NORTHERN BEACHES SECONDARY COLLEGE

MANLY SELECTIVE CAMPUS

HIGHER SCHOOL CERTIFICATE

Trial Examination

2018

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3hours
- Use black pen
- Write your Student Number at the top of each page
- Section I - Multiple Choice - use the Answer Sheet provided
- Section II - Free Response - use a separate booklet for each question.
- NESA approved calculators and templates may be used.
- Reference sheet provided.

Section I Multiple Choice

- 10 marks
- Attempt all questions

Section II - Free Response

- Questions 11-16 - 90 marks
- Each question is of equal value
- All necessary working should be shown in every question.

Weighting: 40\%

Section 1 Multiple Choice: Attempt Questions 1 - 10

Answer questions on the provided answer sheet.
Allow approximately 15 minutes for this section.

Q1 The point M is the midpoint of the points A and B. The coordinates of A are $(2,-3)$ and the coordinates of M are $(-2,1)$. The coordinates of B are:

A $(-6,5)$
B (5, -6)
C $(0,-1)$
D (-1, 0)

Q2 The correct solution to $|2 x+3| \geq 7$ is:

A $\quad-2 \leq-x \leq 5$
B $x \leq-2, x \geq 5$
C $\quad x \leq-5, x \geq 2$
D $\quad-2 \leq x \leq 2$

Q3 The coordinates of the focus of the parabola $4 y=(x+2)^{2}-4$ is:
A $(-2,0)$
B $\quad(-2,-1)$
C $\quad(-2,-3)$
D $(2,-4)$

Q4
If $\int_{0}^{a}(4-2 x) d x=4$, find the value of a.
A $a=-2$
B $\quad a=0$
C $\quad a=4$
D $\quad a=2$

Q5 The diagram shows the graph of the function $y=f(x)$.

At which point is $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$?
A A
B B
C C
D D

Q6 When the curve $y=e^{x}$ is rotated about the $x-$ axis between $x=-2$ and $x=2$, the volume of the solid generated is given by:

A $\pi \int_{-2}^{2} e^{x} d x$
B $2 \pi \int_{0}^{2} e^{x^{2}} d x$
C $\pi \int_{-2}^{2} e^{x^{2}} d x$
D $\pi \int_{-2}^{2} e^{2 x} d x$

Q7 In the diagram, the graph of the function $y=\sin (k x)$ is given.

Which could be the value of k ?

A $\frac{3 \pi}{2}$
B $\frac{2 \pi}{3}$
C 3
D $\frac{2}{3}$

Q8 Which expression is a term of the geometric series $2 x-4 x^{3}+8 x^{5}-\ldots$
A $\quad-2^{10} x^{19}$
B $\quad 2^{10} x^{19}$
C $\quad-2^{9} x^{19}$
D $\quad 2^{9} x^{19}$

Q9 In the diagram, the graph of the function $y=2^{x+a}+b$ is given

Which could be the values of a and b ?
A $\quad a=1$ and $b=2$

B $\quad a=1$ and $b=-4$
C $\quad a=1$ and $b=-2$
D $\quad a=-1$ and $b=4$

Q10 The region bounded by the x-axis and the part of the graph $y=\cos x$ between $x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$ is separated into two regions by the line $x=k$. If the area of the region for $-\frac{\pi}{2} \leq x \leq k$ is three times the area of the region for $k \leq x \leq \frac{\pi}{2}$ then the value of k equals ?

