

NORTHERN BEACHES SECONDARY COLLEGE

MANLY SELECTIVE CAMPUS

HIGHER SCHOOL CERTIFICATE

Trial Examination

2017

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3hours
- Use <u>black</u> pen
- Write your Student Number at the top of each page
- Section I Multiple Choice use the Answer Sheet provided
- Section II Free Response use a separate booklet for <u>each</u> question.
- Board approved calculators and templates may be used.
- Reference sheet provided.

Section I Multiple Choice

- 10 marks
- Attempt all questions

Section II – Free Response

- Questions 11-16 90 marks
- Each question is of equal value
- All necessary working should be shown in every question.

Weighting: 40%

<u>Section 1 Multiple Choice: Attempt Questions 1 – 10</u>

Answer questions on the provided answer sheet. Allow approximately 15 minutes for this section.

- Q. 1 36.1984 written in scientific notation, correct to 4 significant figures is:
 - (A) 3.620×10
 - (B) 3.62×10
 - (C) 3.620×10^{-1}
 - (D) 3.6198×10^{-1}
- Q. 2 The inequalities which define the shaded region shown in the diagram are:

- (A) $x^2 + y^2 \ge 4$ and $y < x^3$
- (B) $x^2 + y^2 \ge 4 \text{ and } y \ge x^3$
- (C) $x^2 + y^2 \le 4 \text{ and } y > x^3$
- (D) $x^2 + y^2 \le 4$ and $y < x^3$

- Q.3 A line in the form of px + qy = 5 passes through the points (0, 5) and (2, 1). The gradient (*m*) and *y*-intercept (*b*) are:
 - (A) m = 1 b = 2
 - (B) m = -2 b = 5
 - (C) m = 5 b = -2
 - (D) m = 2 b = 1
- Q. 4 The fourth, fifth and sixth terms of an arithmetic series are -3, 5 and 13 respectively. The first term of this series is:
 - (A) 21
 - (B) –11
 - (C) –27
 - (D) 8

Q. 5 Given $\log \frac{a}{b} + \log \frac{b}{a} = \log (a + b)$, then the correct statement below is:

- (A) a + b = 1
- (B) a b = 1
- (C) a = b
- (D) $a^2 b^2 = 1$

Q. 6 The function f(x) is defined by $f(x) = \begin{cases} \frac{4}{x} & :x > 1 \\ 4^x & :x \le 1 \end{cases}$.

What is the value of f(0.5) + f(2)?

- (A) 4
- (B) 10
- (C) 18
- (D) 24

Q. 7
$$\int \frac{x-4}{x^2} dx$$
 can be expressed as:

(A)
$$\frac{1}{2}\ln x^2 + 4x + C$$

- (B) $\ln x^2 + \frac{1}{x} + C$
- (C) $\ln x 4x + C$

(D)
$$\ln x + \frac{4}{x} + C$$

- Q. 8 Which of the following statements is true if (2, -5) is a minimum turning point of f(x) and f(x) = -f(-x)?
 - (A) (-2, -5) is a maximum turning point of f(x)
 - (B) (-2,5) is a minimum turning point of f(x)
 - (C) (-2,-5) is a minimum turning point of f(x)
 - (D) (-2,5) is a maximum turning point of f(x)

- Q. 9 The quadratic equation $x^2 9x + 16 = 0$ has roots α and β . The value of $\sqrt{\alpha} + \sqrt{\beta}$ is:
 - (A) 3
 - (B) $\sqrt{13}$
 - (C) $\sqrt{17}$
 - (D) 17

Q. 10 The diagram shows the graphs of $f(x) = \cos x$ and g(x).

End of Multiple Choice

Section II 90 marks

90 marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations

Question 11: Start A New Booklet

a. Fully factorise $16-2x^3$.

b. Solve
$$|2x-5| < 1.$$
 2

15 Marks

2

c. Evaluate
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x + 1}$$
 2

d. Find
$$\int_{0}^{\frac{\pi}{3}} \cos\left(\frac{x}{2}\right) dx$$
 2

e. Find the values of p and q for which
$$p + q\sqrt{6} = \frac{12\sqrt{6}}{\sqrt{6}-2}$$
.

f. Sketch the graph of
$$(x-2)^2 + y^2 = 4$$
. 2

g. Show that
$$\frac{d}{dx} \left[2x(x-4)^3 \right] = 8(x-1)(x-4)^2$$
. 3

Question 12 Start a New Booklet

15 Marks

a. The vertices of $\triangle ABC$ are A(1, 8) B(7, 4) and C(1,0) as shown below, where AQ is the altitude.

c. What is the value of
$$\sum_{m=1}^{\infty} 5\left(\frac{2}{5}\right)^{m-1}$$
?

d. Find
$$\int \frac{1}{(2x+3)^5} dx$$
. 2

Question 12 continues on the next page.

Question 12 continued:

e.

The points B and E lie on the sides AC and AD respectively of \triangle ACD. The point F lies on AD produced, as shown in the diagram.

