Northern Beaches Secondary College Manly Selective Campus

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using blue or black pen
- Board-approved calculators and templates may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-10
- All questions are of equal value

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

Marks

Question 1 (Answer in a separate booklet) 12
(a) Expand and simplify $2(4 x-1)-13 x$
(b) If the numbers 7, 1 and -5 are the first 3 terms of an arithmetic series, show the nth term is given by $T_{n}=13-6 n$
(c) Solve $|2 x-5|>3$ and graph the solution on a number line.
(d) Differentiate $y=\cos ^{3} x$.
(e) Draw a graph of the function $y=-\sqrt{4-x^{2}}$ showing x and y intercepts.
(f) Determine the value of a and b if $\frac{5}{2+\sqrt{3}}=a+b \sqrt{3}$
(g) Simplify $\log _{5} 125$

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

(a) Show that $x^{2}-4 x+2 k=0$ has real roots for $k \leq 2$.
(b) Find an indefinite integral of
(i) $\int\left(\sqrt[3]{x}+x^{2}\right) d x$
(ii) $\int\left(e^{2 x}+\sin 3 x\right) d x$
(c) Find the co-ordinates of the vertex and the equation of the directrix for the parabola $y^{2}=8-4 x$.
(d) The gradient of the tangent function of a curve is given by $\frac{d y}{d x}=3 \sin 2 x$.

If the curve passes through $(0,0)$, find its equation.
(e) Solve $\tan \theta=-2$ for $0 \leq \theta \leq 2 \pi$.

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

(a)

The line L_{1} has equation $y=\frac{3}{4} x+2$ and passes through the point A on the y-axis. The line L_{2} is parallel to L_{1} and passes through $B(0,-3)$.
(i) Write down the co-ordinates of A.
(ii) Find the equation of the line L_{2}
(iii) If C is the x-intercept of L_{2}, write down the co-ordinates of C.
(iv) The point D is positioned on line L_{1}, such that $A B C D$ is a rhombus.

Find the co-ordinates of D.
(v) Calculate the perpendicular distance from A to L_{2}.
(vi) Hence, or otherwise, calculate the area of the rhombus $A B C D$.

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

Question 3 (continued)
(b) Calculate the size of angles α and β giving reasons for your answer.

(c) Prove that $\triangle B A C \| \Delta D A E$

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

Marks

Question 4 (Answer in a separate booklet) 12

a) Determine the value of A, B and C in the following.

$$
\begin{equation*}
2 x^{2}+6 x+9 \equiv A(x+2)(x-1)+B(x+2)+C \tag{3}
\end{equation*}
$$

b) The first three terms of a series are 3, 6 and 12 (leave your answers in index form).
(i) What is the value of T_{8} ?
(ii) What is the sum of the first fifteen terms?
c) The first multiple of seven after 130 is 133 . What is the sum of all the multiples of seven between 130 and 500 ?
d) What is the maximum value for S_{n} ?

$$
S_{n}=1+\frac{\sin \theta}{2}+\frac{\sin ^{2} \theta}{4}+\frac{\sin ^{3} \theta}{8}+\ldots
$$

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

(a) The quadratic equation $2 x^{2}-3 x+6=0$ has roots α and β.

Find the value of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2}+\beta^{2}$
(b) Differentiate $y=\sin 2 x^{\circ}$.
(c) Copy the graph shown below into your answer booklet and, on the same set of axes, sketch the curve of the derivative function.

(d) Consider the curve $y=12 x^{3}-3 x^{4}$.

Find the stationary points and determine their nature.

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

Marks

(a) (i) State the period of the equation $y=3-\cos 2 x$.
(ii) Graph $y=3-\cos 2 x$ for $0 \leq x \leq \pi$.
(b)

(i) Show that the curves $y=\sin x$ and $y=\sqrt{3} \cos x$ intersect at $x=\frac{\pi}{3}$ and $x=\frac{4 \pi}{3}$.
(ii) Hence determine the area enclosed between the curves for $0 \leq x \leq 2 \pi$.
(c) The diagram below shows the function $y=4-\sqrt{2 x}$.

If the area enclosed by this curve $y=4-\sqrt{2 x}$, the x-axis and the y-axis is rotated about the y-axis, find the volume of the solid of revolution formed.

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

Question 7 (Answer in a separate booklet)
(a) The mass M kg of a radioactive substance present after t years is given by

$$
M=10 e^{-k t}
$$

where k is a positive constant. After 100 years the mass has been reduced to 5 kg .
(i) What was the initial mass?
(ii) Find the value of k.
(iii) What amount of radioactive substance would remain after a period of 1000 years?
(iv) How long would it take for the initial mass to reduce to 8 kg ?
(b) A student attaches an air pressure pump to his bike tyre to inflate the tyres.