A $\quad \sin ^{-1} \frac{1}{4}$
B $\frac{\pi}{3}$
C $\quad \frac{\pi}{4}$
D $\frac{\pi}{6}$

End of Multiple Choice

Section II

90 marks

Attempt Questions 11-16
Allow about $\mathbf{2}$ hours and 45 minutes for this section
Answer each question in the appropriate writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations

Question 11: Start A New Booklet

a. Factorise $12 x^{2}-4 x-1$
b. Express $\frac{18}{3-\sqrt{3}}$ in the form $a+\sqrt{b}$ where a and b are integers.
c. Differentiate $\frac{2 x+1}{\sqrt{x}}$
d. Determine $\int_{0}^{2}(5 x-1)^{9} d x$
e. Determine the domain of the function $f(x)=\frac{x}{\sqrt{x^{2}-4}}$.
f. Given $\cos (2 \theta)=\frac{1}{2}$ for $0 \leq \theta \leq \pi$, determine the value of $\sin \theta$?
g. Evaluate $\int_{0}^{2} \frac{6 x}{x^{2}+2} d x$, leaving your answer in simplest exact form.

End of Question 11

Question 12 Start A New Booklet

a. The line l connects the points $A(2,6)$ and $B(4,9)$. Point C has the coordinates $(5,4)$.

i. Determine the gradient of Line l.
ii. Determine the exact length AB
iii. Determine the area of triangle ABC
iv. What angle, to the nearest degree, does the line through AC make with the positive x-axis?
b. Given the simultaneous equations:

$$
\begin{array}{r}
2 x+y=1 \\
x^{2}-4 k y+5 k=0
\end{array}
$$

where k is a non-zero constant
i. Show that $x^{2}+8 k x+k=0$
ii. Given that $x^{2}+8 k x+k=0$ has equal roots, find the value of k.
iii. For this value of k, find the solution of the simultaneous equations.

Question 12 continues on the next page.

Question 12 continued:

c. The shaded region bounded by the graph $y=e^{x^{2}}$, the line $y=5$ and the y-axis is rotated about the y-axis to form a solid of revolution.

i. Show that the volume of the solid is given by

$$
V=\pi \int_{1}^{5} \ln y d y
$$

ii. Use Simpsons Rule with five functions values to approximate the volume of the soliud of revolution V_{y} correct to three decimal places.

End of Question 12

Question 13 Start A New Booklet

a. The derivative of a function is given by $f^{\prime}(x)=3 x^{2}+3$. The curve passes through the point $(1,1)$. Find the equation of the curve.
b. i. Find the sum of the sequence $100,101,102, \ldots \ldots, 999$.
ii. Hence, or otherwise, find the sum of all the 3 digit numbers which are not divisible by 5 .

2
c. In the diagram below, the shaded region is bound by graphs of $y=8-x$, $y=2 \sqrt{x}$ and the x-axis.

i Determine the coordinates of point P.
ii Find the exact value of the shaded region OQP.
d. Find the equation of normal to the curve $y=\sqrt{x^{2}+7}$ at $x=3$.

Question 13 continues on the next page.

Question 13 continued:

e. Two vehicles, Car A and Car B, depart from the same starting position.

Car A travels north for a distance of 13 km . At the same time Car B travels on a bearing $040^{\circ} \mathrm{T}$ for a distance of 8 km .

i. What is the distance between the cars at this time?
ii. What is the bearing of Car A from Car B?

End of Question 13

a. $\quad A B C D E$ is a regular pentagon and $\angle C A E=x^{\circ}$

Determine the value of x, giving reasons for your answer.
b. i. Differentiate $x \cos 2 x$.
ii. Hence find $\int_{0}^{\frac{\pi}{6}} x \sin 2 x d x$
c. i. Sketch the curve of $y=|x-2|-5$
ii \quad Hence solve $|x-2|-5<2 x$
d. For the curve given by $f(x)=2 x^{2} e^{-x}$
i. Find any stationary points and determine their nature 3
ii Determine $\lim _{x \rightarrow \infty} f(x) \quad 1$
iii Hence sketch the curve

End of Question 14

Question 15 Start A New Booklet

15 Marks

a. The graph of $y=f^{\prime}(x)$ is given below.