- (i) Copy the diagram into your answer booklet. Make your diagram one third of a page.
- (ii) Find the value of *x*, giving reasons.

f The area bounded by the curve $f(x) = \frac{10\sqrt{x}}{x+5}$, the *x*- axis and the line x = 4 is shown in the diagram below.

- Using the Trapezoidal Rule with 5 functional values, determine the approximate area of the shaded region.
 Give your answer correct to two decimal places.
- ii. Is the estimate calculated in part i) greater or less than the exact area ? Give a reason to justify your answer.

1

2

2

Question 13 Start A New Booklet

a. Find
$$\int (1 + \tan x) dx$$

b. Two school buses are travelling along straight roads which intersect at right angles at the point P, as shown in the diagram.

Initially, Bus A is 150km due west of P and is travelling towards P at 50km/hr. At the same time Bus B leaves P and travels due south at 40km/hr. Let d km be the distance between Bus A and Bus B at t hours after the buses start moving.

i. Show that Bus A is
$$(150 - 50t)$$
 km from P after t hours 1

ii. Show that

$$d = \sqrt{4100t^2 - 15000t + 22500} \; ,$$

where *d* is the distance between the buses when 0 < t < 3.

ii. Find the value of t which gives the minimum value of d.Answer correct to one decimal place.

Question 13 continues on the next page.

Page 9 of 32

15 Marks

2

2

Question 13 continued:

c. Find the value of the derivative of
$$y = 4\tan(2x) - \frac{4x^2}{\pi}$$
 when $x = \frac{\pi}{12}$ 2

d. The diagram shows a six pointed star which is drawn using two triangles, $\triangle ABC$ and $\triangle FDE$. The intersection of the two triangles is a regular hexagon.

i. Show that $\triangle AVU$ is an equilateral triangle. 2

2

ii. Similarly $\triangle VEW$, $\triangle WCX$, $\triangle XFY$, $\triangle YBZ$ and $\triangle ZDU$ are all equilateral triangles.

Prove that *ZAWF* is a rhombus.

e. Find, in simplest form,
$$\frac{d}{dx} \left(\frac{\cos x}{1 - \sin x} \right)$$
. 2

Question 14 Start A New Booklet

15 Marks

1

a.	Sketch the graph of $y = \ln(x-4)$, clearly indicating the <i>x</i> -intercept	2
	and any asymptotes.	

c. A particle moves in a straight line such that its displacement *x* in metres is given by

$$x = 70e^{-\frac{t}{10}} - 20t$$
, where t is time in seconds.

i.	Find the initial displacement of the particle.	1
ii.	Will the particle ever come to rest? Justify your answer using appropriate calculations.	2
iii.	Find the distance travelled by the particle in the first 3 seconds.	

Give the answer correct to 2 decimal places.

Question 15 Start A New Booklet

a. The curve f(x) has a minimum turning point at (2, -10). The second derivative **3** is given by the equation f''(x) = 12x - 10. Determine the equation of f(x).

b. Determine the value of k given
$$\int_{-2}^{2} (x^7 - x + k) dx = 16$$
 where k is constant.

c. The amount of caffeine, C(t), in milligrams in your system after drinking a cappuccino is given by

$$C(t) = 105e^{-kt}$$

where k is a constant and t is the time in hours that have passed since drinking the cappuccino.

- (i) After one hour the caffeine in your system has decreased by 40%. 2 Find the exact value of *k*.
- (ii) When will there be 10 milligrams of caffeine remaining in your system? Give the answer correct to 2 significant figures.
- d. A quadratic function is defined by $f(x) = x^2 2kx + (2k + 3)$.
 - i) Find the values of k for which the equation f(x) = 0 has two real roots. 2
 - ii) Find the values of k for which the solutions to f(x) = 0 are both positive. 2
- d. The rate at which the height of a Jacaranda tree grows is given by

$$\frac{dh}{dt} = \frac{110}{\left(t+4\right)^2}$$
 metres per year,

where h is the height of the tree in metres and t is the number of years that have passed since the tree was an established seedling with a height 0.5 m.

Find the height of the tree when t = 5, correct to 1 decimal place.

End of Question 15

15 Marks

2

1

Question 16 Start A New Booklet

a. Penny borrows \$250 000 to be repaid at a reducible interest rate of 0.4% per month. Let A_n be the amount owing at the end of *n* months and M be the monthly repayment.

(i) Show that
$$A_2 = 250\ 000(1.004)^2 - M(1+1.004)$$
 2

(ii) Show that
$$A_n = 250\ 000(1.004)^n - M\left(\frac{(1.004)^n - 1}{0.004}\right)$$
 1

(iii) If she repays the amount in 120 months, then show that
$$1 M = $2627$$
, to the nearest dollar.

(iv) Penny decides to pay off the loan by making monthly payments of 3
 \$3500 instead of \$2627.

Show that Penny will make 84 repayments of \$3500 and then a final part payment of \$1001.64.

b. i Show
$$\frac{\sec\theta}{\csc\theta} = \tan\theta$$
. 1

ii Hence, or otherwise, solve
$$3\sec^2\left(\frac{x}{2}\right) = \csc^2\left(\frac{x}{2}\right)$$
 for $0 \le x \le 2\pi$. 3

Question 16 continues on the next page.

