

Northern Beaches Secondary College Manly Selective Campus

2011 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators and templates may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1- 10
- All questions are of equal value

Marks

Question 1 (Answer in a separate booklet)	12
(a) Expand and simplify $2(4x - 1) - 13x$	(1)
(b) If the numbers 7, 1 and -5 are the first 3 terms of an arithmetic series, show the nth term is given by $T_n = 13 - 6n$	(2)
(c) Solve $ 2x - 5 > 3$ and graph the solution on a number line.	(3)
(d) Differentiate $y = \cos^3 x$.	(2)
(e) Draw a graph of the function $y = -\sqrt{4-x^2}$ showing x and y intercepts.	(1)
(f) Determine the value of a and b if $\frac{5}{2+\sqrt{3}} = a + b\sqrt{3}$	(2)

(g) Simplify log₅ 125

(1)

Marks

Question 2 (Answer in a separate booklet) 12

(a) Show that
$$x^2 - 4x + 2k = 0$$
 has real roots for $k \le 2$. (2)

(b) Find an indefinite integral of

(i)
$$\int (\sqrt[3]{x} + x^2) dx$$
 (2)

(ii)
$$\int (e^{2x} + \sin 3x) \, dx$$
 (2)

- (c) Find the co-ordinates of the vertex and the equation of the directrix for the parabola $y^2 = 8 - 4x$. (2)
- (d) The gradient of the tangent function of a curve is given by $\frac{dy}{dx} = 3 \sin 2x$. If the curve passes through (0,0), find its equation. (2)
- (e) Solve $\tan \theta = -2$ for $0 \le \theta \le 2\pi$. (2)

Question 3 (Answer in a separate booklet)

12

Marks

(a)

The line L_1 has equation $y = \frac{3}{4}x + 2$ and passes through the point *A* on the *y*-axis. The line L_2 is parallel to L_1 and passes through *B* (0,-3).

(i) Write down the co-ordinates of <i>A</i> .	(1)
(ii) Find the equation of the line L_2	(1)
(iii) If C is the x-intercept of L_2 , write down the co-ordinates of C.	(1)
(iv) The point D is positioned on line L_1 , such that ABCD is a rhombus. Find the co-ordinates of D.	(1)
(v) Calculate the perpendicular distance from A to L_2 .	(1)
(vi) Hence, or otherwise, calculate the area of the rhombus ABCD.	(2)

Question 3 continues on the next page.

Question 3 (continued)

(b) Calculate the size of angles α and β giving reasons for your answer. (2)

(c) Prove that $\Delta BAC \parallel \mid \Delta DAE$

Marks

Marks

Question 4 (Answer in a separate booklet)	
a) Determine the value of A, B and C in the following.	(3)
$2x^{2} + 6x + 9 \equiv A(x+2)(x-1) + B(x+2) + C$	
b) The first three terms of a series are 3, 6 and 12 (leave your answers in index for	orm).
(<i>i</i>) What is the value of T_8 ?	(1)
(<i>ii</i>) What is the sum of the first fifteen terms?	(1)
c) The first multiple of seven after 130 is 133. What is the sum of all the multiples of seven between 130 and 500?	(4)
d) What is the maximum value for S_n ?	(3)
$S_n = 1 + \frac{\sin\theta}{2} + \frac{\sin^2\theta}{4} + \frac{\sin^3\theta}{8} + \dots$	

Question 5 (Answer in a separate booklet) 12 (a) The quadratic equation $2x^2 - 3x + 6 = 0$ has roots α and β . Find the value of: (*i*) $\alpha + \beta$ (1)

(ii)
$$\alpha\beta$$
 (1)

$$(iii) \alpha^2 + \beta^2 \tag{2}$$

(b) Differentiate
$$y = \sin 2x^{\circ}$$
. (2)

(c) Copy the graph shown below into your answer booklet and, on the same set of axes, sketch the curve of the derivative function. (2)

(d) Consider the curve $y = 12x^3 - 3x^4$.

Find the stationary points and determine their nature.

