Northern Beaches Secondary College Manly Campus

2019 HIGHER SCHOOL CERTIFICATE EXAMINATION Trial Examination

Mathematics

General

Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided
- In Questions 11 - 16, show relevant mathematical reasoning and/ or calculations

Total marks:
100

Section I - 10 marks (pages 2-6)

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 7-17)

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section

Section I - 10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10
1 The graph of a function $y=f(x)$, where $f(-x)=-f(x)$ is shown below. The graph intersects the x-axis at $x=a, x=0$ and $x=b$.

Which one of the below gives the area of the shaded region?
A. $\int_{a}^{b} f(x) d x$
B. $2 \int_{a}^{a+b} f(x) d x$
C. $2 \int_{0}^{-a} f(x) d x$
D. $-2 \int_{b}^{0} f(x) d x$

2 The gradient of the normal to the curve $f(x)=3 x^{3}-4 x+2$ at the point $(-1,3)$ is:
A. 5
B. -5
C. $-\frac{1}{5}$
D. $-\frac{1}{3}$

3 It is known that for a particular quadratic function, $\alpha+\beta=-\frac{5}{3}$ and $\alpha \beta=\frac{7}{3}$. The quadratic function could be:
A. $f(x)=3 x^{2}-5 x+7$
B. $f(x)=3 x^{2}+5 x+7$
C. $f(x)=3 x^{2}+5 x-7$
D. $f(x)=5 x^{2}-7 x+3$

4 The graph of the curve $y=\sqrt{4-x}$ is shown below.

For what value(s) of x is the curve not differentiable?
A. $x<4$
B. $x=4$
C. $0<x<4$
D. $x=0$

5 Consider the points $A(1,-2)$ and $B(3,6)$. What is the equation of the perpendicular bisector of AB ?
A. $y-2=-\frac{1}{4}(x-2)$
B. $y-2=4(x-2)$
C. $y-4=-1(x-1)$
D. $y+2=-\frac{1}{4}(x-1)$

6 It is given that $\ln a=2 \ln b+\ln c-\ln d$. Which of the following statements is true?
A. $\ln a=\ln \left(2 b+\frac{c}{d}\right)$
B. $\ln a=\frac{c b^{2}}{d}$
C. $a=\frac{b^{2} c}{d}$
D. $\ln a=\frac{\ln \left(b^{2}+c\right)}{\ln d}$

7 If $\int_{0}^{2} f(x) d x=6$ what is the value of $\int_{0}^{2}[x-2 f(x)] d x$?
A. -10
B. -5
C. 8
D. 12

8 Which of the following possible k values will there be two distinct rational solutions for the equation.

$$
2 x^{2}+20 x+k=0
$$

A. $k=52$
B. $k=50$
C. $k=48$
D. $k=46$

9 Which diagram shows the graph $y=\cos \left(\frac{x}{2}+\frac{\pi}{3}\right)$?
A.

B.

C.

D.

10 The first term of a geometric sequence is a, where $a<0$. The common ratio of this sequence, r, is such that $r<-1$.
Which one of the following graphs best shows the first 10 terms of this sequence?

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section
Answer each question in the appropriate writing booklet. Extra writing booklets are available.
In Questions $11-16$, your response should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet
(a) Evaluate $\int_{1}^{5}(3 x-7) d x$
(b) Solve $|2 x-5|<7$
(c) Find the limiting sum of the geometric series, $2-\frac{1}{3}+\frac{1}{18}-\frac{1}{108}+\ldots$.
(d) Differentiate with respect to x
i. $\quad \frac{x^{2}}{e^{2 x}}$

2
ii. $\quad \cos ^{3}(5 x+3)$.
(e) Determine $\int \frac{3 d x}{(3-2 x)^{3}}$
(f) Find the coordinates of the focus of the parabola $y=-\frac{1}{8} x^{2}+x-1$
(a) Find the point on the graph of $f(x)=x^{2}-5 x+4$ where the tangent has a gradient of -3 .
(b) Given $y=x \sqrt{1-x^{2}}$, show is $\frac{d y}{d x}=\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}$
(c) The diagram shows the graphs of $y=|2 x|$ and $y=|x-3|$ which intersect at points A and B.

(i) Find the x - coordinate of points A and B.
(ii) Hence or otherwise, solve $|x-3| \leq|2 x|$
(d) Given $y=\ln (\cos x)$
(i) Differentiate $\ln (\cos x)$ with respect to x.
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \tan x d x$

Question 12 continues on next page

(e) The temperature T, in degrees Celsius, of an oven is given by the equation $T=120+80 \sin \left(\frac{\pi}{3} t\right)$ where t is measured in hours.
(i) What is the range of temperature in the oven?
(ii) What is the rate of change of the temperature when the oven first reaches two thirds of its initial temperature? Leave your answer in exact form.