Copy or trace the graph onto you answer booklet, using at least a third of the page.
Sketch the graph of $y=f(x)$ given that it passes through the points $(0,0)$ and $(4,-2)$. Show clearly any turning points and/or points of inflexion.
b. The velocity of a particle is given by:
$\dot{x}=1-2 \sin \pi t$, where x is in metres and t, is the time in seconds.
Initially the particle is $\frac{2}{\pi} \mathrm{~m}$ to the right of the origin.
i. Find the acceleration of the particle in terms of t.
ii Find the values of t in the interval $0 \leq t \leq 4$ where the particle is at rest.
iii. Sketch the graph $\dot{x}=1-2 \sin \pi t$ as a function of time for $0 \leq t \leq 4$,

Show all intercepts on the horizontal and vertical axes.
ii. Find the distance travelled in the interval $t=1$ to $t=2$.

Question 15 continues on next page.

Question 15 continued:

c. In the triangle $A B C, A D=B D=C D$

i. Prove $\angle B A C=90^{\circ}$.
ii. In triangle $A B C, \angle B A C=90^{\circ}, A E=C E, E F=8$ and $\frac{B C}{F C}=4$

Using part i , or otherwise, determine the length of $B C$.

End of Question 15

Question 16 Start A New Booklet

a. A bacteria population, P, in a container is modelled by:

$$
P(t)=220-A e^{k t}
$$

where t is in days and P expressed in thousands. Initially there were 100000 bacteria in the container.
i. State the value of A.
ii. If the population reaches 180000 in two days, find the exact value of k.
iii. Find the limiting bacteria population in the container.
b. The diagram shows the curve $y=x^{2}$ and the point $\mathrm{P}(x, y)$ and $\mathrm{A}(3,0)$.

i. Show that $2(x-3)+4 x^{3}=2(x-1)\left(2 x^{2}+2 x+3\right)$
ii. Hence determine the coordinates of P such that the distance $P A$ is a minimum.

Question 16 continues on next page.

Question 16 continued:

c. Denise and Damien borrow $\$ 500000$ to start a business. The interest rate is 7.2% p.a. compounding monthly. They plan to repay the loan in 20 years with equal regular monthly repayments.

The amount they owe after the n-th repayment is given by:

$$
\begin{aligned}
& \quad A_{n}=P r^{n}-M\left(1+r+\ldots+r^{n-1}\right) \\
& \text { where } P=\$ 500000, r=1+\frac{0.072}{12}
\end{aligned}
$$

and M is the amount of the regular monthly payment.
i. Show the amount of their regular payment is $\$ 3936.75$.

End of Examination

Question	Answer	Solution
1	A	$\begin{aligned} x & =\frac{x_{1}+x_{2}}{2} y=\frac{y_{1}+y_{2}}{2} \\ -2 & =\frac{2+x}{2} \quad 1=\frac{-3+y}{2} \\ -4 & =2+x \quad 2=-3+y \\ x & =-6 \text { and } y=5 \end{aligned}$ $\therefore A$
2	C	2 cases positive and negative $\begin{aligned} & \|2 x+3\| \geq 7 \quad-(2 x+3) \geq 7 \\ & 2 x+3 \geq 7 \quad-2 x-3 \geq 7 \\ & 2 x \geq 4 \quad-2 x \geq 10 \\ & x \geq 2 x \leq-5 \\ & \therefore x \leq-5, x \geq 2 \\ & \therefore C \end{aligned}$
3	A	$\begin{aligned} & (x+2)^{2}=4 y+4 \\ & (x+2)^{2}=4(y+1) \end{aligned}$
4	D	$\begin{aligned} & A=\frac{a}{2}(4+4-2 a) \\ &=4 a-a^{2} \\ & \therefore \quad 4=4 a-a^{2} \\ &(a-2)^{2}=0 \\ & a=2 \end{aligned}$
5	D	$f^{\prime}(x)>0$ Required Solution $f^{\prime \prime}(x)>0$
6	D	$\begin{aligned} V & =\pi \int_{a}^{b} y^{2} d x \\ y^{2} & =\left(e^{x}\right)^{2}=e^{2 x} \\ V & =\pi \int_{-2}^{2} e^{2 x} d x \end{aligned}$
7	B	$\text { Period: } \begin{aligned} \frac{2 \pi}{k} & =3 \\ k & =\frac{2 \pi}{3} \end{aligned}$