The rate of change of the pressure in the tyre is given by

$$
\frac{d P}{d t}=\frac{t}{2}-\frac{1}{8} \text { units of pressure } / \mathrm{sec}
$$

where t is the time after pumping has started.
After 4 seconds of pumping, the pressure in the tyre is 15 units.
(i) What is the initial pressure in the tyre?
(ii) The bike tyre will burst when the pressure reaches 40 units of pressure. At what time does this occur? (answer to the nearest second).
(c) Determine the values of x in the following equation.

$$
3-4 \cos ^{2}(2 x)=0 \quad 0 \leq x \leq \pi
$$

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

(a) (i) A is the point $(1,1)$ and B is the point $(4,1)$. A point $P(x, y)$ moves such that $P A \perp P B$.

Show that the locus of P is given by $x^{2}-5 x+y^{2}-2 y=-5$.
(ii) Give a detailed geometric description of the locus in part (i).
(b) The cross-section of a metal object is formed as shown in the figure below.

The cross-section consists of a semi-circle $A X C$, centred at O and radius r, and a sector $A B C$ of radius $2 r$, centred at A with angle θ.
(i) What is the perimeter $A X C B$ of the object in terms of r and θ ?
(ii) If the area of the cross-section is fixed at 4 square units, show that the perimeter in part (i) can also be expressed as

$$
\begin{equation*}
P=\frac{4}{r}+r\left(2+\frac{\pi}{2}\right) \tag{2}
\end{equation*}
$$

(iii) Show that the perimeter in part (ii) is smallest when $r^{2}=\frac{8}{4+\pi}$.

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

(a) The volume formed by rotating the curve $y=\log _{e} x$ about the x-axis between $x=2$ and $x=6$ can be expressed as:

$$
\text { Volume }=\pi \int_{2}^{6}\left(\log _{e} x\right)^{2} d x
$$

Use Simpson's Rule with three function values to find an approximation for the volume of the solid of revolution formed.
(b) A particle is moving in a straight line. Its displacement, x metres, from the origin, O, at time t seconds, where $t \geq 0$, is given by

$$
x=4+3 t e^{-2 t}
$$

(i) Show the velocity of the particle is given by $\dot{x}=3 e^{-2 t}(1-2 t)$.
(ii) Show the particle is at rest when $t=\frac{1}{2}$.
(iii) Find the greatest possible total distance the particle could travel.
(c) An object is moving on the x-axis. The graph below shows the acceleration $a=\frac{d^{2} x}{d t^{2}}$.

Draw a velocity-time graph for $0 \leq t \leq 4$ if the object is initially travelling to the left with a speed of $3 \mathrm{~m} / \mathrm{s}$.

Manly Selective Campus
 2011 HSC Mathematics - Trial examination

Consider the function $\mathrm{y}=(x-1) \log _{\mathrm{e}} 2 x$.
(i) What is the domain of this function?
(ii) Find the x-intercepts of the function.
(iii) Show that the gradient of the curve is given by $\frac{d y}{d x}=\frac{x-1}{x}+\log _{e} 2 x$.
(iv) Determine the gradient of the function at $x=1 / 2$ and at $\mathrm{x}=1$.
(v) Without further calculation, determine whether the function has a maximum or minimum value. Justify your conclusion.
(vi) By using any of the results above, show that $\int_{\frac{1}{2}}^{1} \log _{e} 2 x d x=\log _{e} 2-\frac{1}{2}$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, \quad x>0$