End of Question 12

(a) Prove the following $\frac{1-\tan ^{2} x}{1+\tan ^{2} x}=1-2 \sin ^{2} x$
(b) The diagram shows the graph of $f(x)=\frac{2 x}{x^{2}+1}$ The shaded area is enclosed by the curve $f(x)=\frac{2 x}{x^{2}+1}$, the x-axis, $x=-1$ and $x=3$

Use Simpson's Rule and the 5 function values to approximate the shaded area.
Give the answer correct to 1 decimal place.
(c) Gallium-67 is a radioactive element that decays over time.

The mass of gallium-67 after t hours is given by $\quad M(t)=A e^{k t}$.
i. Show that $M(t)$ satisfies $\frac{d M}{d t}=k M$
ii. Given that the half-life of gallium-67 is 80 hours, find the value of k to 3 significant figures.
iii. How many hours will it take for a mass of gallium-67 to reach 10% of its original mass?
(d) The diagram below shows the shaded area bounded by the curves $y=\sec x$, $y=2 \cos x$ and the y-axis.

i. \quad Show that the x-coordinate of P is $\quad x=\frac{\pi}{4}$
ii. Given that $\cos ^{2} x=\frac{1}{2}(\cos 2 x+1)$, determine the volume of the solid of revolution produced by rotating the shaded area around the x-axis.
(Give your answer in exact form)

End of Question 13

(a) Consider the function $f(x)=x(x-2)^{4}$
(i) Show that $f^{\prime}(x)=(x-2)^{3}(5 x-2)$.
(ii) Find the coordinates of the stationary points of $y=f(x)$ and determine their nature.
(iii) Sketch the graph of $y=f(x)$, showing the intercepts and stationary points.
(b) The diagram shows the graphs of $y=\cos (2 x)$ and $y=f(x)$ from $x=0$ to $x=2 \pi$.

The graph of $y=f(x)$ is a reflection of $y=\cos 2 x$ along the line $y=1$.

-1
(i) Determine the equation for the graph of $y=f(x)$
(ii) Find the exact area between the curves $y=\cos (2 x)$ and $y=f(x)$ from $x=0$ and $x=2 \pi$

Question 14 continues on the next page

(c) In the diagram, $A B C D$ is a rectangle and $A B=2 A D$. The point M is the midpoint of $A D$. The line $B M$ meets $A C$ at X.

(i) Prove that the triangle $A X M$ and $C X B$ are similar.
(ii) Hence show that $3 C X=2 A C$.
(iii) Show that $9(C X)^{2}=5(A B)^{2}$

End of Question 14

(a) Show $\int_{0}^{\sqrt{e}} \frac{x^{2}}{x^{3}+e} d x=\frac{\ln (\sqrt{e}+1)}{3}$
(b) Jacqueline is a Year 12 student who plans to travel after completing the HSC exams.

On the $1^{\text {st }}$ January 2019, Jacqueline has $\$ 4000$ in her savings account however she aims to have a total of $\$ 7000$ in her account by the $1^{\text {st }}$ December 2019.

She will make monthly deposits of $\$ M$ at the end of every month with the first deposit to be made on the $31^{\text {st }}$ January 2019 and the last deposit to be made on the $30^{\text {th }}$ November 2019.

The bank pays 6% p.a. interest compounded monthly.
(i) How much will the $\$ 4000$ in Jacqueline's account accumulate to by $1^{\text {st }}$ December 2019? Give the answer correct to the nearest cent.
(ii) Calculate Jacqueline's monthly deposit, $\$ M$, so that she has a total of $\$ 7000$ in her savings account by ${ }^{\text {st }}$ December 2019. Give the answer correct to the nearest cent.
(c) In the diagram the curve $y=4 x^{3}-9 x^{2}$ and the line $y=-5 x$ intersect at points origin O, C and D. Point A lies on the curve $y=4 x^{3}-9 x^{2}$ between points O and C.

(i) Determine the coordinates of C.
(ii) Show that the perpendicular distance between point A and the line segment $O C$ is $\frac{1}{\sqrt{26}}\left(4 x^{3}-9 x^{2}+5 x\right)$.
(iii) Show that the area of the triangle $A O C$ is $2 x^{3}-\frac{9}{2} x^{2}+\frac{5}{2} x$.
(iv) The point A is chosen so that the area of the triangle $A O C$ is a maximum. Find the maximum possible area correct to two decimal places.

End of Question 15

(a) In the diagram, triangle $A B C$ is given such that $A B \perp B C$ and $B D \perp A C$.

i. By stating an appropriate triangle similarity, show that $A B^{2}=A C . A D$.
(Note: You do NOT have to prove similarity)
ii. Hence, or otherwise, show that $A B^{2}+B D^{2}=A D(A D+2 C D)$.
(b) Let $f(x)$ be a function defined for $0 \leq x \leq 4$ such that $f(0)=0$.

The diagram shows the graph of its derivative, $y=f^{\prime}(x)$.
It is known that $\int_{0}^{2} f^{\prime}(x) d x=0$.
$f^{\prime}(x)$

(i) For which values of x is $f(x)$ decreasing?
(ii) Find $f(4)$.
(iii) What is the maximum value of $f(x)$?
(iv) Draw a graph of $y=f(x)$ for $0 \leq x \leq 4$.
(c) Beatrice takes out a home loan of $\$ 520,000$.

