

Northern Beaches Secondary College Manly Campus

2019 HIGHER SCHOOL CERTIFICATE EXAMINATION Trial Examination

Mathematics

General Instructions	 Reading time – 5 minutes Working time – 3 hours Write using black pen NESA approved calculators may be used A reference sheet is provided In Questions 11 – 16, show relevant mathematical reasoning and/ or calculations
Total marks: 100	 Section I – 10 marks (pages 2-6) Attempt Questions 1 – 10 Allow about 15 minutes for this section Section II – 90 marks (pages 7-17) Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Section I - 10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 The graph of a function y = f(x), where f(-x) = -f(x) is shown below. The graph intersects the x-axis at x = a, x = 0 and x = b.

Which one of the below gives the area of the shaded region?

A.
$$\int_{a}^{b} f(x) dx$$

B.
$$2 \int_{a}^{a+b} f(x) dx$$

C.
$$2 \int_{0}^{-a} f(x) dx$$

D.
$$-2 \int_{b}^{0} f(x) dx$$

2 The gradient of the normal to the curve $f(x) = 3x^3 - 4x + 2$ at the point (-1, 3) is:

A. 5
B. -5
C.
$$-\frac{1}{5}$$

D. $-\frac{1}{3}$

3 It is known that for a particular quadratic function, $\alpha + \beta = -\frac{5}{3}$ and $\alpha\beta = \frac{7}{3}$. The quadratic function could be:

- A. $f(x) = 3x^2 5x + 7$
- B. $f(x) = 3x^2 + 5x + 7$
- C. $f(x) = 3x^2 + 5x 7$

D.
$$f(x) = 5x^2 - 7x + 3$$

4 The graph of the curve $y = \sqrt{4-x}$ is shown below.

For what value(s) of x is the curve not differentiable?

- A. *x* < 4
- B. x = 4
- C. 0 < x < 4
- D. x = 0
- 5 Consider the points A (1, -2) and B (3, 6). What is the equation of the perpendicular bisector of AB?

A.
$$y-2 = -\frac{1}{4}(x-2)$$

B. $y-2 = 4(x-2)$
C. $y-4 = -1(x-1)$
D. $y+2 = -\frac{1}{4}(x-1)$

6 It is given that $\ln a = 2 \ln b + \ln c - \ln d$. Which of the following statements is true?

A.
$$\ln a = \ln \left(2b + \frac{c}{d} \right)$$

B. $\ln a = \frac{cb^2}{d}$
C. $a = \frac{b^2c}{d}$
D. $\ln a = \frac{\ln(b^2 + c)}{\ln d}$

7 If
$$\int_{0}^{2} f(x) dx = 6$$
 what is the value of $\int_{0}^{2} [x - 2f(x)] dx$?

- A. -10
- B. -5
- C. 8
- D. 12
- 8 Which of the following possible k values will there be two distinct rational solutions for the equation.

$$2x^{2} + 20x + k = 0$$

A. $k = 52$
B. $k = 50$
C. $k = 48$

D. k = 46

9 Which diagram shows the graph $y = \cos\left(\frac{x}{2} + \frac{\pi}{3}\right)?$

B.

C.

D.

10 The first term of a geometric sequence is *a*, where a < 0. The common ratio of this sequence, *r*, is such that r < -1.

Which one of the following graphs best shows the first 10 terms of this sequence?

End of Multiple Choice

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your response should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet

(a) Evaluate
$$\int_{1}^{5} (3x - 7) dx$$
 2

Marks

(b) Solve
$$|2x - 5| < 7$$
 2

(c) Find the limiting sum of the geometric series,
$$2 - \frac{1}{3} + \frac{1}{18} - \frac{1}{108} + \dots$$
 2

(d) Differentiate with respect to x

ii.

i.
$$\frac{x^2}{e^{2x}}$$
 2

$$\cos^3(5x+3)$$
.

(e) Determine
$$\int \frac{3dx}{(3-2x)^3}$$
 2

(f) Find the coordinates of the focus of the parabola $y = -\frac{1}{8}x^2 + x - 1$. 3

End of Question 11

(a) Find the point on the graph of $f(x) = x^2 - 5x + 4$ where the tangent has a gradient of -3.

(b) Given
$$y = x\sqrt{1-x^2}$$
, show is $\frac{dy}{dx} = \frac{1-2x^2}{\sqrt{1-x^2}}$ 3

(c) The diagram shows the graphs of y = |2x| and y = |x - 3| which intersect at points A and B.