Question 1

a)	$\begin{aligned} 2(4 x-1)-13 x & =8-2-13 x \\ & =-5 x-2 \end{aligned}$	1 correct somution 0 marks if then solved as an equation
b)	$\begin{aligned} & 7,1,-5 \\ & d=1-7 \quad d=-5-1 \quad a=7 \\ &=-6 \quad=-6 \\ & T_{n}=a+(n-1) d \\ &=7+(n-1) \times-6 \\ &=7-6 n+6 \\ &=13-6 n \quad \text { (as required) } \end{aligned}$	2 correct solution 1 either showing $\begin{aligned} & T_{n}=7+(n-1) \times-6 \\ & \text { OR } d=-6 \end{aligned}$
c)		3 solution correct 2 both solutions but no number line 1 only one correct solution
d)	$\begin{aligned} y & =\cos ^{3} x \\ & =(\cos x)^{3} \\ \frac{d y}{d x} & =3(\cos x)^{2} \times-\sin x \\ & =-3 \sin x \cos ^{2} x \end{aligned}$	2 correct solution 1 any one of $-, 3, \quad \sin x$ or $\cos ^{2} x$ absent from correct solution
e)		1 correct graph showing both x and y intercepts
f)	$\begin{aligned} \frac{5}{2+\sqrt{3}} & =a+b \sqrt{3} \\ \text { LHS } & =\frac{5}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} \\ & =\frac{!0-5 \sqrt{3}}{4-3} \\ & =10-5 \sqrt{3} \quad \therefore \mathrm{a}=10, \mathrm{~b}=-5 \end{aligned}$	2 both a and b correct 1 multiplying numerator and denominator by $2-\sqrt{3}$
g)	$\begin{aligned} \log _{5} 125 & =\log _{5} 5^{3} \\ & =3 \log _{5} 5 \\ & =3 \times 1 \\ & =3 \end{aligned}$	1 correct solution

Question 2

(a)	For real roots, $\Delta \geq 0$ $\begin{aligned} (-4)^{2}-4 \times 2 k & \geq 0 \\ 16-8 k & \geq 0 \\ -8 k & \geq-16 \\ k & \leq 2 \text { as required } \end{aligned}$	2 marks correct solution 1 mark for getting to line 3 Note: taking a few particular values of k and substituting in is not a general proof
(b) (i)	$\int x^{\frac{1}{3}}+x^{2} d x=\frac{3}{4} x^{\frac{4}{3}}+\frac{x^{3}}{3}+c \text { or } \frac{3}{4} x \sqrt[3]{x}+\frac{x^{3}}{3}+c$	2 marks- correct integral including $+c$ 1 mark - 1 error in answer Note: Many students need to revise index laws so the can rewrite $\sqrt[3]{x}$ correctly in index form
(ii)	$\frac{1}{2} e^{2 x}-\frac{1}{3} \cos 3 x+c$	2 marks - correct answer 1 mark - one integral correctly found Note: Students should use the Table of Standard Integrals to correctly fine coefficients
(c)	Rewrite given equation as $y^{2}=-4(x-2)$ is of the form $(y-k)^{2}=-4 a(x-h) \text { where } a=1$ Vertex is $(h, k)=(2,0)$ Directrix is $x=3$	2 marks for correct vertex and directrix equation Imark for correct vertex OR correct directrix from incorrect vertex NOTE!!!!: the focal length is a LENGTH so stating that $a=-1$ (as many did!!) is VERY WRONG. Main other error was in not rearranging terms to correct form which requires x to be first term in bracket.
(d)	$\begin{align*} \frac{d y}{d x} & =3 \sin 2 x \\ y & =-\frac{3}{2} \cos 2 x+c \\ (0,0) \quad 0 & =-\frac{3}{2} \cos 0+c \quad \therefore c=\frac{3}{2} \tag{0,0}\\ \therefore \quad y & =-\frac{3}{2} \cos 2 x+\frac{3}{2} \end{align*}$	2 marks- correct solution 1 mark correct Line 2 OR incorrect integral but correct finding of constant from error.
(e)	$\begin{aligned} \tan \theta & =-2 \\ \text { Related acute } & =63^{\circ} 26^{\prime}=1.107148718^{c} \\ \theta & =\pi-1.107148718^{c} \text { or } \quad \theta=2 \pi-1.107148718^{c} \\ \theta & \approx 2.03 \text { or } 5.18 \end{aligned}$	2 marks - correct solutions, including reasonable approximations in terms of π 1 mark - correct answer in degrees OR 1 correct answer in radians OR correct radians but in first or third quadrants $O R$ correct radian answers from making - 2 the radians