The loan is charged reducible interest of 8.4% per annum, calculated monthly.
The loan is to be repaid in equal monthly repayments of $\$ M$ over 15 years.
Let A_{n} be the amount owing after the nth repayment.
(i) Derive an expression for A_{3}, the amount owing after 3 months. 2
(ii) Show that the monthly repayment is approximately $\$ 5090.21$.
(iii) Immediately after her $24^{\text {th }}$ payment, Beatrice makes a one-off payment of $\$ 20,000$. If the interest rate and monthly repayment remain unchanged, after how many more months will Beatrice pay off the loan?

End of Examination

Multiple Choice

Q2	$\begin{aligned} f(x) & =3 x^{3}-4 x+2 \\ f^{\prime}(x) & =9 x^{2}-4 \\ f^{\prime}(-1) & =9-4 \\ & =5 \end{aligned}$ Therefore gradient of normal is $-\frac{1}{5}$	C
Q3	$f(x)=3 x^{2}+5 x+7$	B
Q4	From the graph the tangent is vertical where $\mathrm{x}=4$	B
Q5	$\begin{aligned} & m=-\frac{3-1}{6+2}=-\frac{1}{4} \\ & \text { midpoint }=\frac{1+3}{2}, \frac{-2+6}{2} \\ &=(2,2) \\ & y-2=-\frac{1}{4}(x-2) \end{aligned}$	A
Q6	$\begin{aligned} & \ln a=\ln b^{2}+\ln \mathrm{c}-\operatorname{lnd} \\ = & \ln \left[\frac{b^{2} c}{d}\right] \\ \therefore \quad & a=\frac{b^{2} c}{d} \end{aligned}$	C
Q7	$\begin{aligned} & \int_{0}^{2} x-2 f(x) d x \\ = & \int_{0}^{2} x d x-2 \int_{0}^{2} f(x) d x \\ = & {\left[\frac{x^{2}}{2}\right]_{0}^{2}-2(6) } \\ = & \left(\frac{2^{2}}{2}-\frac{0^{2}}{2}\right)-2(6) \\ = & -10 \end{aligned}$	A

Q8	$2 x^{2}+20 x+k=0$ Distinct means $\Delta>0$ Rational means Δ is a perfect square. $\begin{aligned} \Delta & =b^{2}-4 a c \\ & =20^{2}-4(2)(k) \\ & =400-8 k \end{aligned}$ If $k=48$, then $\Delta=16$, which is both positive and a perfect square.	C
Q9	$\begin{aligned} y & =\cos \left(\frac{x}{2}+\frac{\pi}{3}\right) \\ 0 & \leq \frac{x}{2}+\frac{\pi}{3} \leq 2 \pi \\ -\frac{\pi}{3} & \leq \frac{x}{2} \leq \frac{5 \pi}{3} \\ -\frac{2 \pi}{3} & <x \leq \frac{10 \pi}{3} \end{aligned}$ Shift left of $\frac{2 \pi}{3}$	A
Q10	Let r be an integer $:$ $\begin{gathered} r \Rightarrow r^{2} \Rightarrow r^{3} \Rightarrow r^{2} \Rightarrow r^{5} \\ -2 \Rightarrow 4 \Rightarrow-8 \Rightarrow 16 \Rightarrow-32 \end{gathered}$ Therefore Option B	B

Question 11

11a	$\begin{aligned} & \int_{1}^{5}(3 x-7) d x \\ = & {\left[\frac{3 x^{2}}{2}-7 x\right]^{5}, 1 } \\ = & \frac{75}{2}-35-\left(\frac{3}{2}-7\right) \\ = & 8 \end{aligned}$	2 marks correct answer 1 mark correct integration Note: this does not equate to an area so no units
b	$\begin{aligned} \|2 x-5\| & <7 \\ -7 & <2 x-5<7 \\ -2 & <2 x<12 \\ -1 & <x<6 \end{aligned}$	2 marks correct answer 1 mark correct boundary values Note: stating separate inequalities requires an 'and' not an 'or' $6>x>-1$ is never acceptable!
c	$\begin{aligned} 2-\frac{1}{3} & +\frac{1}{18}-\frac{1}{108}+\ldots \\ S_{\infty} & =\frac{2}{1--\frac{1}{6}} \\ & =\frac{12}{7} \end{aligned}$	2 marks correct solution 1 mark correct ratio or cfe - carry forward error
di	$\begin{aligned} & \frac{x^{2}}{e^{2 x}} \\ & u=x^{2} \\ & u^{\prime}=2 x \\ & v=e^{-2 x} \\ & v^{\prime}=-2 e^{-2 x} \\ & y^{\prime}=2 x e^{-2 x}+-2 e^{-2 x} x^{2} \\ &=\frac{2 x(1-x)}{e^{2 x}} \end{aligned}$	2 marks correct answer 1 mark correct u^{\prime} and v^{\prime}