8		$2^{1} x^{1}-2^{2} x^{3}+2^{3} x^{5}-2^{4} x^{7}+\ldots$							
	A	Power of x	1	3	5	7	9		
		Coefficient	2^{1}	-2^{2}	2^{3}	-2^{4}	2^{5}		
		Every $2^{\text {nd }}$ term is negative, so the coefficient of x^{19} is negative. The power of x in each term is twice the power of 2 , minus 1 . So, if the power of x is 19 , then the power of 2 is 10 . $\therefore-2^{10} x^{19}$							
		Alternatively.							
		$a=2 x \quad r=-2 x^{2}$							
		$T_{n}=a r^{n-1}=2 x\left(-2 x^{2}\right)^{n-1}$							
		$\begin{aligned} & =2(-2)^{n-1} x \times x^{2 n-2} \\ & =2(-2)^{n-1} x^{2 n-1} \end{aligned}$							
		but each term in options is x^{19} therefore $n=10$							
		$T_{n}=2 \times(-2)^{9} x^{19}=-2^{10} x^{19}$							
9	B								
		$0=2^{a+1}+b(2)$							
		$0=2.2^{a}+b$							
		$b=-2.2^{a}$							
		$-2=-2.2^{a}+2^{a}$							
		$2^{a}=2$							
		$a=1$							
		$b=-4$							
10	D	$\int_{-\frac{\pi}{2}}^{k} \cos d x=3 \int_{k}^{\frac{\pi}{2}} \cos d x$							
		$\sin k-\sin \left(-\frac{\pi}{2}\right)=3\left(\sin \left(\frac{\pi}{2}\right)-\sin k\right)$							
		$\sin k+1=3-3 \sin k$							
		$4 \sin k=2$							
		$\sin k=\frac{1}{2}$							
		$k=\frac{\pi}{x}$							

Q11

a	$\begin{aligned} & 12 x^{2}-4 x-1 \\ & (6 x+1)(2 x-1) \end{aligned}$	1 mark correct solution
b	$\begin{aligned} & \frac{18}{3-\sqrt{3}} \\ = & \frac{18}{3-\sqrt{3}} \times \frac{3+\sqrt{3}}{3+\sqrt{3}} \\ = & 18 \times \frac{3+\sqrt{3}}{9-3} \\ = & 18 \times \frac{3+\sqrt{3}}{6} \\ = & 3(3+\sqrt{3}) \\ = & 9+3 \sqrt{3} \\ = & 9+\sqrt{27} \\ \therefore & a=9 \text { and } b=27 \end{aligned}$	2 marks correct solution 1 mark correct multiplication and expansion of denominator
c	$\begin{aligned} & \frac{d}{d x} \frac{2 x+1}{\sqrt{x}} \\ = & \frac{d}{d x} \frac{2 x+1}{\frac{1}{x^{2}}} \\ = & \frac{d}{d x} 2 x^{\frac{1}{2}}+x^{-\frac{1}{2}} \\ = & x^{-\frac{1}{2}}-\frac{1}{2} x^{-\frac{3}{2}} \end{aligned}$ Product rule and quotient rule also work but are much harder to apply	2 marks correct solution 1 mark for correct simplification of both parts prior to differentiation or if used product or quotient rule correct application of formula
d	$\begin{aligned} & \int_{0}^{2}(5 x-1)^{9} \\ = & {\left[\frac{5 x-1}{10 \times 5}\right]_{0}^{2} } \\ = & \left.\frac{1}{50}\left((5 \times 2-1)^{10}-(-1)^{10}\right)\right) \\ = & \frac{9^{10}-1}{50} \\ = & 69735688 \end{aligned}$	3 marks correct solution 2 marks correct integration and correct substitution 1 mark correct integration but incorrect or no substitution. Answer in index form preferred