(4)

Marks

Marks

Question 6 (Answer in a separate booklet)	12
(a) (i) State the period of the equation $y = 3 - \cos 2x$.	(1)
(ii) Graph $y = 3 - \cos 2x$ for $0 \le x \le \pi$.	(3)

(b)

(i) Show that the curves $y = \sin x$ and $y = \sqrt{3} \cos x$ intersect at $x = \frac{\pi}{3}$ and $x = \frac{4\pi}{3}$. (1) (ii) Hence determine the area enclosed between the curves for $0 \le x \le 2\pi$. (3)

If the area enclosed by this curve $y = 4 - \sqrt{2x}$, the x-axis and the y-axis is rotated about the y-axis, find the volume of the solid of revolution formed.

(4)

Question 7 (Answer in a separate booklet)	Marks 12
(a) The mass M kg of a radioactive substance present after t years is given by	
$M = 10e^{-kt}$	
where k is a positive constant. After 100 years the mass has been reduced to 5 kg.	
(i) What was the initial mass?	(1)
<i>(ii)</i> Find the value of <i>k</i> .	(1)
<i>(iii)</i> What amount of radioactive substance would remain after a period of 1000 years?	(1)
(iv) How long would it take for the initial mass to reduce to 8kg?	(2)
(b) A student attaches an air pressure pump to his bike tyre to inflate the tyres. The rate of change of the pressure in the tyre is given by $\frac{dP}{dt} = \frac{t}{2} - \frac{1}{8}$ units of pressure/sec	
where t is the time after pumping has started.	
After 4 seconds of pumping, the pressure in the tyre is 15 units.	
(i) What is the initial pressure in the tyre?	(2)

(ii) The bike tyre will burst when the pressure reaches 40 units of pressure. At what time does this occur? (answer to the nearest second). (2)

(3)

(c) Determine the values of x in the following equation.

$$3 - 4\cos^2(2x) = 0 \qquad 0 \le x \le \pi$$

Question 8 (Answer in a separate booklet)

(a) (i) A is the point (1, 1) and B is the point (4, 1). A point P(x, y) moves such that $PA \perp PB$.

Show that the locus of P is given by
$$x^2 - 5x + y^2 - 2y = -5$$
. (3)

Marks

12

(2)

- (ii) Give a detailed geometric description of the locus in part (i).
- (b) The cross-section of a metal object is formed as shown in the figure below.

The cross-section consists of a semi-circle *AXC*, centred at *O* and radius *r*, and a sector *ABC* of radius 2r, centred at *A* with angle θ .

- (*i*) What is the perimeter *AXCB* of the object in terms of *r* and θ ? (2)
- (ii) If the area of the cross-section is fixed at 4 square units, show that the perimeter in part (i) can also be expressed as(2)

$$P = \frac{4}{r} + r\left(2 + \frac{\pi}{2}\right)$$

(*iii*) Show that the perimeter in part (ii) is smallest when $r^2 = \frac{8}{4 + \pi}$. (3)

Question 9 (Answer in a separate booklet)

(a) The volume formed by rotating the curve $y = \log_e x$ about the x – axis between x = 2 and x = 6 can be expressed as:

Volume =
$$\pi \int_{2}^{6} (\log_e x)^2 dx$$

Use Simpson's Rule with three function values to find an approximation for the volume of the solid of revolution formed.

(b) A particle is moving in a straight line. Its displacement, x metres, from the origin, O, at time t seconds, where $t \ge 0$, is given by

$$x = 4 + 3t e^{-2t}$$

- (i) Show the velocity of the particle is given by $\dot{x} = 3e^{-2t}(1-2t)$. (2)
- (*ii*) Show the particle is at rest when $t = \frac{1}{2}$. (1)
- *(iii)* Find the greatest possible total distance the particle could travel. *(3)*
- (c) An object is moving on the *x* axis. The graph below shows the acceleration $a = \frac{d^2x}{dt^2}$.

(3)

Question 10 (Answer in a separate booklet)12Consider the function $y = (x - 1) \log_e 2x$.(i) What is the domain of this function?(1)(ii) Find the x-intercepts of the function.(2)(iii) Show that the gradient of the curve is given by $\frac{dy}{dx} = \frac{x - 1}{x} + \log_e 2x$.(1)

(iv) Determine the gradient of the function at
$$x = \frac{1}{2}$$
 and at $x = 1$. (2)

(v) Without further calculation, determine whether the function has a maximum or minimum value. Justify your conclusion.(2)

(vi) By using any of the results above, show that
$$\int_{\frac{1}{2}}^{1} \log_e 2x \, dx = \log_e 2 - \frac{1}{2} \qquad (4)$$