ii	$\begin{aligned} \cos ^{3}(5 x+3) & =(\cos (5 x+3))^{3} \\ \text { note } \cos ^{3}(5 x+3) & \neq \cos (5 x+3)^{3} \\ f(x) & =\cos (5 x+3) \\ f^{\prime}(x) & =-5 \sin (5 x+3) \\ y^{\prime} & =3 \times-5 \sin (5 x+3) \cos ^{2}(5 x+3) \\ =-15 \sin (5 x+3) & \cos ^{2}(5 x+3) \end{aligned}$	2 marks correct solution 1 mark recognition of chain rule and attempt to derive
e	$\begin{aligned} & \int \frac{3 d x}{(3-2 x)^{3}} \text { this is not in } \frac{f^{\prime}(x)}{f(x)} \text { form } \\ = & 3 \int(3-2 x)^{-3} d x \\ = & \frac{3}{-2 \times-2}(3-2 x)^{-2}+c \\ = & \frac{3}{4}(3-2 x)^{-2}+c \end{aligned}$	2 marks correct answer 1 mark an error in integration
f	$\begin{aligned} y & =-\frac{1}{8} x^{2}+x-1 \\ y+1 & =-\frac{1}{8} x^{2}+x \\ -8(y+1) & =x^{2}-8 x \\ -8(y+1)+16 & =x^{2}-8 x+16 \\ -8 y+8 & =(x-4)^{2} \\ (x-4)^{2} & =-8(y-1) \\ \dot{V}(4,1) a & =2, a>0 \end{aligned}$ concave down $\therefore S \text { is }(4,-1)$	3 marks correct answer 2 marks correct vertex and focal length or cfe from vertex 1 mark correct vertex form

Question 12

a	$\begin{aligned} & f^{\prime}(x)=2 x-5 \\ & 2 x-5=-3 \\ & 2 x=2 \\ & x=1 \\ & f(1)=1-5+4 \\ &=0 \\ & \text { point is }(1,0) \end{aligned}$	2 marks for correct working and solution, also carry error if everything is correct. 1 mark for correct gradient.
b	$\begin{aligned} \frac{d y}{d x} & =\sqrt{1-x^{2}}+x\left(-\frac{x}{\sqrt{1-x^{2}}}\right) \\ & =\sqrt{1-x^{2}}-\frac{x^{2}}{\sqrt{1-x^{2}}} \\ & =\frac{1-x^{2}-x^{2}}{\sqrt{1-x^{2}}} \\ & =\frac{1-2 x^{2}}{\sqrt{1-x^{2}}} \end{aligned}$	3 marks for correct working and solution. 2 marks for 1 error. 1 mark for 2 errors.
c (i)	Point A $\begin{aligned} -2 x & =3-x \\ x & =-3 \end{aligned}$ Point B $\begin{aligned} 2 x & =3-x \\ x & =1 \end{aligned}$	1 mark for each x corrdinate
c (ii)	From the graph $\begin{aligned} & x \geq 1 \\ & x \leq-3 \end{aligned}$	1 mark
d (i)	$\begin{aligned} & y=\ln (\cos x) \\ & \frac{d y}{d x}=\frac{-\sin x}{\cos x} \\ &=-\tan x \end{aligned}$	1 mark

d (ii)	$\begin{aligned} & -\int_{0}^{\frac{\pi}{4}} \tan x d x \\ = & -\ln \cos \frac{\pi}{4}+\ln \cos 0 \\ = & -\ln \frac{1}{\sqrt{2}}+\ln 1 \\ = & \ln \sqrt{2} \end{aligned}$	2 marks for working and solution 1 mark for correct integral substitution.
e (i)	Range is $40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	1 mark
e (ii)	$\begin{aligned} & \frac{2}{3} \times 120=80 \\ & 80=120+80 \sin \left(\frac{\pi}{3} t\right) \\ &-0.5=\sin \left(\frac{\pi}{3} t\right) \\ & \frac{\pi}{3} t=\frac{7 \pi}{6} \\ & t=3.5 \\ & \frac{d T}{d t}=\frac{80 \pi}{3} \cos \left(\frac{\pi}{3} t\right) \\ & \text { when } t=3.5 \\ & \frac{d T}{d t}=\frac{80 \pi}{3} \cos \left(\frac{\pi}{3} \times 3.5\right) \\ &=\frac{80 \pi}{3} \times-\frac{\sqrt{3}}{2} \\ &=-\frac{40 \sqrt{3} \pi}{3} \end{aligned}$	3 marks for correct working and solution. 2 marks for correct derivative and $t=3.5$ 1 mark for either correct derivative or $\mathrm{t}=3.5$