15 Marks

Question 16 continued:

b. The shaded region shown below is rotated around the *y*-axis. The point *A* is the intersection of the curve $y = \ln(3x)$ and the line $x = \frac{e}{3}$.

ii Determine the exact volume of the solid of revolution formed. 3

End of Examination

NBSC – Manly Selective Campus Mathematics Trial - 2017

MSC HSC Trial Examination 2017- Solutions

Q1 A $3.61984 \times 10^1 = 3.620 \times 10^1 (4 \text{ sig })$ Q2 D Inside the circle and below but not including the cubic. Q3 sub (0, 5) into $px + qy = 5$ p(0) + q(5) = 5 5q = 5 q = 1 $\therefore px + y = 5$ p(2) + 1 = 5 p(2) + 1 = 5 p = 2 $\therefore 2x + y = 5$ m = -2 $b = 5$ Q4 $T_4 = -3$ $T_5 = 5$ $T_6 = 13$ $\therefore d = 8$ $T_1 = T_4 - 3d$ = -3 - 3(8) $= -27$ $T_4 = -3$ $T_5 = 5$ $T_6 = 13$ $\therefore d = 8$ $f(0.5) = 4^{\frac{1}{2}} = 2 f(2) = \frac{4}{2} = 2$ $f(0.5) + f(2) = 4$ Q5 A $\log\left(\frac{a}{b}, \frac{b}{b}\right) = \log(a + b)$ $a + b = 1$ Q6 $\int \frac{x}{x^2} - \frac{4}{x^2} dx = \int \frac{1}{x} - 4x^2 dx$ D $= \ln x - \frac{4x^4}{x^1} + C$ $= \ln x - \frac{4x^4}{x^4} + C$ $Q8$ $\int f(x) = -f(-x) \Rightarrow f(-x) = -f(x)$ \therefore function is odd If minimum turning point at (2, -5) then maximum turning point (-2, 5)			Examination 2017- Solutions
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q1	А	$3.61984 \times 10^1 = 3.620 \times 10^1 (4 \text{ sig})$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q2	D	Inside the circle and below but not including the cubic.
$C = \begin{bmatrix} T_{6} & = & 1 \\ T_{6} & = & 1 \\ T_{1} & = & T_{4} - & 3d \\ = & -3 - & 3(8) \\ = & -27 \end{bmatrix}$ $Q^{5} = A = \begin{bmatrix} \log\left(\frac{a}{b} * \frac{b}{a}\right) = \log(a + b) \\ a + b = & 1 \end{bmatrix}$ $Q^{6} = \begin{bmatrix} A \\ f(0.5) = & 4^{\frac{1}{2}} = & 2 \\ f(0.5) + & f(2) = & 4 \end{bmatrix}$ $Q^{7} = \begin{bmatrix} \frac{x}{x^{2}} - \frac{4}{x^{2}} dx = \int \frac{1}{x} - & 4x^{-2} dx \\ f(0.5) = & 4x^{-1} + C \\ = & 1nx - \frac{4x^{-1}}{-1} + C \\ = & 1nx + \frac{4}{x} + C \end{bmatrix}$ $Q^{8} = \begin{bmatrix} f(x) = & -f(-x) \Rightarrow f(-x) = & -f(x) \\ \therefore \text{ function is odd} \\ \text{If minimum turning point at } (2, -5) \text{ then maximum turning point } (-2, 5) \end{bmatrix}$	Q3	В	p(0) + q(5) = 5 5q = 5 q = 1 ∴ px + y = 5 sub (2, 1) into px + y = 5 p(2) + 1 = 5 p = 2 ∴ 2x + y = 5 m = ⁻ 2
Q6 $a + b = 1$ Q6 $f(0.5) = 4^{\frac{1}{2}} = 2$ $f(2) = \frac{4}{2} = 2$ Q7 $\int \frac{x}{x^2} - \frac{4}{x^2} dx = \int \frac{1}{x} - 4x^{-2} dx$ Q7 $\int \frac{x}{x^2} - \frac{4}{x^2} dx = \int \frac{1}{x} - 4x^{-2} dx$ D $= \ln x - \frac{4x^{-1}}{-1} + C$ Q8 $f(x) = -f(-x) \Rightarrow f(-x) = -f(x)$ Q8 $f(x) = -f(-x) \Rightarrow f(-x) = -f(x)$ If minimum turning point at $(2, -5)$ then maximum turning point (-2, 5)	Q4	С	$T_{6} = 13$ d = 8 $T_{1} = T_{4} - 3d$ = -3 - 3(8)
Q7 Q7 f(0.5) + f(2) = 4 $\int \frac{x}{x^2} - \frac{4}{x^2} dx = \int \frac{1}{x} - 4x^{-2} dx$ D $= \ln x - \frac{4x^{-1}}{-1} + C$ $= \ln x + \frac{4}{x} + C$ Q8 D $f(x) = -f(-x) \Rightarrow f(-x) = -f(x)$ \therefore function is odd If minimum turning point at (2, -5) then maximum turning point (-2, 5)	Q5	А	
$= \ln x + \frac{4}{x} + C$ Q8 $f(x) = -f(-x) \Rightarrow f(-x) = -f(x)$ $\therefore \text{ function is odd}$ If minimum turning point at (2, -5) then maximum turning point (-2, 5)	Q6	А	
D ∴ function is odd If minimum turning point at (2, -5) then maximum turning point (-2, 5)	Q7	D	$= \ln x + \frac{4}{2} + C$
	Q8	D	\therefore function is odd
	Q9	C	