Marks

STANDARD INTEGRALS

 $\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$ NOTE : $\ln x = \log_e x$, x > 0

a)	2(4x-1) - 13x = 8 - 2 - 13x	1 correct solution
,	=-5x-2	an equation
b)	7, 1, -5	2 correct solution 1 either showing
	d = 1 - 7 $d = -5 - 1$ $a = 7$	$T_n = 7 + (n-1) \times -6$
	= -6 = -6	$\vec{OR} d = -6$
	$T_n = a + (n - 1)d$	
	$= 7 + (n-1) \times - 6$	
	= 7 - 6n + 6	
c)	= 13 - 6n (as required)	3 solution correct
0	$ 2x-5 \ge 3$	2 both solutions but no
	2x - 5 > 5 or $-(2x - 5) > 52x > 8$ $2x + 5 > 3$	number line
	2x > 6 $-2x + 3 > 5x > 4$ $-2x > -2$	I only one correct solution
	x < 1 2x 2	
	1 4	
4)	3	2 correct solution
a)	$y = \cos^3 x$	1 any one of $-$, 3, $\sin x$
	$= (\cos x)^3$	or $\cos^2 x$ absent from
	$dy = 3(\cos r)^2 \times \sin r$	correct solution
	$\frac{dx}{dx} = 5(\cos x) \times -\sin x$	
	$= -3\sin x \cos^2 x$	
e)	У	1 correct graph showing both r and v intercepts
	Î	both x and y intercepts
	-2	
f)	• 	2 both a and b correct
1)	$\frac{5}{2+\sqrt{3}} = a + b\sqrt{3}$	1 multiplying numerator
	$5 - 2 - \sqrt{3}$	and denominator by $2 - \sqrt{3}$
	LHS = $\frac{3}{2+\sqrt{3}} \times \frac{2}{2-\sqrt{3}}$	2 13
	$- !0 - 5\sqrt{3}$	
	$=\frac{1}{4-3}$	
	$= 10 - 5\sqrt{3}$ $\therefore a = 10, b = -5$	
g)	$\log_5 125 = \log_5 5^3$	1 correct solution
	$= 3\log_5 5$	
	$= 3 \times 1$	
	= 3	

(a)	For real roots, $\Delta \ge 0$	2 marks correct solution
	$\left(-4\right)^2 - 4\mathbf{x}2k \ge 0$	1 mark for getting to line 3
	$16-8k \geq 0$	Note: taking a few particular values of k and
	$-8k \geq -16$	substituting in is not a general proof
	$k \le 2$ as required	
(b) (i)	$\int x^{\frac{1}{3}} + x^2 dx = \frac{3}{4}x^{\frac{4}{3}} + \frac{x^3}{3} + c \text{ or } \frac{3}{4}x^{\frac{3}{4}x} + \frac{x^3}{3} + c$	2 marks- correct integral including +c 1 mark – 1 error in answer Note: Many students need to revise index
		laws so the can rewrite $\sqrt[3]{x}$ correctly in index form
<i>(ii)</i>	$\frac{1}{2}e^{2x} - \frac{1}{3}\cos 3x + c$	2 marks – correct answer 1 mark – one integral correctly found Note: Students should use the Table of Standard Integrals to correctly fine co- efficients
(c)	Rewrite given equation as $y^2 = -4(x-2)$ is of the form	2 marks for correct vertex and directrix equation
	$(y-k)^{-} = -4a(x-h)$ where $a = 1$	Imark for correct vertex OR correct
	$\frac{y}{y}$	directrix from incorrect vertex
		NOTE!!!!: the focal length is a LENGTH so stating that $a=-1$ (as many did!!) is VERY WRONG.
		Main other error was in not rearranging terms to correct form which requires x to be first term in bracket.
	-5-	
	-10	
	Directrix is $x=3$	
(d)	$\frac{dy}{dx} = 3\sin 2x$ $y = -\frac{3}{2}\cos 2x + c$	2 marks- correct solution 1 mark correct Line 2 OR incorrect integral but correct finding of constant from error.
	(0,0) $0 = -\frac{3}{2}\cos 0 + c \therefore \ c = \frac{3}{2}$	
	$\therefore \qquad y = -\frac{3}{2}\cos 2x + \frac{3}{2}$	
(e)	$\tan \theta = -2$	2 marks – correct solutions, including
	Related acute = $63^{\circ}26' = 1.107148718^{\circ}$	reasonable approximations in terms of π
	$\theta = \pi - 1.107148718^{c}$ or $\theta = 2\pi - 1.107148718^{c}$	1 mark – correct answer in degrees OR 1
	$\theta \approx 2.03 \text{ or } 5.18$	radians but in first or third quadrants OR correct radian answers from making -2 the radians