Question 13

a	$\left.\begin{array}{rl} & \frac{1-\tan ^{2} x}{1+\tan ^{2} x} \end{array}=1-2 \sin ^{2} x\right]=\frac{1-\tan ^{2} x}{\sec ^{2} x} .$	3 marks- correct solution 2 marks- significant correct progress with one error ONLY 1 mark- correct use of one fundamental identity that leads to simplification
b	$\begin{aligned} & f(x)=\frac{2 x}{1+x^{2}} \\ & A=\frac{1}{3}\left\{\frac{6}{10}+1+4\left(\frac{4}{5}+0\right)=2(1)\right\} \\ = & \frac{1}{3}\left\{\frac{8}{5}+\frac{16}{5}+2\right\} \\ = & \frac{1}{3}\left(\frac{34}{5}\right) \\ = & \frac{34}{15} \\ = & 2.27 \end{aligned}$	3 marks- correct solution 2 marks- significant correct progress with one error ONLY without QS 1 mark- correct h and function values

ci	$\begin{gathered} M(t)=A e^{k t} \\ \frac{d M}{d t}=k A e^{k t} \\ =k M \text { since } M=A e^{k t} \end{gathered}$	1 mark-correct answer
cii	$\begin{aligned} & M(80)=A e^{k(80)} \\ & \frac{A}{2}=A e^{80 k} \\ & \frac{1}{2}=e^{80 k} \\ & 80 k=\ln \left(\frac{1}{2}\right) \\ & \frac{1}{2} \\ & k=\ln \frac{1}{0} \\ &=-0.008664 \ldots \\ &-0.00866 \end{aligned}$	2 marks-correct answer 1 mark-ONLY one error in correct progress to value of k without QS 1 mark-ONLY error in sig figure rounding incorrect
ciii	$\begin{aligned} & 0.1 A=A e^{-0.0139 t} \\ & 0.1=e^{-0.008669 t} \\ &-0.00866 t=\frac{\ln 0.1}{\ln e} \\ & t=\frac{\ln (0.1)}{-0.00866} \\ &=265.75 \mathrm{~m} \\ &=266 \mathrm{hrs} \end{aligned}$	2 marks-correct answer 1 mark-ONLY one error in correct progress to value of t without QS
di	$\begin{aligned} 2 \cos x & =\sec x \\ 2 \cos x & =\frac{1}{\cos x} \\ 2 \cos ^{2} x & =1 \\ \cos ^{2} x & =\frac{1}{2} \\ \cos x & = \pm \frac{1}{\sqrt{2}} \\ x & =\frac{\pi}{4}\left(\text { since } x>0 \text { and first point } \int\right) \end{aligned}$	1 mark-correct answer

dii	$\begin{aligned} V & =\pi \int_{0}^{\frac{\pi}{4}}(2 \cos x)^{2}-(\sec x)^{2} d x \\ & =\pi \int_{0}^{\frac{\pi}{4}} 4 \cos ^{2} x-\sec ^{2} x d x \\ & \left.=\pi\left\{\frac{4}{2} \int_{0}^{\frac{\pi}{4}} \cos 2 x+1\right]^{0}, \frac{\pi}{4}-\int_{0}^{\frac{\pi}{4}} \sec ^{2} x\right\} \\ & =\pi\left\{2\left[\frac{1}{2} \sin 2 x+x\right]^{0} \frac{\pi}{4}-[\tan x]^{0} \frac{\pi}{4}\right\} \\ & =\pi\left\{[\sin 2 x+2 x]^{0} \frac{\pi}{4}-[\tan x]^{0} \frac{\pi}{4}\right\} \\ & \left.=\pi\left\{\left[\sin 2\left(\frac{\pi}{4}\right)+\frac{2 \pi}{4}\right)-(\sin 0+0)\right]-\left[\tan \frac{\pi}{4}-\tan 0\right]\right\} \\ & =\pi\left\{\left[1+\frac{\pi}{2}\right]-0-[(1-0)]\right\} \\ & =\pi\left\{1+\frac{\pi}{2}-1\right\} \\ & =\pi\left\{\frac{\pi}{2}\right\} \\ & =\frac{\pi^{2}}{2} \end{aligned}$	3 marks- correct solution 2 marks- significant correct progress with one error ONLY 1 mark- correct answer for sec 2 x from correct volume statement

Question 14

a) i)	$f(x)=x(x-2)^{4}$ Product rule $\begin{aligned} f^{\prime}(x) & =(x) \cdot 4(x-2)^{3}+(x-2)^{4} \\ & =(x-2)^{3}(4 x+(x-2)) \\ & =(x-2)^{3}(5 x-2) \end{aligned}$	1 mark correct solution to $2^{\text {nd }}$ last line that shows factorising
ii)	If $(x-2)^{3}(5 x-2)=0$ $x=2$ or $x=\frac{2}{5}$ at $x=2 \quad y=0$ At $x=0 f^{\prime}(0)=16$ at $x=\frac{2}{5} f^{\prime}\left(\frac{2}{5}\right)=0$ at $x=1 f^{\prime}(1)=-3$ at $x=2 f^{\prime}(2)=0$ and at $x=3 f^{\prime}(3)=3 \therefore$ if $x<2 f^{\prime}(x)<0$ and if $x>2 f^{\prime}(x)>0$ hence a minimum at $x=\frac{2}{5} \quad y=2.6(1 d . p$. if $x<\frac{2}{5} f^{\prime}(x)>0$ and if $x>\frac{2}{5} f^{\prime}(x)<0$ hence a maximum also at $x=0 y=0$	2 marks full correct solution 1 mark coordinates of both points or correct determination of both stationary points as max then min
iii)		2 marks correct solution or correct based on student answer 1 mark for either max or min graphed correct with correct shape and no further mistakes
b) i)	$\begin{aligned} & \quad y=f(x) \text { is a reflection so is turned upside down and } \\ & \text { hence becomes }-\cos (2 x) \\ & \text { and because it is refected in the line } y=1 \\ & \text { it moves up } 2 \text { units hence }+2 \\ & \therefore \quad f(x)=-\cos (2 x)+2 \\ & \quad=2-\cos (2 x) \end{aligned}$	2 marks correct solution 1 mark for either negative cos or +2