		$\alpha + \beta = 9$					
		$\alpha \times \beta = 16$					
		•••• P •••					
		$(\sqrt{\alpha} + \sqrt{\beta})^2 = (\sqrt{\alpha})^2 + 2\sqrt{\alpha}\sqrt{\beta} + (\sqrt{\beta})^2$					
		$= \alpha + \beta + 2\sqrt{\alpha \beta}$					
		$=9+2\sqrt{16}$					
		= 9 + 8					
		= 17					
		$\therefore \sqrt{\alpha} + \sqrt{\beta} = \sqrt{17}$					
Q10		Curve has been lifted by 1 unit vertically and translated $\frac{\pi}{2}$ units to the right					
		therefore					
	C	ulerefore					
	С						
		$g(x) = f\left(x - \frac{\pi}{2}\right) + 1$					

011a	3	2 montrs for some st
Q11a	$16 - 2x^3 = 2(8 - x^3)$	2 marks for correct solution from
	$= 2(2-x)(4+2x+x^2)$	
		correct working
		1 morts for taking
		1 mark for taking out common factor
011h	-1 < 2x - 5 < 1	2 marks for correct
Q11b	4 < 2x < 6	solution from
	$\therefore 2 < x < 3$	correct working
	$\therefore 2 < x < 5$	contect working
Q11c	$2x^2 + 3x + 1$ (2x + 1)(x + 1)	2 marks for correct
C	$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x + 1} = \lim_{x \to -1} \frac{(2x + 1)(x + 1)}{x + 1}$	solution from
	$x \rightarrow -1 \qquad x + 1 \qquad x \rightarrow -1 \qquad x + 1$	correct working
	$x \rightarrow -1 \qquad x \rightarrow -1 \qquad -1$	U
	= -2 + 1	
	= -1	
Q11d	$\frac{\pi}{3}$	2 marks for correct
	$\begin{pmatrix} r \end{pmatrix}$	solution from
	$\int_{0} \cos\left(\frac{x}{2}\right) dx$	correct working
	$\int_{0}^{1} (2)$	
	$-2 \sin \frac{x}{3}$	
	$= 2 \left[\sin \frac{x}{2} \right]_{0}^{\frac{\pi}{3}}$ $= 2 \left(\sin \frac{\pi}{6} - \sin 0 \right)$	
	$\begin{pmatrix} - & - & 0 \\ (& \pi &) \end{pmatrix}$	
	$= 2 \left \sin \frac{\pi}{c} - \sin 0 \right $	
	$= 2 \times \frac{1}{2} = 1$	
	22	
Q11e	$\frac{12\sqrt{6}}{\sqrt{6}-2} = \frac{12\sqrt{6}}{\sqrt{6}-2} \times \frac{\sqrt{6}+2}{\sqrt{6}+2}$	2 marks for correct
	$\frac{1}{\sqrt{6}-2} = \frac{1}{\sqrt{6}-2} \times \frac{1}{\sqrt{6}+2}$	solution from
	1 2 = 1 2 2 2 1 2 2 2	correct working
	$=\frac{72+24\sqrt{6}}{6-4}$	
	0-4	
	$=\frac{72+24\sqrt{6}}{2}$	
	$= 36 + 12\sqrt{6}$	
	$\therefore \qquad p = 36 \text{ and } q = 12$	

Markers Comments

Q12a(i)	$m_{AQ} \times m_{CB} = -1$ $mAQ = -\frac{1}{m_{CB}}$ $m_{CB} = \frac{4-0}{7-1} = \frac{2}{3}$ $\therefore \qquad m_{AQ} = -\frac{3}{2}$	1 mark – correct demonstration from gradient of CB
Q12a(ii)	y = mx + b $y = -\frac{3}{2}x + b$ $x = 1 \implies y = 8$ $8 = -\frac{3}{2} + b$ $b = 8 + \frac{3}{2} = \frac{19}{2}$ $y = -\frac{3}{2}x + 9.5$ 2y = -3x + 19 3x + 2y - 19 = 0	1 mark – correct formula ie. Both gradient and y- intercept correct
a-iii	$D = \frac{ ax + by + c }{\sqrt{a^2 + b^2}}$ (x,y) \Rightarrow (7,4) 3x + 2y - 19 = 0 $D = \frac{ 3 \times 7 + 2 \times 4 - 19 }{\sqrt{9 + 4}}$ $= \frac{ 10 }{\sqrt{13}}$ $= \frac{10\sqrt{13}}{13}$	2 marks – correct solution 1 mark – correct substitution into formula