(i) Find the x - coordinate of points A and B.2(ii) Hence or otherwise, solve $|x-3| \le |2x|$ 1

(d) Given $y = \ln(\cos x)$

(i) Differentiate
$$\ln(\cos x)$$
 with respect to x . 1
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \tan x \, dx$ 2

Question 12 continues on next page

Question 12 continued

Marks

(e)	The temperature T , in degrees Celsius, of an oven is given by the equation		
	T =	= $120 + 80\sin\left(\frac{\pi}{3}t\right)$ where t is measured in hours.	
	(i)	What is the range of temperature in the oven?	1
	(ii)	What is the rate of change of the temperature when the oven first reaches two thirds of its initial temperature? Leave your answer in exact form.	3

End of Question 12

(a) Prove the following
$$\frac{1-\tan^2 x}{1+\tan^2 x} = 1-2\sin^2 x$$
 3

(b) The diagram shows the graph of $f(x) = \frac{2x}{x^2 + 1}$ The shaded area is

Use Simpson's Rule and the 5 function values to approximate the shaded area. Give the answer correct to 1 decimal place.

(c) Gallium-67 is a radioactive element that decays over time.

The mass of gallium-67 after t hours is given by $M(t) = Ae^{kt}$.

i. Show that
$$M(t)$$
 satisfies $\frac{dM}{dt} = kM$ 1

- ii. Given that the half-life of gallium-67 is 80 hours, find the value of k to 3 significant figures.
- iii. How many hours will it take for a mass of gallium-67 to reach 10% of its original mass?

2

2

3

Marks

Question 13 continued

(d) The diagram below shows the shaded area bounded by the curves $y = \sec x$, $y = 2\cos x$ and the y - axis.

- i. Show that the *x*-coordinate of *P* is $x = \frac{\pi}{4}$ 1
- ii. Given that $\cos^2 x = \frac{1}{2}(\cos 2x + 1)$, determine the volume of the solid of revolution produced by rotating the shaded area around the *x*-axis. (Give your answer in exact form)

End of Question 13

Question 14 (15 Marks) Use Q14 Answer Booklet.

- (a) Consider the function $f(x) = x(x-2)^4$
 - (i) Show that $f'(x) = (x-2)^3(5x-2)$.
 - (ii) Find the coordinates of the stationary points of y = f(x) and determine their nature. 2
 - (iii) Sketch the graph of y = f(x), showing the intercepts and stationary points. 2
- (b) The diagram shows the graphs of $y = \cos(2x)$ and y = f(x) from x = 0 to $x = 2\pi$.

The graph of y = f(x) is a reflection of $y = \cos 2x$ along the line y = 1.

- (i) Determine the equation for the graph of y = f(x)
- (ii) Find the exact area between the curves y = cos(2x) and y = f(x)from x = 0 and $x = 2\pi$

Question 14 continues on the next page

Marks

1

2

Question 14 continued

(c) In the diagram, ABCD is a rectangle and AB = 2AD. The point M is the midpoint of AD. The line BM meets AC at X.

(i) Prove that the triangle AXM and CXB are similar.2(ii) Hence show that 3CX = 2AC.1

(iii) Show that
$$9(CX)^2 = 5(AB)^2$$
 2

End of Question 14

(a) Show
$$\int_{0}^{\sqrt{e}} \frac{x^2}{x^3 + e} dx = \frac{\ln(\sqrt{e} + 1)}{3}$$
 3

(b) Jacqueline is a Year 12 student who plans to travel after completing the HSC exams.

On the 1st January 2019, Jacqueline has \$4000 in her savings account however she aims to have a **total** of \$7000 in her account by the 1st December 2019.

She will make monthly deposits of M at the **end** of every month with the first deposit to be made on the 31st January 2019 and the last deposit to be made on the 30th November 2019.

The bank pays 6% p.a. interest compounded monthly.

- How much will the \$4000 in Jacqueline's account accumulate to by 1st
 December 2019? Give the answer correct to the nearest cent.
- (ii) Calculate Jacqueline's monthly deposit, \$M, so that she has a total of \$7000 in her savings account by 1st December 2019. Give the answer correct to the nearest cent.

Question 15 continues on the next page

Marks

1

 \setminus

(c) In the diagram the curve $y = 4x^3 - 9x^2$ and the line y = -5x intersect at points origin *O*, *C* and *D*. Point *A* lies on the curve $y = 4x^3 - 9x^2$ between points *O* and *C*.

- (i) Determine the coordinates of *C*.
- (ii) Show that the perpendicular distance between point A and the line segment OC is $\frac{1}{\sqrt{26}} (4x^3 9x^2 + 5x)$.
- (iii) Show that the area of the triangle AOC is $2x^3 \frac{9}{2}x^2 + \frac{5}{2}x$. 1
- (iv) The point A is chosen so that the area of the triangle AOC is a maximum.Find the maximum possible area correct to two decimal places.

End of Question 15

Marks

2

(a) In the diagram, triangle ABC is given such that $AB \perp BC$ and $BD \perp AC$.

- i. By stating an appropriate triangle similarity, show that $AB^2 = AC.AD$. 1 (Note: You do **NOT** have to prove similarity)
- ii. Hence, or otherwise, show that $AB^2 + BD^2 = AD(AD + 2CD)$.
- (b) Let f(x) be a function defined for $0 \le x \le 4$ such that f(0) = 0.