$\begin{gathered} \text { b } \\ \text { ii) } \end{gathered}$	$\int_{0}^{2 \pi} 2-\cos (2 x) d x$ from the graph this is made up of 8 identical parts taken between 0 and $\frac{\pi}{2}$ taken below the curve and above the line $y=1$ $\begin{aligned} \text { Area } & =8 \int_{0}^{\frac{\pi}{2}} 2-\cos (2 x)-1 d x \\ & =8 \int_{0}^{\frac{\pi}{2}} 1-\cos (2 x) d x \\ & =8\left[x-\frac{1}{2} \sin (2 x)\right]_{0}^{\frac{\pi}{2}} \\ & =8\left[\left(\frac{\pi}{2}-\frac{1}{2} \sin (\pi)\right)-0\right] \\ & =8\left[\frac{\pi}{2}-0\right] \\ & =4 \pi \text { units }{ }^{2} \end{aligned}$ OR $\begin{aligned} & \int_{0}^{2 \pi} 2-\cos (2 x)-\cos (2 x) d x \\ = & \int_{0}^{2 \pi} 2-2 \cos (2 x) d x \\ = & {[2 x-\sin (2 x)]_{0}^{2 \pi} } \\ = & (2(2 \pi)-\sin (4 \pi))-(0-\sin (0)) \\ = & 4 \pi \text { units }^{2} \end{aligned}$	2 marks correct solution 1 mark correct applicant of areas between curves and satisfactory integration and substitution
c)	In $\triangle A X M$ and $\triangle B X C$ $\angle M A X=\angle B C X$ (alternate angles on parallel lines, AD and CB opposite sides of rectangle $A B C D$ given) $\angle A X M=\angle B X C$ (vertically opposite \angle) $\therefore \triangle A X M$ lll $\triangle B X C$ (equiangular)	2marks correct solution 1mark if did not give 2 correct reasons or no statement of test used for similarity

ii)	LHS=RHS as required Or Using similar Δ as above $\frac{\mathrm{AX}}{\mathrm{BC}}=\frac{1}{2}$ $\begin{array}{rlrl} & 2 A X & =C X \text { and } A X=A C-C X \\ & \therefore \quad 2(A C-C X) & =C X \\ 2 A C-2 C X & =C X \\ & 2 A C & =3 C X \\ & \therefore \quad 3 C X & =2 A C \end{array}$	1 mark correct solution Must logically show required statement
iii)	In $\triangle A B C \angle B$ is 90° $\begin{aligned} A C^{2} & =A B^{2}+B C^{2} \\ \text { using } 3 C X & =2 A C \therefore A C=\frac{3 C X}{2} \\ \text { and } A B & =2 A D \text { (given) and } B C=A D \\ \therefore B C & =\frac{A B}{2} \\ \left(\frac{3 C X}{2}\right)^{2} & =A B^{2}+\left(\frac{A B}{2}\right)^{2} \\ \frac{9 C X^{2}}{4} & =A B^{2}+\frac{A B^{2}}{4} \\ 9 C X^{2} & =4 A B^{2}+A B^{2} \\ 9 C X^{2} & =5 A B^{2} \end{aligned}$	2 marks correct solution 1mark correct substitution into Pythagoras or Correct use of part ii) and logical progress