b	$T_{n} = ar^{n-1}$ $\frac{T_{8}}{T_{5}} = \frac{ar^{7}}{ar^{4}} = r^{3} = \left(\frac{1}{243}\right) \div \frac{1}{9}$ $r^{3} = \frac{1}{27}$ $r = \frac{1}{3}$	2 marks – correct solution. 1 mark – determining expression for <i>r</i> ³
с	$\sum_{m=1}^{\infty} 5\left(\frac{2}{5}\right)^{m-1} - \text{expression is limiting sum therefore}$ $T_1 = a = 5\left(\frac{2}{5}\right)^0 = 5$ $r = \frac{2}{5}$ $S_{\infty} = \frac{a}{1-r}$ $= \frac{5}{1-\frac{2}{5}}$ $= \frac{5}{\frac{3}{5}}$ $= \frac{25}{3}$	2 marks – correct solution 1 mark – correct first term and common ratio identified. -
d	$\int \frac{1}{(2x+3)^5} dx$ = $\int (2x+3)^{-5} dx$ = $\frac{(2x+3)^{-4}}{2 \times -4} + C$ = $-\frac{1}{8(2x+3)^4} + C$	2marks – correct solution 1 mark – incorrect denominator

Markers Comments.

12-a-i a number of students incorrectly interpreted as midpoint

Q13a	$\int \int \int (sinr)$	2 marks correct
2.00	$\int (1 + \tan x) dx = \int \left(1 + \frac{\sin x}{\cos x} \right) dx$	solution from correct
	$= x - \ln \cos x + c$	working
		1 mark correct sinx
		tanx =
Q13b-i		cosx
	Distance from $P = 150$ - distance travelled	1 mark – correct
	= 150 - 50t	demonstration.
Q13b-ii	$d = \sqrt{(150 - 50t)^2 + (40x)^2}$	2 marks correct
	$u = \sqrt{(150 - 50t)^2 + (40x)^2}$ $= \sqrt{22500 - 2 \times 150 \times 50t + 2500t^2 + 1600t^2}$	solution from correct
		working
	$=\sqrt{4100t^2 - 15000t + 22500}$	1 mark correct substitution into
		Pythagoras' Theorem
13b-iii	As $4100t^2 - 15000t + 22500$ is a parabola with $a = 4100$,	2 marks correct
	the parabola is concave up and therefore a minimum.	solution from correct
		working. 1 marks correct <i>x</i> with
	f'(t) = 8200t - 15000	no justification for
	stationary point at $f'(t) = 0$	minimum value
	0 = 8200t - 15000	
	15000	
	$t = \frac{15000}{8200}$	
	= 1.82926	
	= 1.8	
13c	$y = 4\tan(2x) - \frac{4x^2}{2}$	2 marks correct solution from correct
	$\pi' = 4 \times \sec^2(2x) \times 2 - \frac{8x}{\pi}$	working.
	11.	1 mark correct derivative.
	$= 8\left(\sec^2(2x) - \frac{x}{\pi}\right)$	
	π	
	at $x = \frac{\pi}{12}$	
	$\left(\begin{array}{c} & \pi \end{array} \right)$	
	$y' = 8 \left(\sec^2 \left(\frac{2\pi}{12} \right) - \frac{\pi}{12} \right)$	
	$= 8\left(\operatorname{sec}^{2}\left(\frac{\pi}{6}\right) - \frac{1}{12}\right)$	
	$= 8 \left(\left(\frac{2}{\sqrt{3}} \right)^2 - \frac{1}{12} \right)$	
	$=8\left(\frac{4}{3}-\frac{1}{12}\right)$	
	= 10	

10.1		
13di		2 marks correct
	ZUVWXY regular hexagon (given)	solution from
	Interior angle = $\frac{180(6-2)}{6}$	correct
	Interior angle = 6	working with
	= 120°	reasons.
	$\angle AUV = \angle AVU$	1 mark finding
	$= 180^{\circ} - 120^{\circ} (\text{straight } \angle)$	an interior
	$= 60^{\circ}$	angle of
	$\angle VAU = 180^{\circ} - (60^{\circ} + 60^{\circ}) (\angle \text{ sum of } \Delta)$	hexagon
	$= 60^{\circ}$	C
	$\therefore \qquad \Delta AVU \text{ is equilateral}$	
13dii	$\angle ZAW = \angle ZFW$	2 marks correct
	$= 60^{\circ} (\text{equilateral } \Delta s)$	solution from
	$\angle AZF = \angle AWF$	correct
	$= 120^{\circ}$ (\angle of regular hexagon)	working with
	\therefore ZAWF is aparallelogram (opposite $\angle =$)	reasons.
	$AU = AV (\Delta AVU \text{ equilateral})$	
	ZU = VW(given)	1 mark proving
	\therefore ZA = WA	ZAWF is a
	$\therefore ZAWF$ is a rhombus	parallelogram
	(parallelogram with a pair of adjacent sides =)	
13e		2 marks correct
100	$d\left(-\cos r\right)$	solution from
	$\frac{d}{dx}\left(\frac{\cos x}{1-\sin x}\right)$	correct
		working
	$u = \cos x v = 1 - \sin x$ $u' = -\sin x v' = -\cos x$	1 mark correct
	$u' = -\sin x$ $v' = -\cos x$	u' and v'
	$\left \frac{d}{dt}\right = \frac{\cos x}{\cos x} = \frac{-\sin x(1-\sin x) - \cos x(-\cos x)}{2}$	
	$\frac{d}{dx}\left(\frac{\cos x}{1-\sin x}\right) = \frac{-\sin x(1-\sin x) - \cos x(-\cos x)}{\left(1-\sin x\right)^2}$	
	$-\sin x + \sin^2 x + \cos^2 x$	
	$-(1-\sin x)^2$	
	$=\frac{1-\sin x}{2}$	
	$=\frac{1-\sin x}{\left(1-\sin x\right)^2}$	
	1	
	$=\frac{1}{1-\sin x}$	
	1 51157	