The diagram shows the graph of its derivative, y = f'(x).

- (ii) Find f(4). 1
- (iii) What is the maximum value of f(x)? 1
- (iv) Draw a graph of y = f(x) for $0 \le x \le 4$. 2

Question 16 continues on the next page

Question 16 continued

Marks

(c) Beatrice takes out a home loan of \$520,000.

The loan is charged reducible interest of 8.4% per annum, calculated monthly.

The loan is to be repaid in equal monthly repayments of M over 15 years.

Let A_n be the amount owing after the *n*th repayment.

- (i) Derive an expression for A₃, the amount owing after 3 months.
 (ii) Show that the monthly repayment is approximately \$5090.21.
 (iii) Level is the factor of the provided of the second seco
- (iii) Immediately after her 24th payment, Beatrice makes a one-off payment of \$20,000. If the interest rate and monthly repayment remain unchanged, after how many more months will Beatrice pay off the loan?
 3

End of Examination

MSC – HSC Mathematics Advanced 2019 – Trial Solutions

Multiple Choice

	∱v /	
	As f(r) is odd then	
	1. $b=-a$	
	2. Let $\int_{a}^{0} f(x) dx = k$	
	$\therefore \int_0^b f(x) dx = -k$	
	3. Area = $k + -k = 2k$	
	A. $\int_{a}^{b} f(x) dx = k + (-k) = 0$	
01	$2\int_{a}^{a+b} f(x)dx$ B.	р
QI	$=2\int_{a}^{a-a}f(x)dx$	D
	$= 2 \int_{a}^{0} f(x) dx$	
	$= 2k^{a} - \text{CORRECT}$	
	C. $-2 \int_{b}^{0} f(x) dx$	
	$= -2 \times -\int_{0}^{b} f(x) dx$	
	$= -2 \times -1 \times -k$ $= -2k$	
	D $2\int_{0}^{-a} f(x) dx$	
	$= 2 \int_{0}^{b} f(x) dx$	
	$= 2 \times -k$ $= -2k$	

Q2	$f(x) = 3x^{3} - 4x + 2$ $f'(x) = 9x^{2} - 4$ f'(-1) = 9 - 4 = 5 Therefore gradient of normal is $-\frac{1}{5}$	С
Q3	$f(x) = 3x^2 + 5x + 7$	В
Q4	From the graph the tangent is vertical where $x = 4$	В
Q5	$m = -\frac{3-1}{6+2} = -\frac{1}{4}$ midpoint = $\frac{1+3}{2}, \frac{-2+6}{2}$ = (2,2) $y-2 = -\frac{1}{4}(x-2)$	А
Q6	$\ln a = \ln b^{2} + \ln c \cdot \ln d$ $= \ln \left[\frac{b^{2}c}{d} \right]$ $\therefore a = \frac{b^{2}c}{d}$	С
Q7	$\int_{0}^{2} x - 2f(x) dx$ = $\int_{0}^{2} x dx - 2 \int_{0}^{2} f(x) dx$ = $\left[\frac{x^{2}}{2}\right]_{0}^{2} - 2(6)$ = $\left(\frac{2^{2}}{2} - \frac{0^{2}}{2}\right) - 2(6)$ = -10	A

Q8	$2x^{2} + 20x + k = 0$ Distinct means $\Delta > 0$ Rational means Δ is a perfect square. $\Delta = b^{2} - 4ac$ $= 20^{2} - 4(2)(k)$ = 400 - 8k If $k = 48$, then $\Delta = 16$, which is both positive and a perfect square.	С
Q9	$y = \cos\left(\frac{x}{2} + \frac{\pi}{3}\right)$ $0 \le \frac{x}{2} + \frac{\pi}{3} \le 2\pi$ $-\frac{\pi}{3} \le \frac{x}{2} \le \frac{5\pi}{3}$ $-\frac{2\pi}{3} < x \le \frac{10\pi}{3}$ Shift left of $\frac{2\pi}{3}$ Shift left of $\frac{2\pi}{3}$	Α
Q10	Let <i>r</i> be an integer \therefore $r \Rightarrow r^2 \Rightarrow r^3 \Rightarrow r^2 \Rightarrow r^5$ $-2 \Rightarrow 4 \Rightarrow -8 \Rightarrow 16 \Rightarrow -32$ Therefore Option B	В