Q12

ai	$\begin{aligned} m & =\frac{9-6}{4-2} \\ & =\frac{3}{2} \end{aligned}$	1 mark correct solution
aii	$\begin{aligned} d & =\sqrt{(4-2)^{2}+(9-6)^{2}} \\ & =\sqrt{13} \end{aligned}$	1 mark correct solution
aiii	$\begin{aligned} y-6 & =\frac{3}{2}(x-2) \\ 2 y-12 & =3 x-6 \\ 3 x-2 y+6 & =0 \\ d \perp & =\frac{\|3(5)=(-2)(4)+6\|}{\sqrt{(3)^{2}+(-2)^{2}}} \\ & =\frac{13}{\sqrt{13}} \\ A & =\frac{1}{2}(\sqrt{13})(\sqrt{13}) \\ & =\frac{13}{2} u^{2} \end{aligned}$	3 marks correct solution 2 mark correct solution without proof for perp. 1 mark one correct step only either in perp distance, or gradient of AC or distance AC
aiv	$\begin{aligned} & m_{\mathrm{AC}}=\frac{4-6}{5-2} \\ = & -\frac{2}{3} \\ & \frac{2}{3}=\tan (180-\theta) \\ & \theta=180-\tan ^{-1}\left(\frac{2}{3}\right) \\ = & 180-34 \\ = & 146^{\circ} \end{aligned}$	2 mark correct solution 1 mark correct acute angle
bi	$\begin{aligned} y & =1-2 x \\ x^{2}-4 k(1-2 x)+5 k & =0 \\ x^{2}-4 k+8 k x+5 k & =0 \\ x^{2}+8 k x+k & =0 \end{aligned}$	1 mark correct solution
bii	$\begin{aligned} \Delta & =0 \\ \therefore(8 \mathbf{k})^{2}-4 \mathbf{k} & =0 \\ 64 \mathbf{k}^{2}-4 \mathbf{k} & =0 \\ \mathbf{k} & =0 \text { or } \mathbf{k}=\frac{1}{16} \\ \text { but } \mathbf{k} \neq 0 \therefore \mathbf{k} & =\frac{1}{16} \end{aligned}$	2 mark correct solution 1 mark correct solution but no rejection for $\mathrm{k}=0$

biii	$\begin{aligned} x^{2}+\frac{1}{2} x+\frac{1}{16} & =0 \\ \left(x+\frac{1}{4}\right)^{2} & =0 \end{aligned}$						1 mark correct solution
ci	$\begin{aligned} y & =e^{x^{2}} \\ x^{2} & =\ln y \text { and } x=0, y=1 \\ V & =\pi \int_{1}^{5} x^{2} d y \\ & =\int_{1}^{5} \ln y d y \end{aligned}$$\therefore \quad V=\pi \int_{1}^{5} x^{2} d y$						1 mark correct solution
cii					4	5	3 marks correct
	$\ln y$	$\ln 1$	$\ln 2$	$\ln 3$	$\ln 4$	$\ln 5$	solution
	$\begin{aligned} V & =\frac{\pi}{6}[(\ln 1+\ln 5)+4(\ln 2+\ln 4)+2(\ln 3)] \\ & =12.1244 \\ & =12.124 u^{3} \end{aligned}$						2 mark partial correct solution with one mistake only 1 mark correct values in table

COMMENTS
a) iii) many students found area without first showing right angled triangle
iv) common mistake to state the acute angle despite diagram showing an obtuse angle
b) ii) divisions which resulted in the loss of the zero solution without reasons did not get full marks
c) i) lower bound needed to be shown by calculation as well as manipulation of expression
ii) common mistake in omitting pi from calculations