Question 15

a	$\begin{aligned} & \int_{0}^{\sqrt{e}} \frac{x^{2}}{x^{3}+e} d x \\ = & \frac{1}{3} \int_{0}^{\sqrt{e}} \frac{3 x^{2}}{x^{3}+e} d x \\ = & \frac{1}{3}\left[\ln \left\|x^{3}+e\right\|\right]_{0}^{\sqrt{e}} \\ = & \frac{1}{3}\left(\ln \left((\sqrt{e})^{3}+e\|-\ln \| 0^{3}+e \mid\right)\right. \\ = & \frac{1}{3}(\ln (e \sqrt{e}+e)-\ln e) \\ = & \frac{1}{3} \ln \left(\frac{e \sqrt{e}+e}{e}\right) \\ = & \frac{1}{3} \ln (\sqrt{e}+1) \\ = & \frac{\ln (\sqrt{e}+1)}{3} \end{aligned}$	3 marks 1st mark for the correct integral 2nd mark for a correct substitution 3rd mark for correct solution using log laws
bi	6% p.a. $=0.5 \%$ per month On 1st December, the $\$ 4000$ principal amount will have increased by $0.5 \% 11$ times. $4000(1 \cdot 005)^{11}=\$ 4225 \cdot 58$	1 mark
bii	$\begin{aligned} & A_{0}=4000 \\ & A_{1}=4000(1 \cdot 005)+M \end{aligned}$ Note: For most of January, there is only $\$ 4000$ in Jacqueline's account, so the bank rewards her with 0.5% interest on that amount (not $\$(4000+M)$). $\begin{aligned} A_{2} & =A_{1}(1.005)+M \\ & =(4000(1.005)+M) \times 1.005+M \\ & =4000(1.005)^{2}+M(1.005)+M \\ & =4000(1.005)^{2}+M(1+1.005) \end{aligned}$ Keep going until a pattern can be seen. $\begin{aligned} & A_{3}=4000(1.005)^{3}+M\left(1+1.005+1.005^{2}\right) \\ & A_{n}=4000(1.005)^{n}+M\left(1+1.005+1.005^{2}+\ldots+1 \cdot 005^{n-1}\right) \end{aligned}$	3 marks correct solution (or correct given errors from part (a)) 2 marks for a minor error e.g. adding deposits before compounding interest or treating as 12 deposits (i.e. 31st Dec) 1 mark for some understanding, using geometric series

	On 1st December, there have been 11 deposits, and the value of the account is $\$ 7000$. $7000=4000(1.005)^{11}+M\left(1+1.005+1 \cdot 005^{2}+\ldots+1 \cdot 005^{10}\right)$ The sum of the geometric series is: $\begin{aligned} S_{11} & =\frac{1 \cdot 005^{11}-1}{1 \cdot 005-1} \\ M \times S_{11} & =7000-4000(1 \cdot 005)^{11} \\ M & =\frac{7000-4000(1.005)^{11}}{S} \\ =\$ 245.98 & \end{aligned}$	
ci	C is one of three points of intersection of the cubic and the line. To find points of intersection: $\begin{aligned} 4 x^{3}-9 x^{2} & =-5 x \\ 4 x^{3}-9 x^{2}+5 x & =0 \\ x\left(4 x^{2}-9 x+5\right) & =0 \\ x(4 x-5)(x-1) & =0 \\ x & =0,1, \frac{5}{4} \end{aligned}$ Note: From diagram, C is the middle point of intersection y -coord of C : $\begin{aligned} y & =-5(1) \\ & =-5 \end{aligned}$ $\therefore C(1,-5)$	2 marks 1 mark for solving the equations simultaneously Note: Several students mistook $x=\frac{5}{4}$ as the x coordinate of C . Unfortunately this made part (iii) unprovable.
cii	$\begin{aligned} d & =\frac{\left\|a x_{1}+b y_{1}+c\right\|}{\sqrt{a^{2}+b^{2}}} \\ \left(x_{1}, y_{1}\right) & =A(x, y) \end{aligned}$ Equation of line OC in general form: $y=-5 x \Rightarrow 5 x+y=0$	2 marks (no explanation required for removing the absolute values) 1 mark for a correct expression using perpendicular distance formula with $y=-5 x$ and $A(x, y)$

$\left.\begin{array}{|l|l|l|}\hline d=\frac{|5(x)+5(y)|}{\sqrt{5^{2}+1^{2}}} \\ =\frac{|5 x+y|}{\sqrt{26}} \\ \text { Since A lies on the cubic, the coordinates of A } \\ \text { satisfy } y=4 x^{3}-9 x^{2}\end{array} \quad \begin{array}{l}\text { There were several } \\ \text { unsuccessful attempts to } \\ \text { 'reverse-engineer' the } \\ \text { solution from the result. The } \\ \text { best method in this case is } \\ \text { to simply use the } \\ \text { perpendicular distance } \\ \text { formula with point A and } \\ \text { line OC to obtain an initial } \\ \text { expression (1 mark), then try } \\ \text { to obtain the result. }\end{array}\right\}$