(ai)	(0,2)	1 mark – correct answer must
(aii)		1 mark – correct answer
()	$y - \frac{1}{4}x - 5$	
(aiii)	(4,0)	1 mark – correct answer
(aiv)	<i>CD</i> must be same length as <i>AB</i> and parallel to it, so D is (4.5)	1 mark – correct answer
(av)	$L_{2}:3x - 4y - 12 = 0 A(0,2)$ $d_{1} = \frac{ ax_{1} + by_{1} + c }{\sqrt{a^{2} + b^{2}}}$ $d_{1} = \frac{ 3 \times 0 - 4 \times 2 - 12 }{\sqrt{3^{2} + 4^{2}}}$ $d_{1} = \frac{ -20 }{5}$ $d_{1} = 4$	1 mark – correct answer
(avi)	A rhombus is also a parallelogram $A = bh_{\perp}$ $= 5 \times 4$ = 20 square units	2 marks – correct area or correct from error in (v) 1 mark – correct length of BC or AD
(b)	100= α +30(exterior angle of triangle <i>AEB</i> equals sum of interior opposite angles) $\alpha = 70$ 40+70+ $\beta = 180$ (angle sum of triangle <i>ACD</i>) $\beta = 70$	2 marks – correct angles with correct reasons given for the approach taken 1 mark – correct angle with correctly argued reasons
(c)	In ΔBAC and ΔDAE , $\frac{AB}{AE} = \frac{6}{18} = \frac{1}{3}$ $\frac{AC}{AD} = \frac{4}{12} = \frac{1}{3}$ $\therefore \frac{AB}{AE} = \frac{AC}{AD}$ $\angle BAC$ is a common angle $\therefore \Delta BAC \parallel \Delta DAE$ (two pairs of corresponding sides in proportion about the same INCLUDED angle)	3 marks – correctly argued proof 2 marks – either omitting test used to prove similarity OR incorrect/inadequate wording of test OR not directly identifying names of corresponding sides (only referring to lengths) OR only giving test reason and omitting which triangle are similar 1 mark – finding common angle OR giving numerical values of correct corresponding sides

(a)		
	$2x^{2} + 6x + 9 \equiv A(x+2)(x-1) + B(x+2) + C$	3 marks – one mark for each correct answer.
	coefficient of x^2	
	A = 2	
	let $x = -2$	
	$2 \times (-2)^2 + 6 \times (-2) + 9 = 0 + 0 + C$	
	C = 5	
	let $x = 1$	
	$2 \times 1^2 + 6 \times 1 + 9 = 0 + 3B + 5$	
	B = 4	
(b) (i)		I mark connect answer
	$T_1 = 3$ $T_2 = 6$ $T_3 = 12$	1 murk – correct answer
	$\frac{I_2}{T_1} = \frac{I_3}{T_2} = 2 = r$	
	$T = ar^{n-1}$	
	2^{7}	
	$= 3 \times 2$	
(b) (ii)	$T_{15} = 3 \times 2^{14}$	<i>1mark – correct answer – non-</i>
	$a = a(r^n - 1)$	index form accepted.
	$S_{15} = \frac{r}{r-1}$	
	$=\frac{3(2^{15}-1)}{2}$	
	2 - 1	
(c)	= 98301 T = 133	4 marks – correct solution
(0)	$T_{1} = 133$ $T_{n} = 133 + (n - 1) \times 7$	+ marks correct solution
	$n = 135 + (n - 1) \times 7$ = 126 + 7n	3 marks – correct value for last term in series
	120 - 76	
	126 + 7n < 500	2 marks – correct value for n
	7n < 374	1 mark – expression for T_n
	n < 53.43	
	n = 53	
	$T_{xy} = 126 + 7 \times 53$	
	= 497	
	$S = \frac{n}{(\alpha + b)}$	
	$S_n = \overline{2}^{(a+1)}$	
	$=\frac{53}{2}(133+497)$	
	= 16695	