MSC – HSC Mathematics Advanced 2019 – Trial Solutions

Question 11

11a	⁵	2 marks correct answer
	(3x-7) dx	1 mark correct
	\int_{1}	integration
	$= \left[\frac{3x^2}{2} - 7x\right]^5, 1$ $= \frac{75}{2} - 35 - \left(\frac{3}{2} - 7\right)$	Note: this does not equate to an area so no units
	2 (2)	
	= 8	
b	2x - 5 < 7 -7 < 2x - 5 < 7 -2 < 2x < 12 -1 < x < 6	2 marks correct answer 1 mark correct boundary values <u>Note:</u> stating separate inequalities requires an 'and' not an 'or' 6>x>-1 is never acceptable!
с	2 1 1 1	↓
	$2 - \frac{1}{3} + \frac{1}{18} - \frac{1}{108} + \dots$	2 marks correct solution
	$S_{\infty} = \frac{2}{1 - \frac{1}{6}}$	1 mark correct ratio or cfe - carry forward error
	$=\frac{12}{7}$	
d i	$\frac{x^2}{e^{2x}}$	2 marks correct answer
	$u = x^2$	1 mark correct u' and v'
	u' = 2x	
	$v = e^{-2x}$	
	$v' = -2e^{-2x}$	
	$y' = 2xe^{-2x} + - 2e^{-2x}x^2$	
	$-\frac{2x(1-x)}{2}$	
	e^{2x}	

ii	$\cos^{3}(5x + 3) = (\cos(5x + 3))^{3}$ note $\cos^{3}(5x + 3) \neq \cos(5x + 3)^{3}$ $f(x) = \cos(5x + 3)$ $f'(x) = -5\sin(5x + 3)$ $y' = 3 \times -5\sin(5x + 3)\cos^{2}(5x + 3)$ $= -15\sin(5x + 3)\cos^{2}(5x + 3)$	2 marks correct solution 1 mark recognition of chain rule and attempt to derive
e	$\int \frac{3dx}{(3-2x)^3} $ this is not in $\frac{f'(x)}{f(x)}$ form = $3\int (3-2x)^{-3} dx$ = $\frac{3}{-2 \times -2} (3-2x)^{-2} + c$ = $\frac{3}{4} (3-2x)^{-2} + c$	2 marks correct answer 1 mark an error in integration
f	$y = -\frac{1}{8}x^{2} + x - 1$ $y + 1 = -\frac{1}{8}x^{2} + x$ $-8(y + 1) = x^{2} - 8x$ $-8(y + 1) + 16 = x^{2} - 8x + 16$ $-8y + 8 = (x - 4)^{2}$ $(x - 4)^{2} = -8(y - 1)$ $\dot{V}(4, 1) a = 2, \ a > 0$ concave down $\therefore S \text{ is } (4, -1)$	 3 marks correct answer 2 marks correct vertex and focal length or cfe from vertex 1 mark correct vertex form

a	f'(x) = 2x - 5 2x - 5 = -3 2x = 2 x = 1 f(1) = 1 - 5 + 4 = 0 point is (1,0)	2 marks for correct working and solution, also carry error if everything is correct. 1 mark for correct gradient.
b	$\frac{dy}{dx} = \sqrt{1 - x^2} + x \left(-\frac{x}{\sqrt{1 - x^2}} \right)$ $= \sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}}$ $= \frac{1 - x^2 - x^2}{\sqrt{1 - x^2}}$ $= \frac{1 - 2x^2}{\sqrt{1 - x^2}}$	3 marks for correct working and solution.2 marks for 1 error.1 mark for 2 errors.
c (i)	Point A -2x = 3 - x x = -3 Point B 2x = 3 - x x = 1	1 mark for each x corrdinate
c (ii)	From the graph $x \ge 1$ $x \le -3$	1 mark
d (i)	$y = \ln(\cos x)$ $\frac{dy}{dx} = \frac{-\sin x}{\cos x}$ $= -\tan x$	1 mark

d (ii)	$-\int_{0}^{\frac{\pi}{4}} \tan x dx$ $= -\ln \cos \frac{\pi}{4} + \ln \cos 0$ $= -\ln \frac{1}{\sqrt{2}} + \ln 1$ $= \ln \sqrt{2}$	2 marks for working and solution 1 mark for correct integral substitution.
e (i)	Range is 40°C to 200°C	1 mark
e (ii)	$\frac{2}{3} \times 120 = 80$ $80 = 120 + 80 \sin\left(\frac{\pi}{3}t\right)$ $-0.5 = \sin\left(\frac{\pi}{3}t\right)$ $\frac{\pi}{3}t = \frac{7\pi}{6}$ $t = 3.5$ $\frac{dT}{dt} = \frac{80\pi}{3}\cos\left(\frac{\pi}{3}t\right)$ when $t = 3.5$ $\frac{dT}{dt} = \frac{80\pi}{3}\cos\left(\frac{\pi}{3} \times 3.5\right)$ $= \frac{80\pi}{3} \times -\frac{\sqrt{3}}{2}$ $= -\frac{40\sqrt{3}\pi}{3}$	3 marks for correct working and solution. 2 marks for correct derivative and t = 3.5 1 mark for either correct derivative or t = 3.5