	$\begin{aligned} A & =\frac{1}{2} \times \sqrt{26} \times \frac{1}{\sqrt{26}}\left(4 x^{3}-9 x^{2}+5 x\right) \\ & =\frac{1}{2}\left(4 x^{3}-9 x^{2}+5 x\right) \\ & =2 x^{3}-\frac{9}{2} x^{2}+\frac{5}{2} x \end{aligned}$	
civ	$\begin{aligned} A & =2 x^{3}-\frac{9}{2} x^{2}+\frac{5}{2} x \\ \frac{d A}{d x} & =6 x^{2}-9 x+\frac{5}{2} \end{aligned}$ Stationary points: $\begin{aligned} & \frac{d A}{d x}=0 \\ & 6 x^{2}-9 x+\frac{5}{2}=0 \\ & 12 x^{2}-18 x+5=0 \\ & x=\frac{18 \pm \sqrt{(-18)^{2}-4(12)(5)}}{2(12)} \\ &=\frac{18 \pm \sqrt{84}}{24} \\ &=\frac{18 \pm 2 \sqrt{21}}{24} \\ &= \frac{9 \pm \sqrt{21}}{12} \\ &=0.36811 \ldots \text { or } 1 \cdot 131 \ldots . \end{aligned}$ The x-coord of A is between 0 and 1 Therefore $\mathrm{x}=0.36811$ must be the value that produces a maximum area $\begin{aligned} A & =2(0.36811)^{3}-\frac{9}{2}(0.36811)^{2}+\frac{5}{2}(0.36811) \\ & =0.41 \text { square units (2dp) } \end{aligned}$	3 marks 1st mark solving $\mathrm{A}^{\prime}=0$ 2nd mark for choosing the correct value of x 3rd mark for substituting into A Note: Students did well attempting part (iv), even if they weren't able to prove the previous parts. Note: Normally we are required to determine the nature of a stationary point, but in this case we are told already that point A is chosen so that the area is a maximum, and since $x=0.36811$ is the only stationary point between 0 and 1 , we know it must be the maximum.

Question 16

a-i		1 mark - showing both first two lines. Identifying the similar triangles and then final statement was not sufficient.		
a-ii	$\begin{aligned} \Delta A D B\\|\\| \Delta & B D C \\ \therefore \quad \frac{B D}{C D} & =\frac{A D}{B D} \\ B D^{2} & =C D \cdot A D \\ A B^{2}+B D^{2} & =A C \cdot A D+C D \cdot A D \\ & =A D(A C+C D) \\ & =A D(A D+C D+C D) \\ & =A D(A D+2 C D) \end{aligned}$ Pythagorean solution also accepted.	2 marks - full solution 1 mark - showing derivation of $A B^{2}+B D^{2}=A C \cdot A D+C D \cdot A D$ Pythagorean method stating of a number of triads was not sufficient unless progress made towards solution.		
b-i	Decreasing therefore $\begin{aligned} & \frac{d y}{d x}<0 \\ & \text { true for } \\ & \quad 0<x<1 \text { and } 3.5<x<4 \end{aligned}$ also accepted $x<1$ or $x>3.5$ (should not really be using \geq or \leq)	1 mark		

b-ii	$\begin{aligned} & \int_{0}^{2} f(x) d x=0 \\ & - \text { given } \\ \int_{2}^{3} f(x) d x & =a \text { Area of Rectangle }=8 \\ & \int_{3}^{3.5} f(x) d x=-\int_{3.5}^{4} f(x) d x \\ \therefore & \int_{3}^{4} f(x) d x=0 \end{aligned}$ therefore $f(4)=0+8+0=8$	$\begin{aligned} & 1 \text { mark - correct } \\ & \text { answer } \end{aligned}$
b-iii	Max occurs at $x=3.5$ At $x=2$, particle returns to origin. Distance from origin to the maximum equals area of trapezium. $A=\frac{8}{2}(1+1.5)=10$	1 mark - correct answer

c-	$\begin{aligned} n & =15 \times 12=180 \\ A_{180} & =0 \\ A_{180} & =520000 \times 1.007^{180}-M \frac{1.007^{180}-1}{1.007-1} \\ M \frac{1.007^{180}-1}{1.007-1} & =520000 \times 1.007^{180} \\ M & =520000 \times 1.007^{180} \times \frac{1.007-1}{\left(1.007^{180}-1\right)} \\ M & =5090.2104 \\ M & =5090.21 \end{aligned}$	2 marks - correct solution 1 mark - correct expression for $\mathrm{A}_{180}=0$
c-	$\begin{aligned} A_{24} & =520000 \times .007^{24}-5090.21 \frac{\left(1.007^{24}-1\right)}{1.007-1} \\ & =482243.89 \end{aligned}$ Amount owing $=482243.89-20000=462243.89$ $\begin{aligned} A n & =462243.89 \times 1.007^{n}-5090.21 \frac{\left(1.007^{n}-1\right)}{1.007-1} \\ 0 & =462243.89 \times 1.007^{n}-5090.21\left(\left(1.007^{n}-1\right)\right) \times \frac{1000}{7} \\ 0 & =\frac{7}{1000} \times 462243.89 \times 1.007^{n}-5090.21\left(\left(1.007^{n}-1\right)\right) \\ -5090.21= & \left(\frac{7}{1000} \times 462243.89-5090.21\right)\left(1.007^{n}\right) \\ 1.007^{n}= & \frac{-5}{\frac{7}{1000} \times 462243.89-5090.21}=2.744784 \\ n(\log 1.007)= & \log 2.744784 \\ n= & \frac{\log 2.744784}{\log 1.007}=144.74747 \cong 145 \end{aligned}$	3 marks - correct answer 2 marks - show single term with n 1 mark - new amount owing