Question 4 (continued)

(a)(i)	a = 2 $b = -3$ $c = 6\alpha + \beta = -\frac{b}{2} = -\frac{-3}{2} = \frac{3}{2}$	1 mark – correct answer
(ii)	$\frac{a}{\alpha\beta} = \frac{c}{\alpha} = 3$	1 mark – correct answer
(iii)	u u	2 marks – correct answer
	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$	1 mark correct expression
	$=$ $\frac{9}{4} - 6 = -\frac{15}{4}$	
<i>(b)</i>	Cannot use calculus on trig functions expressed in	2 marks – correct derivative
	aegrees – must be radians.	1 mark – recognition of need for
	$y = \sin 2x^2 = \sin \frac{2\pi}{180}x$	radians NOTE: When using calculus with
	$\therefore \frac{dy}{dx} = \frac{2\pi}{180} \cos \frac{2\pi}{180} x = \frac{\pi}{90} \cos \frac{\pi x}{90}$	trig functions, you must use RADIANS.
(c)	y , / _ / _ /	2 marks – correct graph
		<i>I mark – correct x-intercepts</i>
		In many diagrams, the two
		Use different colours ,dotted
	< $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	lines, etc to identify each and label
	-2-	
	-4	
(d)	$y = 12x^3 - 3x^4$	A marks correct points and
	$\frac{dy}{dx} = 36x^2 - 12x^3$	<i>ature determined</i>
	For SP $\frac{dy}{dx} = 0$	3 marks – correct points but incomplete analysis of second
	$\therefore 12x^2(3-x) = 0$	derivative or no y values.
	x = 0 or $x = 3$	2 marks – correct first derivative
	$\frac{d^2 y}{d^2 y} = 72r - 36r^2$	and x values determined
	$\frac{d^2}{dx^2} = 72x - 50x$	1 mark – correct derivatives
	At $x = 0 \frac{d^2 y}{dx^2} = 0$ so possible POI	
	At x = $3 \frac{d^2 y}{dx^2}$ = -108 < 0 : max	
	: SP at (0, 0) POI	
	(3, 81) maximum value	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	y -100 0 50	

a) i)	i) period = $\frac{2\pi}{2}$	1 correct answer
	2	
ii)	$=\pi$	3 correct graph
	5^{\pm} $y = 3 - \cos 2x$	2 $y = -\cos 2x$ at
	4	start other than 2
	3	on y-axis or
	2	$y = 3 + \cos 2x$ or
	1	$y = 2 - \cos x$ 1 $y = \cos 2x$
	π π π 2π 5π π X	$1 y \cos 2x$
	$-1^{\ddagger}_{\downarrow} \frac{\pi}{6} \frac{\pi}{3} \frac{\pi}{2} \frac{2\pi}{3} \frac{5\pi}{6} \pi$	
b) i)	$x = \frac{\pi}{2}$ $y = \sin\left(\frac{\pi}{2}\right)$ $y = \sqrt{3} \cos\left(\frac{\pi}{2}\right)$	1 showing
		both points
	$=\sqrt{\frac{3}{2}} = \sqrt{\frac{3}{2}}$	OR using tan to
	4π (4π) Γ (4π)	find the 2
	$x = \frac{\pi}{3} y = \sin\left(\frac{\pi}{3}\right) \qquad \qquad y = \sqrt{3} \cos\left(\frac{\pi}{3}\right)$	solutions
	$= -\sin\left(\frac{\pi}{3}\right) = -\sqrt{3} \cos\left(\frac{\pi}{3}\right)$	
	$= -\sqrt{\frac{3}{2}} = -\sqrt{\frac{3}{2}}$	
	\mathbf{OB}	
	$\sqrt{3} \cos x = \sin x$	
	$1 = \sin \frac{x}{\sqrt{3} \cos x}$	
	$1 = \frac{1}{\sqrt{3}} \tan x$	
	$\tan x = \sqrt{3}$ 1st quadrant $\angle \frac{\pi}{3}$	
	$\tan x > 0$ quad 1 and 3	
	$x=\frac{\pi}{3},\frac{4\pi}{3}$	