Q 13

a	$\begin{aligned} & f^{\prime}(x) 3 x^{2}+3 \\ & \begin{aligned} f(x) & =\int 3 x^{2}+3 d x \\ & =x^{3}+3 x+c \\ x & =1 \Rightarrow y=1 \\ 1 & =1+3+c \\ c & =-3 \end{aligned} \end{aligned}$ $f(x)=x^{3}+3 x-3$	```2 marks - correct solution 1 mark - correct integral.```
b-i	$\begin{aligned} T n & =a+(n-1) d \\ 999 & =100+(n-1) \times 1 \\ n & =999-100+1=900 \end{aligned}$ $\begin{aligned} S_{n} & =\frac{n}{2}(a+l) \\ & =\frac{900}{2}(100+999) \\ & =494500 \end{aligned}$	1 mark - correct answer
b-ii	Sum of multiples of 5 from 100 to 995 $\begin{aligned} T n & =100+(n-1) \times 5 \\ 995 & =100+5 n-5 \\ n & =\frac{900}{5}=180 \end{aligned}$ $\begin{aligned} S n & =\frac{n}{2}(a+l) \\ & =\frac{180}{2}(100+995) \\ & =98550 \end{aligned}$ \therefore nonfactors of 5 $\begin{aligned} S_{n} & =494550-98550 \\ & =396000 \end{aligned}$	2 marks - correct answer 1 mark - correct n - Correct answer from incorrect n

c-i		2 marks - correct answer including explanation for why coordinate $(4,4)$ was correct. 1 mark - $x=4$ without further interpretation and/ or y-value
c-ii	Shaded Region $\begin{aligned} A & =\int_{0}^{4} 2 \sqrt{x} d x+\text { Area of Triangle } \\ & =2\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{4}+\frac{1}{2} \times 4 \times 4 \\ & =\frac{4}{3}\left\{(\sqrt{4})^{3}-0\right\}+8 \\ & =\frac{32}{3}+8=\frac{56}{3} u^{3} \end{aligned}$ Note: no marks awarded for $\int_{0}^{8} 2 \sqrt{x}-(8-x) d x$ or similar as this is not the defined shaded region.	2 marks - correct answer 1 mark - Either subregion correct using correct expression for total area

d	$\begin{aligned} & y=\sqrt{x^{2}+7} \\ & x=3 \Rightarrow y=\sqrt{9+7}=4 \end{aligned}$ $(3,4)$ $\begin{aligned} \frac{d y}{d x} & =2 x \times \frac{1}{2} \times\left(x^{2}+7\right)^{-\frac{1}{2}} \\ & =\frac{x}{\sqrt{x^{2}+7}} \end{aligned}$ at $x=3$ $\begin{aligned} m_{\text {Tangent }} & =\frac{3}{\sqrt{16}}=\frac{3}{4} \\ \therefore \quad m_{\text {Normal }} & =-\frac{4}{3} \\ y-4 & =-\frac{4}{3}(x-3) \\ 3 y-12 & =-4 x+12 \\ 4 x+3 y-24 & =0 \end{aligned}$	3 marks correct solution 2 marks - Correct equation from incorrect gradient - Correct gradient for the normal. 1 mark Identifying - $m_{T} \times m_{N}=-1$ - correct initial differentiation
e-i	$\begin{aligned} c^{2} & =a^{2}+b^{2}-2 a b \cos C \\ c & =\sqrt{13^{2}+8^{2}-2 \times 13 \times 8 \times \cos 40} \\ & =8.5827 \\ & \cong 8.6 \mathrm{~km} \end{aligned}$	1 mark - correct solution.
e-ii	$\begin{aligned} \cos B & =\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\ B & =\cos ^{-1}\left(\frac{8^{2}+8.582^{2}-13^{2}}{2 \times 8 \times 8.582}\right) \\ & =103^{\circ} 11^{\prime} \end{aligned}$ If using Sine Rule - take care - 2 possible answers $\begin{aligned} \frac{\sin A}{a} & =\frac{\sin B}{b}=\frac{\sin (180-B)}{b} \\ \frac{\sin 40}{8 \cdot 5827} & =\frac{\sin B}{13} \\ B & =\sin ^{-1}\left(\frac{13 \times \sin 40}{8.5827}\right) \\ & =76^{\circ} 48^{\prime} \text { or } 103^{\circ} 12^{\circ} \end{aligned}$ But 76° does not fit with required dimensions.	2 mark - correct solution 1 mark - correct bearing from an incorrect use of Sine rule. - Correct angle but incorrect bearing