Question 3

(ai)	(0,2)	1 mark - correct answer must STATE CO-ORDINATES	
(aii)	$y=\frac{3}{4} x-3$	1 mark - correct answer	
(aiii)	$(4,0)$	1 mark - correct answer	
(aiv)	$C D$ must be same length as $A B$ and parallel to it, so D is $(4,5)$	1 mark - correct answer	
(av)	$\begin{aligned} & \boldsymbol{L}_{2}: 3 x-4 y-12=0 \quad A(0,2) \\ & d_{\perp}=\frac{\left\|a x_{1}+b y_{1}+c\right\|}{\sqrt{a^{2}+b^{2}}} \\ & d_{\perp}=\frac{\|3 \times 0-4 \times 2-12\|}{\sqrt{3^{2}+4^{2}}} \\ & d_{\perp}=\frac{\|-20\|}{5} \\ & d_{\perp}=4 \end{aligned}$	1 mark - correct answer	
(avi)	A rhombus is also a parallelogram $\begin{aligned} A & =b h_{\perp} \\ & =5 \times 4 \\ & =20 \text { square units } \end{aligned}$	2 marks - correct area or correct from error in (v) 1 mark - correct length of BC or AD	
(b)	$100=\alpha+30$ (exterior angle of triangle $A E B$ equals sum of interior opposite angles) $\begin{aligned} & \alpha=70 \\ & 40+70+\beta=180(\text { angle sum of triangle } A C D) \\ & \beta=70 \end{aligned}$	2 marks - correct angles with correct reasons given for the approach taken 1 mark - correct angle with correctly argued reasons	
(c)	$\begin{aligned} & \text { In } \triangle B A C \text { and } \triangle D A E, \\ & \frac{A B}{A E}=\frac{6}{18}=\frac{1}{3} \\ & \frac{A C}{A D}=\frac{4}{12}=\frac{1}{3} \quad \therefore \frac{A B}{A E}=\frac{A C}{A D} \end{aligned}$ $\angle B A C$ is a common angle $\therefore \triangle B A C \\| \triangle D A E$ (two pairs of corresponding sides in proportion about the same INCLUDED angle)	3 marks - correctly argued proof 2 marks - either omitting test used to prove similarity OR incorrect/inadequate wording of test OR not directly identifying names of corresponding sides (only referring to lengths) OR only giving test reason and omitting which triangle are similar 1 mark - finding common angle OR giving numerical values of correct corresponding sides	

Manly Selective Campus
 2011 HSC Mathematics Trial - solutions

Question 4

(a)	$\begin{aligned} & \qquad 2 x^{2}+6 x+9 \equiv A(x+2)(x-1)+B(x+2)+C \\ & \text { coefficient of } x^{2} \\ & \text { let } x=-2 \\ & 2 \times(-2)^{2}+6 \times(-2)+9 \end{aligned} \begin{aligned} & =0+0+C \\ \text { let } x=1 & =5 \\ 2 \times 1^{2}+6 \times 1+9 & =0+3 B+5 \\ B & =4 \end{aligned}$	3 marks - one mark for each correct answer.
(b) (i)	$\begin{aligned} T_{1} & =3 \\ \frac{T_{2}}{T_{1}} & =\frac{T_{3}}{T_{2}}=2=r \\ T_{8} & =a r^{n-1} \\ & =3 \times 2^{7} \end{aligned}$	1 mark - correct answer
(b) (ii)	$\begin{aligned} & T_{15}=3 \times 2^{14} \\ & \begin{aligned} S_{15} & =\frac{a\left(r^{n}-1\right)}{r-1} \\ & =\frac{3\left(2^{15}-1\right)}{2-1} \\ & =98301 \end{aligned} \end{aligned}$	1mark - correct answer - nonindex form accepted.
(c)	$\begin{aligned} & T_{1}=133 \\ & T n=133+(n-1) \times 7 \\ &=126+7 n \\ & 126+7 n<500 \\ & 7 n<374 \\ & n<53.43 \\ & n=53 \\ & T_{\lambda_{s t}}=126+7 \times 53 \\ &=497 \\ & S_{n}=\frac{n}{2}(a+l) \\ &=\frac{53}{2}(133+497) \\ &=16695 \\ & \hline \end{aligned}$	4 marks - correct solution 3 marks - correct value for last term in series 2 marks - correct value for n 1 mark - expression for T_{n}

Manly Selective Campus 2011 HSC Mathematics Trial - solutions

Question 4 (continued)

(d)
$S_{n}=1+\frac{\sin \theta}{2}+\frac{\sin ^{2} \theta}{4}+\frac{\sin ^{3} \theta}{8}+\ldots$
Geometric Series
$r=\frac{\sin \theta}{2}$
$-1 \leq \sin \theta \leq 1$
$\therefore-\frac{1}{2} \leq \frac{\sin \theta}{2} \leq \frac{1}{2} \therefore$ Series will have limiting sum.

$$
\begin{aligned}
S n & =\frac{a}{1-r} \\
& =\frac{1}{1-\frac{\sin \theta}{2}}
\end{aligned}
$$

S_{n} is maiximum when denominator is min. ie. $\frac{\sin \theta}{2}$ is at its max value

$$
\begin{aligned}
S n & =\frac{1}{1-\frac{1}{2}} \\
& =2
\end{aligned}
$$

3 marks - correct answer.
2 marks - correct expression for S_{n}
1 mark - identify series as geometric series and determining value of r will mean that it has a limiting sum.