Question 6 (continued)

ii)	$c^{\frac{4\pi}{2}}$	3 correct solution2 lof the integral
	3	sections correct
	$Area = (\sin x - \sqrt{3} \cos x) dx$	with correct
	$\int \frac{\pi}{2}$	incorrect integral
	3	1 1 correct integral
	$= [-\cos x - \sqrt{3} \sin x]$	only OR 2
	$\begin{pmatrix} (4\pi) & (4\pi) \end{pmatrix} \begin{pmatrix} (4\pi) & (\pi) & (\pi) \end{pmatrix}$	integrals incorrect
	$= \left(-\cos\left(\frac{4\pi}{3}\right) - \sqrt{3}\sin\left(\frac{4\pi}{3}\right)\right) - \left(-\cos\left(\frac{\pi}{3}\right) - \sqrt{3}\sin\left(\frac{\pi}{3}\right)\right)$	with incorrect limits OR area
	$= \left(\begin{array}{ccc} -\frac{1}{2} - \sqrt{3} \times -\frac{\sqrt{3}}{2} \end{array} \right) - \left(\begin{array}{ccc} -\frac{1}{2} - \sqrt{3} \times \frac{\sqrt{3}}{2} \end{array} \right)$	broken into 3 regions with
	$= \left(\frac{1}{2} + \frac{3}{2}\right) - \left(-\frac{1}{2} - \frac{3}{2}\right)$	correct answer of
	$\begin{pmatrix} 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 2 \end{pmatrix}$	4 units2 for the
	$=\left(\frac{4}{2}\right)-\left(-\frac{4}{2}\right)$	region
	= 2 + 2	8
	$4\pi m i \sigma 4\pi m i t \sigma^2$	
	Area is 4 units	
c)	y intercept when $x = 0 y = 4$	4correct solution
	$v = 4 - \sqrt{2x}$	3 correct integral
	$\sqrt{2x} = 4 - y$	to *** OR no pi in solution.
	$2x = \left(4 - y\right)^2$	2 correct value to x^2
	$x = \frac{\left(4 - y\right)^2}{2}$	1correct y intercept
	$x^2 = \frac{(4-y)^4}{2}$	
	4	
	Volume = $\pi \int_{0}^{4} \frac{(4-y)^{4}}{4} dy$	
	$= \frac{\pi}{4} \left[\frac{(4-y)^{5}}{5 \times -1} \right]_{4}^{0} ***$	
	$= -\frac{\pi}{20} \Big\{ (4-4)^5 - (4-0)^5 \Big\}$	
	$= -\frac{\pi}{20} \times -1024$	
	$=\frac{256\pi}{5} units^3$	

(a)- (i)	$M = 10e^{-kt}$	1 mark – correct answer
	$At \ t = 0$	
	$M = 10e^{-k \times 0}$	
	M = 10 therefore initial mass is 10kg	
(ii)	$M = 10e^{-kt}$	l mark correct answer
	$at \ t = 100 \ m = 5$	1 mark – correct answer
	$5 = 10e^{-100k}$	
	$\frac{\ln\left(\frac{1}{2}\right)}{-100} = k$	
	$k = \frac{\ln 2}{100} = 6.93 \times 10^{-3}$	
(iii)	$M = 10e^{-1000k}$	1
	$= 9.765 \times 10^{-3} kg$	1 mark – correct answer
(iv)	$8 = 10e^{-kt}$	2 mark – correct answer
	$t = \frac{\ln(0.8)}{l_r}$	
	t = 32.19 year	Imark – correct approach with arithmetic error
(b)-(i)		
	$\frac{dr}{dt} = \frac{t}{2} - \frac{1}{8}$	2 marks – correct answer
	$P = \frac{t^2}{4} - \frac{t}{8} + C$	<i>1 mark – correct integration with C</i>
	t = 4 $P = 15$	
	$15 = \frac{4^2}{4} - \frac{4}{8} + C$	
	<i>C</i> = 11.5	
	$P = \frac{t^2}{4} - \frac{t}{8} + 11.5$	
	$At \ t = 0 \ P = 11.5$	
	Therefore initial pressure is 11.5 units.	