a	$\frac{1-\tan^2 x}{1+\tan^2 x} = 1-2s\sin^2 x$ $LHS = \frac{1-\tan^2 x}{\sec^2 x}$ $= \frac{1}{\sec^2 x} - \frac{\tan^2 x}{\sec^2 x}$ $= \cos^2 x - \left(\frac{\sin^2 x}{\cos^2 x} \times \left(\frac{1}{\sec^2 x}\right)\right)$ $= \cos^2 x - \left(\frac{\sin^2 x}{\cos^2 x} \times (\cos^2 x)\right)$ $= \cos^2 x - \sin^2 x$ $= (1-\sin^2 x) - \sin^2 x$ $= 1-2\sin^2 x$	 3 marks- correct solution 2 marks- significant correct progress with one error ONLY 1 mark- correct use of one fundamental identity that leads to simplification
Ь	$f(x) = \frac{2x}{1+x^2}$ $A = \frac{1}{3} \left\{ \frac{6}{10} + 1 + 4 \left(\frac{4}{5} + 0 \right) = 2(1) \right\}$ $= \frac{1}{3} \left\{ \frac{8}{5} + \frac{16}{5} + 2 \right\}$ $= \frac{1}{3} \left(\frac{34}{5} \right)$ $= \frac{34}{15}$ $= 2.27$	 3 marks- correct solution 2 marks- significant correct progress with one error ONLY without QS 1 mark- correct <i>h</i> and function values

ci	$M(t) = Ae^{kt}$ $\frac{dM}{dt} = kAe^{kt}$ $= kM \text{ since } M = Ae^{kt}$	1 mark-correct answer
cii	$M(80) = Ae^{k(80)}$ $\frac{A}{2} = Ae^{80k}$ $\frac{1}{2} = e^{80k}$ $80k = \ln\left(\frac{1}{2}\right)$ $k = \ln\frac{\frac{1}{2}}{0}$ = -0.008664 -0.00866	2 marks-correct answer 1 mark-ONLY one error in correct progress to value of <i>k</i> without QS 1 mark-ONLY error in sig figure rounding incorrect
ciii	$0.1A = Ae^{-0.0139t}$ $0.1 = e^{-0.008669t}$ $-0.00866t = \frac{\ln 0.1}{\ln e}$ $t = \frac{\ln(0.1)}{-0.00866}$ = 265.75 = 266hrs	2 marks-correct answer 1 mark-ONLY one error in correct progress to value of <i>t</i> without QS
di	$2\cos x = \sec x$ $2\cos x = \frac{1}{\cos x}$ $2\cos^{2} x = 1$ $\cos^{2} x = \frac{1}{2}$ $\cos x = \pm \frac{1}{\sqrt{2}}$ $x = \frac{\pi}{4} (\operatorname{sin} \operatorname{ce} x > 0 \text{ and first point} \int)$	1 mark-correct answer

dii	$V = \pi \int_{0}^{\frac{\pi}{4}} (2\cos x)^{2} - (\sec x)^{2} dx$ $= \pi \int_{0}^{\frac{\pi}{4}} 4\cos^{2}x - \sec^{2}x dx$ $= \pi \left\{ \frac{4}{2} \int_{0}^{\frac{\pi}{4}} \cos 2x + 1 \int_{0}^{0} \frac{\pi}{4} - \int_{0}^{\frac{\pi}{4}} \sec^{2}x \right\}$ $= \pi \left\{ 2 \left[\frac{1}{2}\sin 2x + x \right]_{0}^{0} \frac{\pi}{4} - [\tan x]_{0}^{0} \frac{\pi}{4} \right\}$ $= \pi \left\{ \left[\sin 2x + 2x \right]_{0}^{0} \frac{\pi}{4} - [\tan x]_{0}^{0} \frac{\pi}{4} \right\}$ $= \pi \left\{ \left[\sin 2\left(\frac{\pi}{4}\right) + \frac{2\pi}{4}\right] - (\sin 0 + 0) \right] - \left[\tan \frac{\pi}{4} - \tan 0 \right] \right\}$ $= \pi \left\{ \left[1 + \frac{\pi}{2} \right] - 0 - [(1 - 0)] \right\}$ $= \pi \left\{ 1 + \frac{\pi}{2} - 1 \right\}$ $= \pi \left\{ \frac{\pi}{2} \right\}$	3 marks- correct solution 2 marks- significant correct progress with one error ONLY 1 mark- correct answer for sec2x from correct volume statement
-----	--	---