NBSC - Manly Campus Trial 2018 Solutions

Q14

a	$\begin{aligned} \angle B A E & =\frac{180(5-2)}{5} \text { (angle sum of regular pentagon) } \\ & =108^{\circ} \end{aligned}$ Similarly, $\angle B=108^{\circ}$ $A B=B C$ (regular pentagon) $\therefore \triangle A B C$ is isosceles $\begin{aligned} & \angle B A C=\frac{180-108}{2} \text { (base } \angle \mathrm{s} \text { of isosceles } \Delta ; \text { angle sum of a } \Delta \text {) } \\ & \quad=36 \\ & \therefore \quad x=108-36 \\ & =72 \end{aligned}$	2 marks 1 mark deducted for unclear/insufficient reasoning/ just the correct value of x
bi	Let $u=x$ $v=\cos 2 x$ u $v^{\prime}=1$$\quad v^{\prime}=-2 \sin 2 x$.	2 marks 1 mark for one error
bii	From (i): $\begin{aligned} & \frac{d}{d x}(x \cos 2 x)=-2 x \sin 2 x+\cos 2 x \\ & \therefore-2 x \sin 2 x=\frac{d}{d x}(x \cos 2 x)-\cos 2 x \end{aligned}$ Now, $\begin{aligned} & \int_{0}^{\frac{\pi}{6}} x \sin 2 x d x \\ = & -\frac{1}{2} \int_{0}^{\frac{\pi}{6}}-2 x \sin 2 x d x \\ = & -\frac{1}{2} \int_{0}^{\frac{\pi}{6}}\left(\frac{d}{d x}(x \cos 2 x)-\cos 2 x\right) d x \\ = & -\frac{1}{2}[x \cos 2 x]_{0}^{\frac{\pi}{6}}+\frac{1}{2} \int_{0}^{\frac{\pi}{6}} \cos 2 x d x \\ = & -\frac{1}{2}[x \cos 2 x]_{0}^{\frac{\pi}{6}}+\frac{1}{2}\left[\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{6}} \\ = & -\frac{1}{2}\left(\frac{\pi}{6} \cos \frac{\pi}{3}\right)+\frac{1}{4} \sin \frac{\pi}{3} \\ = & -\frac{\pi}{24}+\frac{\sqrt{3}}{8} \end{aligned}$	2 marks 1 mark for a correct indefinite integral/ a correct expression using part (i) Note: Many students made errors with minus signs and fractions. Show all steps to avoid silly mistakes.
ci	Absolute value graph $y=\|x\|$ shifted right 2 units, down 5 units	2 marks

	Pictures showing sign of gradient Therefore, point.	\backslash 0) is		/ $(2,$	/ s a		\backslash ig ng	bring all terms to one side ($=0$), then factorise and use the Null Factor Law.
dii	$\begin{aligned} & \lim _{x \rightarrow \infty} 2 x^{2} \\ = & \lim _{x \rightarrow \infty} \frac{2 x^{2}}{e^{x}} \\ = & 0 \end{aligned}$							1 mark correct answer
diii				$\left.e^{-2}\right)$				2 marks for a graph showing all the results from d(i) and (ii) 1 mark deducted for a missing feature/ an incorrect feature (e.g. an extra stationary point)