Question 7 (continued)

(b)-(ii)	$P = \frac{t^2}{4} - \frac{t}{8} + 11.5$	2 marks – correct answer
	$40 = \frac{t^2}{4} - \frac{t}{8} + 11.5$	1 mark – correct approach reaching two possible answers
	$320 = 2t^2 - t + 92$	(one neg and one positive) with one arithmetic error.
	$t = \frac{1 \pm \sqrt{1825}}{4} = 10.9 \text{ sec} \approx 11 \text{ sec} \qquad as \ t \ge 0$	
	-	
(c)	$3 - 4\cos^2(2x) = 0 \qquad 0 \le x \le \pi$	3 marks – correct answer
	$\cos(2x) = \pm \frac{\sqrt{3}}{2} \qquad \qquad 0 \le 2x \le 2\pi$	2 marks – incomplete domain
	$2x = \frac{\pi}{6}, \frac{2\pi}{6}, \frac{4\pi}{6}, \frac{5\pi}{6}$	1 mark – failure to recognise \pm
	$x = \frac{\pi}{12}, \frac{\pi}{12}, \frac{2\pi}{12}, \frac{5\pi}{12}$	

(a) (i)	$m_{PA} \times m_{PB} = -1$	3 marks – correct demonstration
	$\frac{y-1}{1} \times \frac{y-1}{4} = -1$	2 marks – product of gradients
	x-1 $x-4$	expressed correctly but
	$(y-1)^2 = -(x-1)(x-4)$	subsequent error
	$y^{2} - 2y + 1 + (x - 1)(x - 4) = 0$	
	$y^2 - 2y + 1 + x^2 - 5x + 4 = 0$	1 mark – both gradients correct
	$x^2 - 5x + y^2 - 2y = -5$	
(ii)	Completing the square:	
	$\left(x - \frac{5}{2}\right)^2 - \frac{25}{4} + (y - 1)^2 - 1 + 5 = 0$	2 marks – complete description
	$\left(x - \frac{5}{2}\right)^2 + (y - 1)^2 = \left(\frac{3}{2}\right)^2$	<i>1 mark – squares completed correctly.</i>
	The locus is a circle centred at $\left(\frac{5}{2}, 1\right)$ with radius $\frac{3}{2}$	
(b) (i)		
	Perimeter of semi-circle AXC = πr	2 marks – correct perimeter
	Hence perimeter AXCB = $\pi r + 2r\theta + 2r$	1 mark _at least one of the first
		two quantities correct
(bii)	$Area = A_{\text{sector}} + A_{\text{semi circle}}$	
	$4 = \frac{1}{2}(2r)^2\theta + \frac{1}{2}\pi r^2$	2 marks – correct proof
		1 mark – correct expression for
	$4 = 2r^2\theta + \frac{1}{2}\pi r^2$	θ substituted into P
	$2r^2\theta = 4 - \frac{1}{2}\pi r^2$	
	$\Theta = \frac{2}{r^2} - \frac{\pi}{4}$	
	$\therefore P = 2r + \pi r + 2r \left(\frac{2}{r^2} - \frac{\pi}{4}\right)$	
	$P = 2r + \pi r + \frac{4}{r} - \frac{\pi r}{2}$	
	$P = \frac{4}{r} + 2r + \frac{\pi r}{2}$	
	$P = \frac{4}{r} + r\left(2 + \frac{\pi}{2}\right)$	

Question 8 (continued)

(iii)	$P = 4r^{-1} + 2r + \frac{\pi r}{2}$ $\frac{dP}{dr} = -4r^{-2} + 2 + \frac{\pi}{2}$ $\frac{d^2P}{dr^2} = 8r^3 > 0 \text{ for all } r > 0 \text{ tf minimum}$	 3 marks – correct and complete demonstration 2 marks – correct derivative and expression for r² but subsequent error or no proof of minimum
	For min $\frac{dP}{dt} = 0$ $\therefore \frac{4}{r^2} = 2 + \frac{\pi}{2}$	<i>l mark – correct derivative, no proof of a minimum or algebraic error.</i>
	$r^2 = \frac{8}{4+\pi}$	