Question 5

(a)(i)	$\begin{aligned} & a=2 \quad b=-3 \quad c=6 \\ & \alpha+\beta=-\frac{b}{a}=-\frac{-3}{2}=\frac{3}{2} \end{aligned}$	1 mark - correct answer
(ii)	$\alpha \beta=\frac{c}{a}=3$	1 mark - correct answer
(iii)	$\begin{aligned} \alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\ =\quad \frac{9}{4}-6 & =-\frac{15}{4} \end{aligned}$	2 marks - correct answer 1 mark correct expression
(b)	Cannot use calculus on trig functions expressed in degrees - must be radians. $\begin{aligned} y & =\sin 2 x^{\circ}=\sin \frac{2 \pi}{180} x \\ \therefore \frac{d y}{d x} & =\frac{2 \pi}{180} \cos \frac{2 \pi}{180} x=\frac{\pi}{90} \cos \frac{\pi x}{90} \end{aligned}$	2 marks - correct derivative 1 mark - recognition of need for radians NOTE: When using calculus with trig functions, you must use RADIANS.
(c)		2 marks - correct graph 1 mark - correct x-intercepts In many diagrams, the two curves were hard to distinguish. Use different colours, dotted lines, etc to identify each and label.
(d)	$\begin{aligned} y & =12 x^{3}-3 x^{4} \\ \frac{d y}{d x} & =36 x^{2}-12 x^{3} \end{aligned}$ For SP $\frac{d y}{d x}=0$ $\begin{aligned} & \therefore 12 x^{2}(3-x)=0 \\ & x=0 \text { or } x=3 \\ & \frac{d^{2} y}{d x^{2}}=72 x-36 x^{2} \\ & \text { At } x=0 \frac{d^{2} y}{d x^{2}}=0 \text { so possible POI } \\ & \text { At } \mathrm{x}=3 \frac{d^{2} y}{d x^{2}}=-108<0 \therefore \max \\ & \therefore \text { SP at }(0,0) \text { POI } \end{aligned}$ $(3,81)$ maximum value	4 marks - correct points and nature determined 3 marks - correct points but incomplete analysis of second derivative or no y values. 2 marks - correct first derivative and x values determined 1 mark - correct derivatives

Question 6

a) i)	$\text { i) } \begin{aligned} \text { period } & =\frac{2 \pi}{2} \\ & =\pi \end{aligned}$	1 correct answer
ii)		$\begin{aligned} & 3 \text { correct graph } \\ & \mathbf{2} y=-\cos 2 x \text { at } \\ & \text { start other than } 2 \\ & \text { on } y \text {-axis or } \\ & y=3+\cos 2 x \text { or } \\ & y=2-\cos x \\ & \mathbf{1} y=\cos 2 x \end{aligned}$
b) i)	$\begin{aligned} x & =\frac{\pi}{3} \quad y=\sin \left(\frac{\pi}{3}\right) & y=\sqrt{3} \cos \left(\frac{\pi}{3}\right) \\ & =\sqrt{\frac{3}{2}} & =\sqrt{\frac{3}{2}} \\ x & =\frac{4 \pi}{3} \quad y=\sin \left(\frac{4 \pi}{3}\right) & y=\sqrt{3} \cos \left(\frac{4 \pi}{3}\right) \\ & =-\sin \left(\frac{\pi}{3}\right) & =-\sqrt{3} \cos \left(\frac{\pi}{3}\right) \\ & =-\sqrt{\frac{3}{2}} & =-\sqrt{\frac{3}{2}} \end{aligned}$ OR $\begin{aligned} \sqrt{3} \cos x & =\sin x \\ 1 & =\sin \frac{x}{\sqrt{3} \cos x} \\ 1 & =1 \sqrt{3} \tan x \\ \tan x & =\sqrt{3} \quad 1 \text { st quadrant } \angle \frac{\pi}{3} \\ \tan x & >0 \text { quad } 1 \text { and } 3 \\ x & =\frac{\pi}{3}, \frac{4 \pi}{3} \end{aligned}$	1 showing intersection at both points OR using tan to find the 2 solutions