a) i)	$f(x) = x(x - 2)^{4}$ Product rule $f'(x) = (x) \cdot 4(x - 2)^{3} + (x - 2)^{4}$ $= (x - 2)^{3}(4x + (x - 2))$ $= (x - 2)^{3}(5x - 2)$	1 mark correct solution to 2 nd last line that shows factorising
ii)	If $(x - 2)^3(5x - 2) = 0$ $x = 2 \text{ or } x = \frac{2}{5}$ at $x = 2$ $y = 0$ At $x = 0$ $f'(0) = 16$ at $x = \frac{2}{5}f'(\frac{2}{5}) = 0$ at $x = 1$ $f'(1) = -3$ at $x = 2$ $f'(2) = 0$ and at $x = 3$ $f'(3) = 3$ \therefore if $x < 2$ $f'(x) < 0$ and if $x > 2$ $f'(x) > 0$ hence a minimum at $x = \frac{2}{5}$ $y = 2.6$ (1 <i>dp</i> .) if $x < \frac{2}{5}f'(x) > 0$ and if $x > \frac{2}{5}f'(x) < 0$ hence a maximum also at $x = 0$ $y = 0$	2 marks full correct solution 1 mark coordinates of both points or correct determination of both stationary points as max then min
iii)		 2 marks correct solution or correct based on student answer 1 mark for either max or min graphed correct with correct shape and no further mistakes
b) i)	y = f(x) is a reflection so is turned upside down and hence becomes $-\cos(2x)$ and because it is refected in the line $y = 1$ it moves up 2 units hence $+ 2$ $\therefore f(x) = -\cos(2x) + 2$ $= 2 - \cos(2x)$	2 marks correct solution 1 mark for either negative cos or +2

b ii)	$\int_{0}^{2\pi} 2 - \cos(2x) dx$ from the graph this is made up of 8 identical parts taken between 0 and $\frac{\pi}{2}$ taken below the curve and above the line $y = 1$ $Area = 8 \int_{0}^{\frac{\pi}{2}} 2 - \cos(2x) - 1 dx$ $= 8 \int_{0}^{\frac{\pi}{2}} 1 - \cos(2x) dx$ $= 8 \left[x - \frac{1}{2} \sin(2x) \right]_{0}^{\frac{\pi}{2}}$ $= 8 \left[\left(\frac{\pi}{2} - \frac{1}{2} \sin(\pi) \right) - 0 \right]$ $= 8 \left[\frac{\pi}{2} - 0 \right]$ $= 4\pi units^{2}$ OR $\int_{0}^{2\pi} 2 - \cos(2x) - \cos(2x) dx$ $= \int_{0}^{2\pi} - 2\cos(2x) dx$	2 marks correct solution 1 mark correct applicant of areas between curves and satisfactory integration and substitution
	$= \begin{bmatrix} 2x - \sin(2x) \end{bmatrix}_{0}^{2\pi}$ = $(2(2\pi) - \sin(4\pi)) - (0 - \sin(0))$ = $4\pi units^{2}$	
c) i)	In $\triangle AXM$ and $\triangle BXC$ $\angle MAX = \angle BCX$ (alternate angles on parallel lines, AD and CB opposite sides of rectangle <i>ABCD</i> given) $\angle AXM = \angle BXC$ (vertically opposite \angle) $\therefore \Delta AXM$ lll ΔBXC (equiangular)	2marks correct solution 1mark if did not give 2 correct reasons or no statement of test used for similarity

c ii)	$\frac{AM}{BC} = \frac{1}{2} (M \text{ is midpoint of AD (given)})$ and AD = BC (opp sides of rectangle ABCD) $\therefore \frac{AX}{CX} = \frac{1}{2} (\text{ corresponding sides in similar } \Delta)$ CX = 2AX now AC = AX + CX AC = AX + CX AC = AX + 2AX AC = 3AX Show 3CX = 2AC LHS = 3CX = 3(2AX) = 6AX RHS = 2AC = 2(3AX) = 6AX LHS=RHS as required Or Using similar Δ as above $\frac{AX}{BC} = \frac{1}{2}$ 2AX = CX and $AX = AC - CX\therefore 2(AC - CX) = CX2AC = 3CX\therefore 3CX = 2AC$	1 mark correct solution Must logically show required statement
iii)	In $\triangle ABC \ and B = 90^{\circ}$ $AC^{2} = AB^{2} + BC^{2}$ using $3CX = 2AC \therefore AC = \frac{3CX}{2}$ and $AB = 2AD(given)$ and $BC = AD$ $\therefore BC = \frac{AB}{2}$ $\left(\frac{3CX}{2}\right)^{2} = AB^{2} + \left(\frac{AB}{2}\right)^{2}$ $\frac{9CX^{2}}{4} = AB^{2} + \frac{AB^{2}}{4}$ $9CX^{2} = 4AB^{2} + AB^{2}$ $9CX^{2} = 5AB^{2}$	2 marks correct solution 1 mark correct substitution into Pythagoras or Correct use of part ii) and logical progress

