{6} \times \frac{2}{3} \times \frac{1}{2}$ $HVH = \frac{1}{18}$	Comments	Suggested Solution (s) N) They can only Crash on the second edge of their trails and so the second and third letters of a trail weed to be the same but hererse order for a crash to occur. AEH = $\frac{1}{6} \times \frac{1}{3} = \frac{1}{18}$ ABF = $\frac{1}{6} \times \frac{1}{3} = \frac{1}{18}$ AEH = $\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$ AEF = $\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$ AEF = $\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$ P(crashing on second edge) $= \frac{1}{6} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{18}$ $= \frac{1}{81} \times 2 + \frac{1}{54} \times 4$	Comments
iv) $ABCG = \frac{1}{27}$ HHV $ABFG = \frac{1}{6} \times \frac{2}{3} \times \frac{1}{2}$ HVH $= \frac{1}{18}$ $ADCG = \frac{1}{27}$ HHV $ADHG = \frac{1}{18}$ $HVIT$ $AEHG = \frac{1}{27} \times \frac{1}{3} \times \frac{1}{3}$ VHH		$= \frac{1}{9} \times \frac{1}{9} + \frac{1}{18} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{18} + \frac{1}{3} \times \frac{1}{18} + \frac{1}{3} \times \frac{1}{18}$ $= \frac{1}{81} \times 2 + \frac{1}{54} \times 4$ $= \frac{8}{81}$ $P(not crashing on second to be cond to be con$	
$3^{+}, 2^{-}, 3^{+}, 2^{-}, 3^{+}, 2^{-}, 3^{+}, 2^{-}, 3^{+}, 2^{+}, 2^{+}, 3^{+}, $	+ <u>1</u> 9	$= 1 - \frac{8'}{81}$ $= \frac{73}{81}$	