Question 6 (continued)

ii)	$\begin{aligned} \text { Area } & =\int_{\frac{\pi}{3}}^{\frac{4 \pi}{3}}(\sin x-\sqrt{3} \cos x) d x \\ & =[-\cos x-\sqrt{3} \sin x] \\ & =\left(-\cos \left(\frac{4 \pi}{3}\right)-\sqrt{3} \sin \left(\frac{4 \pi}{3}\right)\right)-\left(-\cos \left(\frac{\pi}{3}\right)-\sqrt{3} \sin \left(\frac{\pi}{3}\right)\right) \\ & =\left(--\frac{1}{2}-\sqrt{3} \times-\frac{\sqrt{3}}{2}\right)-\left(-\frac{1}{2}-\sqrt{3} \times \frac{\sqrt{3}}{2}\right) \\ & =\left(\frac{1}{2}+\frac{3}{2}\right)-\left(-\frac{1}{2}-\frac{3}{2}\right) \\ & =\left(\frac{4}{2}\right)-\left(-\frac{4}{2}\right) \\ & =2+2 \end{aligned}$ Area is 4 units ${ }^{2}$	3 correct solution 2 lof the integral sections correct with correct solution for the incorrect integral 11 correct integral only OR 2 integrals incorrect with incorrect limits OR area broken into 3 regions with correct answer of 4 units2 for the only correct region
c)	$\begin{aligned} & y \text { intercept when } x=0 y=4 \\ & y=4-\sqrt{2 x} \\ & \sqrt{2 x}=4-y \\ & 2 x=(4-y)^{2} \end{aligned} \begin{aligned} x=\frac{(4-y)^{2}}{2} \\ \begin{aligned} & x^{2}=\frac{(4-y)^{4}}{4} \\ & \begin{aligned} \text { Volume } & =\pi \int_{0}^{4} \frac{(4-y)^{4}}{4} d y \\ & =\frac{\pi}{4}\left[\frac{(4-y)^{5}}{5 \times-1}\right]_{4}^{0} \\ & =-\frac{\pi}{20}\left\{(4-4)^{5}-(4-0)^{5}\right\} \\ & =-\frac{\pi}{20} \times-1024 \\ & =\frac{256 \pi}{5} \text { units }^{3} \end{aligned} \end{aligned} . \end{aligned}$	4correct solution 3 correct integral to *** OR no pi in solution. 2 correct value to x^{2} 1 correct y intercept

Manly Selective Campus 2011 HSC Mathematics Trial - solutions

Question 7

(a)- (i)	$\begin{aligned} M & =10 e^{-k t} \\ \text { At } t & =0 \\ M & =10 e^{-k \times 0} \\ M & =10 \quad \text { therefore initial mass is } 10 \mathrm{~kg} \end{aligned}$	1 mark - correct answer
(i)	$\begin{aligned} M & =10 e^{-k t} \\ \text { at } t & =100 \mathrm{~m}=5 \\ 5 & =10 e^{-100 k} \\ \frac{\ln \left(\frac{1}{2}\right)}{-100} & =k \\ \mathrm{k} & =\frac{\ln 2}{100}=6.93 \times 10^{-3} \end{aligned}$	1 mark-correct answer
(iii)	$\begin{aligned} M & =10 e^{-1000 k} \\ & =9.765 \times 10^{-3} \mathrm{~kg} \end{aligned}$	1 mark - correct answer
(iv)	$\begin{aligned} & 8=10 e^{-k t} \\ & \mathrm{t}=\frac{\ln (0.8)}{-\mathrm{k}} \\ & t=32.19 \text { year } \end{aligned}$	2 mark - correct answer 1mark-correct approach with arithmetic error
(b)-(i)	$\begin{aligned} \frac{d P}{d t} & =\frac{t}{2}-\frac{1}{8} \\ P & =\frac{t^{2}}{4}-\frac{t}{8}+C \\ t & =4 \quad P=15 \\ 15 & =\frac{4^{2}}{4}-\frac{4}{8}+C \\ C & =11.5 \\ P & =\frac{t^{2}}{4}-\frac{t}{8}+11.5 \\ \text { At } t & =0 P=11.5 \end{aligned}$ Therefore initial pressure is 11.5 units.	2 marks - correct answer 1 mark - correct integration with C

Manly Selective Campus
 2011 HSC Mathematics Trial - solutions

Question 7 (continued)