a	$\int_{0}^{\sqrt{e}} \frac{x^{2}}{x^{3} + e} dx$ $= \frac{1}{3} \int_{0}^{\sqrt{e}} \frac{3x^{2}}{x^{3} + e} dx$ $= \frac{1}{3} \left[\ln x^{3} + e \right]_{0}^{\sqrt{e}}$ $= \frac{1}{3} (\ln (\sqrt{e})^{3} + e - \ln 0^{3} + e)$ $= \frac{1}{3} (\ln(e \sqrt{e} + e) - \ln e)$ $= \frac{1}{3} \ln\left(\frac{e \sqrt{e} + e}{e}\right)$ $= \frac{1}{3} \ln(\sqrt{e} + 1)$ $= \frac{\ln(\sqrt{e} + 1)}{3}$	3 marks 1st mark for the correct integral 2nd mark for a correct substitution 3rd mark for correct solution using log laws
bi	6% p.a. = 0.5% per month On 1st December, the \$4000 principal amount will have increased by 0.5% 11 times. $4000(1.005)^{11} = 4225.58	1 mark
bii	$A_{0} = 4000$ $A_{1} = 4000(1 \cdot 005) + M$ Note: For most of January, there is only \$4000 in Jacqueline's account, so the bank rewards her with 0.5% interest on that amount (not \$(4000+M)). $A_{2} = A_{1}(1 \cdot 005) + M$ $= (4000(1 \cdot 005) + M) \times 1 \cdot 005 + M$ $= 4000(1 \cdot 005)^{2} + M(1 \cdot 005) + M$ $= 4000(1 \cdot 005)^{2} + M(1 + 1 \cdot 005)$ Keep going until a pattern can be seen. $A_{3} = 4000(1 \cdot 005)^{3} + M(1 + 1 \cdot 005 + 1 \cdot 005^{2})$ $A_{n} = 4000(1 \cdot 005)^{n} + M(1 + 1 \cdot 005 + 1 \cdot 005^{2} + + 1 \cdot 005^{n-1})$	3 marks correct solution (or correct given errors from part (a)) 2 marks for a minor error e.g. adding deposits before compounding interest or treating as 12 deposits (i.e. 31st Dec) 1 mark for some understanding, using geometric series

	On 1st December, there have been 11 deposits, and the value of the account is \$7000.	
	$7000 = 4000(1 \cdot 005)^{11} + M(1 + 1 \cdot 005 + 1 \cdot 005^{2} + + 1 \cdot 005^{10})$	
	The sum of the geometric series is: $S_{11} = \frac{1 \cdot 005^{11} - 1}{1 \cdot 005 - 1}$	
	$M \times S_{11} = 7000 - 4000(1 \cdot 005)^{11}$ $M = \frac{7000 - 4000(1 \cdot 005)^{11}}{S}$ $= \$245.98$	
ci	C is one of three points of intersection of the cubic and the line. To find points of intersection: $4x^{3} - 9x^{2} = -5x$ $4x^{3} - 9x^{2} + 5x = 0$ $x(4x^{2} - 9x + 5) = 0$ $x(4x - 5)(x - 1) = 0$ $x = 0, 1, \frac{5}{4}$ Note: From diagram, C is the middle point of intersection y-coord of C: y = -5(1)	2 marks 1 mark for solving the equations simultaneously Note: Several students mistook $x = \frac{5}{4}$ as the x- coordinate of C. Unfortunately this made part (iii) unprovable.
	= -5 $\therefore C(1, -5)$	
	$d = \frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}}$	2 marks (no explanation required for removing the absolute values)
cii	$(x_1,y_1) = A(x,y)$	1 mark for a correct expression
	Equation of line OC in general form: $y = -5x \implies 5x + y = 0$	formula with y=-5x and A(x,y)

	$d = \frac{ 5(x) + 5(y) }{\sqrt{5^2 + 1^2}}$ = $\frac{ 5x + y }{\sqrt{26}}$ Since A lies on the cubic, the coordinates of A satisfy $y = 4x^3 - 9x^2$ $\therefore d = \frac{ 5x + 4x^3 - 9x^2 }{ 5x + 4x^3 - 9x^2 }$	There were several unsuccessful attempts to 'reverse-engineer' the solution from the result. The best method in this case is to simply use the perpendicular distance formula with point A and line OC to obtain an initial expression (1 mark), then try
	$\frac{1}{\sqrt{26}} = \frac{ 4x^3 - 9x^2 + 5x }{\sqrt{26}}$ Since the cubic is above the line in the domain $0 < x < 1$,	to obtain the result.
	$4x^{3} - 9x^{2} > -5x$ $4x^{3} - 9x^{2} + 5x \text{ is positive}$ $\therefore d = \frac{4x^{3} - 9x^{2} + 5x}{\sqrt{26}}$	
	Note: What makes this question confusing for students is the non-numerical use of perpendicular distance formula, and the use of the pronumerals x and y as coordinates of point A, where x is between 0 and 1. It may be helpful to write x_A and y_A to denote the x and y -coordinates of point A.	
ciii	ΔAOC $A = \frac{1}{2} bh$ $= \frac{1}{2} (OC) \times d$ Pythagoras: $OC = \sqrt{1^2 + 5^2}$	1 mark
	$= \sqrt{26}$	