(a)	Vol = $\pi \int_{2}^{6} (\log_e x)^2 dx \approx \frac{(6-2)\pi}{6} [(\ln 2)^2 + 4(\ln 4)^2 + (\ln 6)^2]$	3 marks – correct solution 2 marks – correct Simpson's rule except for loss of π or incorrect or
	$=\frac{2\pi}{3} \ge 11.37810323$	omitted y^2 or calculation error 1 mark – a correct use of Simpson's
	$= 23.83 u^3$	$\int_{0}^{0} \log_{e} x dx$
		rule on $\sqrt[3]{2}$ NOTE: many students misinterpreted $(\log_e x)^2$
(b) (i)	$\dot{x} = 3t 2e^{-2t} + e^{-2t}.3$ = $3e^{-2t}(1-2t)$	2 marks for correct velocity expression 1 mark for correct application of
(b)	$-2x\frac{1}{2}$	product rule 1 mark – either correct solution
(ii)	Either substitute $t = \frac{1}{2}$, $3e^{-2}\left(1 - 2x\frac{1}{2}\right) = 0$ i.e. particle is at rest.	NOTE: many students either did not write a conclusion for the substitution
	$e^{-2t}(1-2t) = 0$ $\therefore e^{-2t} = 0 \text{ or } 1-2t = 0$	approach OR ignored the possibility of $e^{-2t} = 0$ OR omitted a justification
	OR Solve $e^{-2t} \neq 0$ as $e^{-2t} > 0$ $t = \frac{1}{2}$ as req'd	for not solving
(b) (iii)	When $t=0, x=4$	3 marks – correct solution
(111)	When $t=0.5$, $x = 4 + \frac{5}{2e}$	2 marks – establishing starting
	As $t \to \infty$, $e^{-2t} \to 0 \therefore x \to 4$	position, maximum and limit
	x=4	1 mark – finding max displacement
	3-	NOTE: many students believed the max displacement
	<pre> ************************************</pre>	represented the greatest
	Max distance = $2 \times \frac{3}{2e} = \frac{3}{e}$ metres	
(c)	Graph had to start at (0,-3), have a point of inflection when $t = 1$, and a rel max at $t=3$	3 marks – correct graph 2 marks – 1 error 1 mark – 2 errors
	$\underbrace{\leftarrow}$	
	-2-	
	-3	
	-4	

(a) (i)	$y = (x-1)\log_e 2x$	
	Domain of $(x-1)$ is all real x while the domain of $\ln x$ is $x>0$.	1 mark –correct domain
	Hence the domain of the product is $x > 0$.	
(ii)	x-intercepts when $y = 0$. Hence $x = 1$ OR ln $2x = 0$	2 marks – both intercepts correct 1 mark – one intercept correct
	So $x = 0.5$	
(iii)	$\frac{dy}{dx} = \ln 2x \times 1 + (x-1) \times \frac{1}{x}$	1 mark –correct derivative
	$=\frac{x-1}{x} + \ln 2x$	
(iv)	$\frac{1}{2}$ $\frac{-\frac{1}{2}}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	2 marks – both gradients correct
	$At x = \frac{1}{2}, \frac{1}{dx} = \frac{1}{\frac{1}{2}} + \ln 2 \times \frac{1}{2} = -1$	1 mark – one gradient correct.
	At $x = 1 \frac{dy}{dx} = \ln 2$	
(v)	The curve has a minimum as the gradient changes from negative to positive and is continuous throughout the sub-domain stated.	2 marks - statement of a minimum supported with both statements 1 mark statement of a minimum with some appropriate support
(vi)	From part (iii)	
	$\frac{d}{dx} \{ (x-1) \ln 2x \} = 1 - \frac{1}{x} + \ln 2x$	4 marks – correct process to demonstrate required result
	$\therefore \int_{-\frac{1}{2}}^{1} \frac{d}{dx} \{ (x-1)\ln 2x \} = \int_{-\frac{1}{2}}^{1} 1 dx - \int_{-\frac{1}{2}}^{1} \frac{1}{x} dx + \int_{-\frac{1}{2}}^{1} \ln 2x dx$	3 marks – correct up to final substitution
	$\int \frac{J_1}{2} dx \qquad \int \frac{J_1}{2} \int \frac{J_1}{2} dx \qquad \int \frac{J_1}{2} dx$	2 marks – integral and limits mostly correct
	$\left[(x-1)\ln 2x \right]_{\frac{1}{2}}^{1} = \left[x - \ln x \right]_{\frac{1}{2}}^{1} + \int_{\frac{1}{2}} \ln 2x dx$	<i>1 mark – correct setting out for integral using the derivative</i>
	$\therefore \int_{\frac{1}{2}}^{1} \ln 2x dx = (0-0) - \left[(1-0) - \left(\frac{1}{2} - \ln \frac{1}{2} \right) \right]$	
	$= -\frac{1}{2} - \ln 1 + \ln 2 = \ln 2 - \frac{1}{2}$	