(b)-(ii)	$\begin{aligned} P & =\frac{t^{2}}{4}-\frac{t}{8}+11.5 \\ 40 & =\frac{t^{2}}{4}-\frac{t}{8}+11.5 \\ 320 & =2 t^{2}-t+92 \\ t & =\frac{1 \pm \sqrt{1825}}{4}=10.9 \mathrm{sec} \approx 11 \mathrm{sec} \quad \text { as } t \geq 0 \end{aligned}$	2 marks - correct answer 1 mark - correct approach reaching two possible answers (one neg and one positive) with one arithmetic error.
(c)	$\begin{array}{rlrl} 3-4 \cos ^{2}(2 x) & =0 \quad 0 \leq x \leq \pi \\ \cos (2 x) & = \pm \frac{\sqrt{3}}{2} & 0 \leq 2 x \leq 2 \pi \\ 2 x & =\frac{\pi}{6}, \frac{2 \pi}{6}, \frac{4 \pi}{6}, \frac{5 \pi}{6} \\ x & =\frac{\pi}{12}, \frac{\pi}{12}, \frac{2 \pi}{12}, \frac{5 \pi}{12} \end{array}$	3 marks - correct answer 2 marks - incomplete domain 1 mark-failure to recognise \pm

Manly Selective Campus 2011 HSC Mathematics Trial - solutions

Question 8

(a) (i)	$\begin{aligned} m_{P A} \times m_{P B} & =-1 \\ \frac{y-1}{x-1} \times \frac{y-1}{x-4} & =-1 \\ (y-1)^{2} & =-(x-1)(x-4) \\ y^{2}-2 y+1+(x-1)(x-4) & =0 \\ y^{2}-2 y+1+x^{2}-5 x+4 & =0 \\ x^{2}-5 x+y^{2}-2 y & =-5 \end{aligned}$	3 marks - correct demonstration 2 marks - product of gradients expressed correctly but subsequent error 1 mark - both gradients correct
(ii)	Completing the square: $\begin{aligned} & \left(x-\frac{5}{2}\right)^{2}-\frac{25}{4}+(y-1)^{2}-1+5=0 \\ & \left(x-\frac{5}{2}\right)^{2}+(y-1)^{2}=\left(\frac{3}{2}\right)^{2} \end{aligned}$ The locus is a circle centred at $\left(\frac{5}{2}, 1\right)$ with radius $\frac{3}{2}$	2 marks - complete description 1 mark - squares completed correctly.
(b) (i)	Perimeter of semi-circle AXC $=\pi r$ CB Arc length $=2 \mathrm{r} \theta$ Hence perimeter AXCB $=\pi r+2 r \theta+2 r$	2 marks - correct perimeter 1 mark -at least one of the first two quantities correct
(bii)	$\begin{aligned} \text { Area } & =A_{\text {sector }}+A_{\text {semi circle }} \\ 4 & =\frac{1}{2}(2 r)^{2} \theta+\frac{1}{2} \pi r^{2} \\ 4 & =2 r^{2} \theta+\frac{1}{2} \pi r^{2} \\ 2 r^{2} \theta & =4-\frac{1}{2} \pi r^{2} \\ \theta & =\frac{2}{r^{2}}-\frac{\pi}{4} \\ \therefore \quad P & =2 r+\pi r+2 r\left(\frac{2}{r^{2}}-\frac{\pi}{4}\right) \\ P & =2 r+\pi r+\frac{4}{r}-\frac{\pi r}{2} \\ P & =\frac{4}{r}+2 r+\frac{\pi r}{2} \\ P & =\frac{4}{r}+r\left(2+\frac{\pi}{2}\right) \end{aligned}$	2 marks - correct proof 1 mark - correct expression for θ substituted into P

Manly Selective Campus 2011 HSC Mathematics Trial - solutions

Question 8 (continued)

(iii)	$P=4 r^{-1}+2 r+\frac{\pi r}{2}$	3 marks - correct and complete demonstration
$\frac{d P}{d r}=-4 r^{-2}+2+\frac{\pi}{2}$	2 marks - correct derivative and expression for r^{2} ut subsequent error or no proof of minimum	
$\frac{d^{2} P}{d r^{2}}=8 r^{3}>0$ for all $\mathrm{r}>0$ tf minimum	1 mark - correct derivative, n proof of a minimum or algebraic error.	
	For min $\frac{d P}{d t}=0$ $\therefore \frac{4}{r^{2}}=2+\frac{\pi}{2}$ 8 $r^{2}=\frac{8}{4+\pi}$	