Question 15

ii)	$\begin{aligned} & \dot{x}=1-2 \sin \pi t \\ & \sin \pi t=\frac{1}{2} \\ & \pi t=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6} \\ & t=\frac{1}{6}, \frac{5}{6}, \frac{13}{6}, \frac{17}{6} \end{aligned}$	2 marks correct answer 1 mark 2 t values found
iii)	 $P=2$ so 2 cycles range $[-1,3]$ inverted raised 1 unit x ints from part ii)	3 marks correct answer 2 marks 1 mark correct correct y int and
iv)	$\begin{aligned} & \int_{1}^{2} 1-2 \sin \pi t d t=\left[t+\frac{2 \cos \pi t}{\pi}\right]_{1}^{2} \\ & =2+\frac{2 \cos 2 \pi}{\pi}-\left(1+\frac{2 \cos \pi}{\pi}\right) \\ & =2+\frac{2}{\pi}-\left(1-\frac{2}{\pi}\right) \\ & =1+\frac{4}{\pi} \text { or } \frac{4+\pi}{\pi} \end{aligned}$	2 marks correct solution 1 mark correct integration
ci)	In $\triangle A B D$ Let $\angle D B A=\alpha$. Then $\angle B A D=\alpha$ (isosceles Δ) In $\triangle A B D$ Let $\angle D A C=\beta$. Then $\angle D C A=\beta$ (isosceles Δ) Angle sum of $\triangle A B C=2 \alpha+2 \beta=180^{\circ}$ $\alpha+\beta=90^{\circ}=\angle B A C$ As required	2 marks correct solution 1 some progress
ii)	Let $C F=x$, then $B C=4 x$ Draw $E M \square A B$. From part (i): $E F=F M=C F=8=x \Rightarrow B C=4 x=32$.	2 marks correct solution 1 mark CF=EF with reasons

Comments: Sketches using scale should be smooth curves and actually resemble the points featured.
b) SIN Sine Integrates Negative - double check with negatives c) proof format was mostly NOT adopted

Question 16

(c)(i)	Number of payments $=20 \times 12=240$ $\begin{aligned} & r=1+\frac{0.072}{12}=1.006 \\ & \left(1+r+\ldots+r^{n-1}\right)=\frac{r^{240}-1}{r-1} \end{aligned}$ (sum of geometric series with $a=1, n=240$) $A_{240}=0 \Rightarrow \operatorname{Pr}^{240}-M \frac{r^{240}-1}{r-1}=0$ Substituting P and $r, M=\frac{\operatorname{Pr}^{240}(r-1)}{r^{240}-1}=\$ 3936.75$	2 marks: correct answer 1 mark: progress towards solution
(c)(ii)	Loan after extra payment (for $M=\$ 3936.75$): $A_{48}-70000=\$ 378071.26=Q$ Let B_{n} be the amount owing after the first payment of new schedule, $N=\$ 10000$ and $s=r^{3}$. $\begin{aligned} & B_{n}=Q s^{n}-N\left(1+s+s^{2}+\ldots+s^{n-1}\right)=Q s^{n}-N \frac{s^{n}-1}{s-1} \\ & B_{n}=0 \Rightarrow s Q s^{n}-Q s^{n}-N s^{n}+N=0 \\ & s^{n}=\frac{-N}{s Q-Q-N} \Rightarrow n=\log _{s}\left(\frac{-N}{s Q-Q-N}\right) \end{aligned}$ Substituting s, Q and $N, n=64.3$ Since payments are made quarterly, loan will be paid off in 16.08 years. This is longer than the remaining term, 16 years. Alternative methods: 1) Substituting $\mathrm{n}=64$ (number of quarters in 16 years) into B_{n} to find that $B_{64}=2983.92$ (loan amount remaining after 20 years) 2) Substituting $\mathrm{n}=64$ and $B_{n}=378071.26$ to find $N \approx 10025.09$	4 marks: correct answer 3 marks: correct number of payments 2 marks: correct formula for amount owing in new schedule 1 mark: correct loan after extra payment

Marker's comments:
The question did not require showing how the formula A_{n} was derived. Students were able to use it directly, yet many still found A_{1}, A_{2} etc (in both part (i) and (ii)

Common error in part (ii) was using the incorrect rate. Students who interpreted the question as the interest being compounded quarterly used $r=1+\frac{0.072}{4}=1.018$ instead of $r=1.006^{3} \approx 1.018108216$