Q14a)	y A						
Q1+u)	$\begin{array}{c c} 10 & \text{Vertical Asymptote} \\ x = 4 & x \text{ Intercep} \\ 5 & (5, 0) \\ < 0 & 0 \\ < 0 & 0 \\ < 0 & 0 \\ \end{array}$	× + + + + > > > > > > > > > > > > > > >					2 marks correct answer with 2 nd pt 1 mark correct
	-5	(6,log, 2)					asymptote and x-int
bi)	y' = 16 y' = 0 f $8x^{2}(2x + 3) = 0$	$x^3 + 24x^2$ for a <i>S</i> . <i>P</i> .					4 marks: correct answer 3 marks: correct
		and $x = -\frac{3}{2}$	$\frac{3}{2}$				coordinates and their nature, showing HPOI
	y = 1 a Using a slope tab	and $y = -\frac{2}{4}$	$\frac{23}{4}$ respectively respec	ctively			2 marks: correct co- ords 1 mark: correct first
	x -2	-1.5	-1	0	1		derivative
	y' -32	2 0	8	0	40	-	
	$(-\frac{3}{2}'-\frac{23}{4})$ is a	a minimum a	and "(0,1	l) a ho	rizontal p	point of inflexion	
	Or use of y'' to s y'' = 0 is not suff	how conca icient for a p	vity cha point of i	inge inflectio	on		
ii)	y'' = 48x y'' = 0 for 48x(x + 1) = 0 x = -1,	or possible p	ooints of	inflexi	on		2 marks: correct answer 1 mark: correct second derivative
	or sub x=1 into 2 this point of infle	nd derivativ		rizonta	l point o	of inflection	
iii)		4					3 marks: correct answer 2 marks: correct shape
	5 -2 -1.5 -1 -0	0 (0, 1) 0.5 0 0.5	1				1 mark correct stationary points
	(-1, -3						Cfe applicable
	(-1.5, -5.75	5) ₋₆ .					NOTE some very poor graphs were presented

c)i	$x = 70e^0 - 20(0)$	1 mark correct
	$x = 70 \mathrm{m}$	answer
ii)	$= -7e^{\frac{t}{10}} - 20$	
	= 0 for particle at rest	
	$e^{-\frac{t}{10}} \neq -\frac{20}{7}$	
	since $e^{-10} > 0$ for all	
iii)	from i) t=0 and x=70	1 mark correct
	t=3 x=-8.14	answer
	therefore distance travelled is 78.14m	

015	f''(x) = 12x = 10	
Q15 a	f''(x) = 12x - 10 $f'(x) = 6x^{2} - 10x + c_{1}$	3 marks correct solution from correct working
a		confect working
	stationary points at $f'(x) = 0$ when $x = 2$	2 marks- partial correct/ one
	$f'(2) = 6(2)^2 - 10(2) + c_1 = 0 \implies c_1 = -4$	error
	$f'(x) = 6x^2 - 10x - 4$	
	$f(x) = 2x^3 - 5x^2 - 4x + c_2$	1 mark- partial correct with one
	sub point $(2, -10)$	required process
	$-10 = 2(2)^{3} - 5(2)^{2} - 4(2) + c_{2} \implies c_{2} = 2$	
	$\therefore f(x) = 2x^3 - 5x^2 - 4x + 2$	
Q15		2 marks correct solution from
b	Method 1	correct working
	$\begin{bmatrix} 2 \\ 7 \end{bmatrix} \begin{bmatrix} x^8 & x^2 \end{bmatrix}^2$	1 10 14
	$\int_{-2}^{2} x^{7} - x + k dx = \left[\frac{x^{8}}{8} - \frac{x^{2}}{2} + kx \right]_{-2}^{2}$	1 mark for integration
	(256 4) (256 4)	
	$= \left(\frac{256}{8} - \frac{4}{2} + 2k\right) - \left(\frac{256}{8} - \frac{4}{2} - 2k\right)$	
	= 4k	
	$\therefore \qquad 4k = 16$	
	k = 4	
	Method 2	
	$\int_{-2}^{2} (x^7 - x + k) dx$	
	$= \int_{-2}^{2} (x^{7} - x) dx + \int_{-2}^{2} k dx$	
	$= 0 + \left[kx\right]_{-2}^{2}$	
	(as first function is an odd function)	
	$\therefore 2k - (-2k) = 16$	
	4k = 16	
	k = 4	
Q15	when $t = 0$ $C(0) = 105$	2 marks correct solution from
c(i)	when $t = 1$ $C(1) = 0.6 \times 105 = 63$ and $C(1) = 105e^{-k}$	correct working
	$\therefore 105e^{-k} = 63$	1 mark for using 0.4 in equation
	$e^{-k} = \frac{63}{105}$	and solving with correct process
	105	
	$-k = \ln\left(\frac{63}{105}\right)$	Common error: Using 40%
	$k = -\ln(0.6)$	instead of 60%
L		l