Question 9

(a)	$\begin{aligned} \mathrm{Vol} & =\pi \int_{2}^{6}\left(\log _{e} x\right)^{2} d x \approx \frac{(6-2) \pi}{6}\left[(\ln 2)^{2}+4(\ln 4)^{2}+(\ln 6)^{2}\right] \\ & =\frac{2 \pi}{3} \times 11.37810323 \\ & =23.83 u^{3} \end{aligned}$	3 marks - correct solution 2 marks - correct Simpson's rule except for loss of π or incorrect or omitted y^{2} or calculation error 1 mark - a correct use of Simpson's rule on $\int_{2}^{6} \log _{e} x d x$ NOTE: many students misinterpreted $\left(\log _{\mathrm{c}} \mathrm{x}\right)^{2}$
(b) (i)	$\begin{aligned} \dot{x} & =3 t \cdot-2 e^{-2 t}+e^{-2 t} \cdot 3 \\ & =3 e^{-2 t}(1-2 t) \end{aligned}$	2 marks for correct velocity expression 1 mark for correct application of product rule
(b) (ii)	Either substitute $t=\frac{1}{2}, 3 e^{-2 \times \frac{1}{2}}\left(1-2 \times \frac{1}{2}\right)=0$ i.e. particle is at rest. $e^{-2 t}(1-2 t)=0 \quad \therefore e^{-2 t}=0 \text { or } 1-2 t=0$ OR Solve $\quad e^{-2 t} \neq 0$ as $e^{-2 t}>0 \quad t=\frac{1}{2}$ as req'd	1 mark - either correct solution NOTE: many students either did not write a conclusion for the substitution approach OR ignored the possibility of $e^{-2 t}=0$ OR omitted a justification for not solving
$\begin{aligned} & \text { (b) } \\ & \text { (iii) } \end{aligned}$	When $t=0, x=4$ When $t=0.5, x=4+\frac{3}{2 e}$ As $t \rightarrow \infty, e^{-2 t} \rightarrow 0 \therefore x \rightarrow 4$ Max distance $=2 \times \frac{3}{2 e}=\frac{3}{e}$ metres	3 marks - correct solution 2 marks - establishing starting position, maximum and limit 1 mark - finding max displacement NOTE: many students believed the max displacement represented the greatest possible total distance
(c)	Graph had to start at $(0,-3)$, have a point of inflection when $t=1$, and a rel max at $t=3$	3 marks - correct graph 2 marks - 1 error 1 mark - 2 errors

Manly Selective Campus
 2011 HSC Mathematics Trial - solutions

Question 10

(a) (i)	$y=(x-1) \log _{\mathrm{e}} 2 x$ Domain of $(\mathrm{x}-1)$ is all real x while the domain of $\ln x$ is $x>0$. Hence the domain of the product is $\mathrm{x}>0$.	1 mark -correct domain
(ii)	x-intercepts when $\mathrm{y}=0$. Hence $x=1$ OR $\ln 2 x=0$ So $x=0.5$	2 marks - both intercepts correct 1 mark - one intercept correct
(iii)	$\begin{aligned} \frac{d y}{d x} & =\ln 2 x \times 1+(x-1) \times \frac{1}{x} \\ & =\frac{x-1}{x}+\ln 2 x \end{aligned}$	1 mark-correct derivative
(iv)	$\begin{aligned} & \text { At } x=\frac{1}{2}, \frac{d y}{d x}=\frac{-\frac{1}{2}}{\frac{1}{2}}+\ln 2 \times \frac{1}{2}=-1 \\ & \text { At } \mathrm{x}=1 \frac{d y}{d x}=\ln 2 \end{aligned}$	2 marks - both gradients correct 1 mark - one gradient correct.
(v)	The curve has a minimum as the gradient changes from negative to positive and is continuous throughout the sub-domain stated.	2 marks - statement of a minimum supported with both statements 1 mark statement of a minimum with some appropriate support
(vi)	$\begin{aligned} & \text { From part (iii) } \\ & \frac{d}{d x}\{(x-1) \ln 2 x\}=1-\frac{1}{x}+\ln 2 x \\ & \therefore \int_{\frac{1}{2}}^{1} \frac{d}{d x}\{(x-1) \ln 2 x\}=\int_{\frac{1}{2}}^{1} 1 d x-\int_{\frac{1}{2}}^{1} \frac{1}{x} d x+\int_{\frac{1}{2}}^{1} \ln 2 x d x \\ & {[(x-1) \ln 2 x]_{\frac{1}{2}}^{1}=[x-\ln x]_{\frac{1}{2}}^{1}+\int_{\frac{1}{2}}^{1} \ln 2 x d x} \\ & \therefore \int_{\frac{1}{2}}^{1} \ln 2 x d x=(0-0)-\left[(1-0)-\left(\frac{1}{2}-\ln \frac{1}{2}\right)\right] \\ & =-\frac{1}{2}-\ln 1+\ln 2=\ln 2-\frac{1}{2} \end{aligned}$	4 marks - correct process to demonstrate required result 3 marks - correct up to final substitution 2 marks - integral and limits mostly correct 1 mark - correct setting out for integral using the derivative