	$A = \frac{1}{2} \times \sqrt{26} \times \frac{1}{\sqrt{26}} (4x^3 - 9x^2 + 5x)$	
	$= \frac{1}{2} (4x^3 - 9x^2 + 5x)$	
	$= 2x^{3} - \frac{9}{2}x^{2} + \frac{5}{2}x$	
	2 9 2 5	
	$A = 2x^{3} - \frac{1}{2}x^{2} + \frac{1}{2}x$	
	$\frac{dA}{dx} = 6x^2 - 9x + \frac{5}{2}$	3 marks
	Stationary points:	1st mark solving A'=0
		2nd mark for choosing the correct value of x
	$\frac{dA}{dx} = 0$ $6x^2 - 9x + \frac{5}{2} = 0$	3rd mark for substituting into A
	$12x^{2} - 18x + 5 = 0$ $x = \frac{18 \pm \sqrt{(-18)^{2} - 4(12)(5)}}{2(12)}$	Note: Students did well attempting part (iv), even if they weren't able to
civ	$=\frac{18\pm\sqrt{84}}{24}$	prove the previous parts.
	$= \frac{18 \pm 2\sqrt{21}}{24}$ = $\frac{9 \pm \sqrt{21}}{12}$ = 0.36811 or 1.131	Note: Normally we are required to determine the nature of a stationary point, but in this case we are told already that point A is
	The x-coord of A is between 0 and 1	chosen so that the area is a maximum, and since
	Therefore x = 0.36811 must be the value that produces a maximum area 3 9 2 5	x=0.36811 is the only stationary point between 0 and 1, we know it must be the maximum.
	$A = 2(0.36811)^{\circ} - \frac{1}{2}(0.36811)^{\circ} + \frac{1}{2}(0.36811)$ = 0.41 square units (2dp)	

a-i	$\Delta ABD \parallel \Delta ABC$ $\therefore \frac{AB}{AC} = \frac{AD}{AB}$ $ABC = ACAD$	1 mark – showing both first two lines. Identifying the similar triangles and then final statement was not sufficient.
a-ii	$\Delta ADB \parallel \Delta BDC$ $\therefore \qquad \frac{BD}{CD} = \frac{AD}{BD}$ $BD^{2} = CD.AD$ $AB^{2} + BD^{2} = AC.AD + CD.AD$ = AD(AC + CD) = AD(AD + CD + CD) = AD(AD + 2CD) Pythagorean solution also accepted.	2 marks – full solution 1 mark – showing derivation of $AB^2 + BD^2 = ACAD + CDAD$ Pythagorean method – stating of a number of triads was not sufficient unless progress made towards solution.
b-i	Decreasing therefore $\frac{dy}{dx} < 0$ true for 0 < x < 1 and $3.5 < x < 4also accepted x < 1 or x > 3.5(should not really be using \geq or \leq)$	1 mark

MSC - HSC Mathematics Advanced 2019 - Trial Solutions

c- ii	$n = 15 \times 12 = 180$ $A_{180} = 0$ $A_{180} = 520\ 000 \times 1.007^{180} - M \frac{1.007^{180} - 1}{1.007 - 1}$ $M \frac{1.007^{180} - 1}{1.007 - 1} = 520\ 000 \times 1.007^{180}$ $M = 520\ 000 \times 1.007^{180} \times \frac{1.007 - 1}{(1.007^{180} - 1)}$ $M = 5090.2104$ $M = 5090.21$	2 marks - correct solution 1 mark – correct expression for A ₁₈₀ =0
c- ii	$A_{24} = 520\ 000 \times .007^{24} - 5090.21 \frac{(1.007^{24} - 1)}{1.007 - 1}$ = 482243.89 Amount owing = 482243.89-20000=462243.89 $An = 462243.89 \times 1.007^{n} - 5090.21 \frac{(1.007^{n} - 1)}{1.007 - 1}$ 0 = 462243.89 × 1.007 ⁿ - 5090.21((1.007^{n} - 1)) × $\frac{1000}{7}$ 0 = $\frac{7}{1000} \times 462243.89 \times 1.007^{n} - 5090.21((1.007^{n} - 1))$ -5090.21 = $\left(\frac{7}{1000} \times 462243.89 - 5090.21\right)(1.007^{n})$ 1.007 ⁿ = $\frac{-5090.210}{\frac{7}{1000} \times 462243.89 - 5090.21}$ = 2.744784 $n(\log 1.007) = \log 2.744784$ $n = \frac{\log 2.744784}{\log 1.007} = 144.74747 \cong 145$	3 marks – correct answer 2 marks – show single term with <i>n</i> 1 mark – new amount owing