015	1-4	
Q15	$105e^{-kt} = 10$	1 marks correct solution from
c(ii)	$e^{-kt} = \frac{10}{105} = \frac{2}{21}$	correct working
	e^{-105} 21	1 mark if error carried from part
	(2)	i) showing correct process
	$-kt = \ln\left(\frac{2}{21}\right)$	
	$\begin{pmatrix} 2 \end{pmatrix}$	Common error: Rounding to 3
	$t = \ln\left(\frac{2}{21}\right) \div \ln(0.6)$	sig fig (4.60)
015	$t \approx 4.6$ hours (2 sigfig) For 2 real roots $\Delta > 0$	2 months are monther that is a first set
Q15 d(i)		2 marks correct solution from
u(1)	$\Delta = b_2^2 - 4ac$	correct working
	$=(-2k)^2-4(2k+3)$	1 mark for discriminant
	$=4k^2-8k-12$	
	··· ² of the f	
	$4k^2 - 8k - 12 > 0$	
	$k^2 - 2k - 3 > 0$	
	(k + 1)(k - 3) > 0	
Q15	k < -1 or k > 3 Method 1	2 marks correct solution from
d(ii)	For there to be two roots, k must satisfy $k < -1$ or $k > 3$	correct working
u(II)	To there to be two roots, k must satisfy $k < 1$ of $k > 5$	concer working
	Since a>0, parabola is concave up, for there to be two	
	positive roots k must satisfy additional conditions of	1 mark for considering one
	constant term > 0 and $-\frac{b}{2a} > 0$ - see diagram below.	condition
	$2a^{2}$	
	v	
	\uparrow	
	c > 0	
	< > x positive root positive root	Common error:
	x coordinate of Vertex = $-\frac{b}{2a}$	Not finding the other condition
		of k>0
		Line the survey of the state of
	$\therefore c > 0$	Using the quadratic equation and then solving for $x>0$ resulted in
	i.e. $2k + 3 > 0$	algebraic error
	$k > -\frac{3}{2}$	(If no error, successfully found
	2	k>-3/2 condition but failed to
	Also, axis of symmetry $x = -\frac{b}{2a}$ must be > 0	find k>0 condition)
	24	
	$x = -\frac{b}{2a} = \frac{2k}{2(1)} = k$	
	$a^{-} - 2a^{-} 2(1)^{-} k$	
	$\therefore k > 0$	
	Therefore to satisfy all conditions, <i>k</i> must simultaneously	
	satisfy	

	$k > -\frac{3}{2}, k > 0 \text{ and } k > 3$	
	2	
	therefore $k > 3$ satisfies all conditions.	
	Method 2 $\alpha + \beta > 0$ and $\alpha \beta > 0$	
	$\alpha + \beta = -\frac{b}{a} = 2k$	
	$\therefore 2k > 0 \implies k > 0$	
	$\alpha \beta = \frac{c}{a} = 2k + 3$	
	$\therefore 2k+3>0 \implies k>-\frac{3}{2}$	
	2	
Q15	Considering all conditions $k > 3$ Method 1	3 marks correct solution from
e e	5	correct working
	$h = \int 110(t+4)^{-2}dt + 0.5$	2 marks for definite integral but
	0	omitting the 0.5
	$= 110 \left[\frac{(t+4)^{-1}}{-1} \right]_{0}^{5} + 0.5$ $= 110 \left[-\frac{1}{t+4} \right]_{0}^{5} + 0.5$	1 mark for integration
	$-110\left[\frac{1}{1}\right]_{5}^{50}$ + 0.5	
	$-110\left[-\frac{1}{t+4}\right]_{0}^{+0.3}$	
	$= 110 \left[-\frac{1}{9} + \frac{1}{4} \right] + 0.5$	
	$\approx 15.8m$	
	Method 2	
	$h = \int 110(t+4)^{-2} dt$	3 marks correct solution from correct working
	$= -\frac{110}{t+4} + c$	2 marks for integration and
	t + 4 when $t = 0$, h=0.5	constant
	$0.5 = -\frac{110}{4} + c$	1 mark for integration
	c = 28	
	$h = -\frac{110}{t+4} + 28$	
	t + 4 + 23 when $t = 5$	
	$h = -\frac{110}{9} + 28 \approx 15.8$	
	9 20 ~ 15.0	

Question 16		
16 a i)	$P = \$ 250\ 000_{AB} = 1.004_{A_{n}} \text{ Solutions Computer Mathematics Trial - 2017}$ $\Rightarrow A_{1} = 250\ 000(1 \cdot 004) - M$ $A_{2} = A_{1}R - M$ $\Rightarrow A_{2} = [250\ 000(1 \cdot 004) - M](1 \cdot 004) - M$ $A_{2} = 250\ 000(1 \cdot 004)^{2} - 1 \cdot 004M - M$ $A_{2} = 250\ 000(1 \cdot 004)^{2} - M(1 + 1 \cdot 004)$	 2 Marks: Correct solution 1 Mark: correct expression for A₁
16 a ii)	$A_{n} = 250\ 000(1\cdot004)^{n} - M(1+1\cdot004++1\cdot004^{n-1})$ $S_{n} = a \left[\frac{R^{n}-1}{R-1} \right] \text{ and } a = 1, R = 1\cdot004$ $= 250\ 000(1\cdot004)^{n} - M \left[\frac{1\cdot004^{n}-1}{0\cdot004} \right]$	1 Mark: Correct solution Must show serries up to and including 1.004 ⁿ⁻¹
16 a iii)	$A_{120} = 250\ 000(1\cdot004)^{120} - M\left[\frac{1\cdot004^{120} - 1}{0\cdot004}\right]$ $0 = 250\ 000(1\cdot004)^{120} - M(153\cdot631)$ $M = \frac{250\ 000(1\cdot004)^{120}}{153\cdot631}$ $M = 2627\cdot2655 \approx \2627	1 Mark: Correct solution
16 a iv)	$A_{n} = 250\ 000(1\cdot004)^{n} - 3500\left[\frac{1\cdot004^{n} - 1}{0\cdot004}\right]$ $0 = 250\ 000(1\cdot004)^{n} - 875\ 000(1\cdot004^{n} - 1)$ $0 = 250\ 000(1\cdot004)^{n} - 875\ 000(1\cdot004)^{n} + 875\ 000$ $0 = -625\ 000(1\cdot004)^{n} + 875\ 000$ $(1\cdot004)^{n} = \frac{875\ 000}{625\ 000}$ $n\log_{e}\ (1\cdot004) = \log_{e}\left(\frac{875}{625}\right)$ $n = \log_{e}\left(\frac{875}{625}\right) \div \log_{e}(1\cdot004) = 84\cdot286$ $\therefore 84\ \text{full payments and part payment of}$ $0\cdot286(\$3500) = \$\ 1001\cdot64$	 3 Marks: Correct solution. 2 Marks: Correct derivation of <i>n</i> = 84.286 1 Mark:
16 b i)	$\frac{\sec\theta}{\csc\theta} = \left(\frac{1}{\cos\theta}\right) \div \left(\frac{1}{\sin\theta}\right) = \frac{\sin\theta}{\cos\theta} = \tan\theta$	1 Mark: Correct solution

16 b ii)	$3\sec^{2}\left(\frac{x}{2}\right) = \csc^{2}\left(\frac{x}{2}\right) \Rightarrow \frac{3}{\cos^{2}\left(\frac{x}{2}\right)} = \frac{1}{\sin^{2}\left(\frac{x}{2}\right)}$ $\frac{\sin^{2}\left(\frac{x}{2}\right)}{\cos^{2}\left(\frac{x}{2}\right)} = \frac{1}{3} \Rightarrow \tan^{2}\left(\frac{x}{2}\right) = \frac{1}{3}$ $\tan\left(\frac{x}{2}\right) = \pm \frac{1}{\sqrt{3}}$ $0 \le x \le 2\pi$ $\Rightarrow \qquad 0 \le \frac{x}{2} \le \pi \Rightarrow \frac{x}{2} = \frac{\pi}{6}, \frac{5\pi}{6} \Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}$
16 c i)	$x = \frac{e}{3} \rightarrow y = \log_e(3x) \Rightarrow y = \log_e\left(3 \cdot \frac{e}{3}\right) = \log_e(e) = 1$
16 c ii)	$V_{1} = \text{cylinder} = \pi r^{2} h = \pi \left(\frac{e}{3}\right)^{2} \cdot 1 = \frac{\pi e^{2}}{9}$ $V_{2} = \text{solid of revolution} = \pi \int_{0}^{1} x^{2} dy$ $y = \log_{e}(3x) \rightarrow 3x = e^{y} \rightarrow x^{2} = \left(\frac{e^{y}}{3}\right)^{2} = \frac{e^{2y}}{9}$ $V_{2} = \left(\frac{\pi}{9}\right) \int_{0}^{1} e^{2y} dy = \frac{\pi}{9} \left[\frac{1}{2}e^{2y}\right]_{0}^{1} = \frac{\pi}{18} [e^{2} - 1]$ $V = V_{1} - V_{2} = \frac{\pi e^{2}}{9} - \frac{\pi}{18} [e^{2} - 1]$ $V = \frac{\pi(e^{2} + 1)}{18}$