Total Marks - 120
Attempt Questions 1-10
All questions are equal value.
Answer each question in a SEPARATE writing booklet.

Question 1 (12 Marks) Use a SEPARATE writing booklet.

Marks

(a) Evaluate, correct to three significant figures,

$$
\frac{2-0.35}{\sqrt{23^{2}+17^{2}}}
$$

(b) Solve $x^{2}+2 x-15=0$.
(c) Express $0.1 \dot{7}$ as a fraction.
(d) Simplify $\frac{1}{x^{2}-1}+\frac{x}{x+1}$.
(e) Solve $|2 x-1|>3$.
(f) Find the exact value of $\tan \left(\frac{2 \pi}{3}\right)$.

Question 2 (12 Marks) Use a SEPARATE writing booklet.
(a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}$.
(b) The digits 1, 2, 3 are selected at random without replacement to form a two digit number.
(i) Draw a tree diagram to illustrate all possible outcomes and list the outcomes.
(ii) What is the probability that the two digit number formed is a multiple of 3 ?
(c) A particle travels such that its displacement from O , is given by $x=t^{2}-6 t+8, x$ in metres and t in seconds.
(i) Find the particles initial position and velocity. 3
(ii) At what time does the particle change direction? $\mathbf{1}$
(iii) What is the total distance traveled by the particle in the first 4 seconds.

Question 2 continued.

(d) Solve for x : $2 \sin x+\sqrt{3}=0$ for $0 \leq x \leq 2 \pi$.

Question 3 (12 Marks) Use a SEPARATE writing booklet.
(a)

The diagram shows the points $\mathrm{A}(1,6), \mathrm{B}(7,2)$ and $\mathrm{C}(-2,-2)$.
(i) Show that the gradient of AB is $-\frac{2}{3}$.
(ii) Find the angle of inclination the line passing through the points $\mathrm{AB} \quad \mathbf{2}$ make the x axis. (Nearest minute.)
(iii) Show that equation of the line passing through C , parallel to AB is $2 x+3 y+10=0$.
(iv) Find the perpendicular distance of the point B from the line $2 x+3 y+10=0$.
(v) Show that the mid point of BC lies on the x axis.
(b) A triangle has three side of lengths $6 \mathrm{~cm}, 9 \mathrm{~cm}$ and 11 cm .
(i) Find the size of the smallest angle.
(ii) Find the area of the triangle 1

Question 4 (12 Marks) Use a SEPARATE writing booklet.
(a) Evaluate $\int_{0}^{1} \frac{3}{x+1} d x$.
(b) Differentiate with respect to x :
(i) $x \tan x$
2
(ii) $\frac{\ln x}{x}$
(c) Find the equation of the tangent to $y=\log _{e} x$ at the point $(e, 1)$.
(d) Evaluate $\sum_{n=5}^{10}(2 n-3)$.
(e) In the diagram, $A B$ is an arc of a circle with centre O. The radius $O A$
is 6 cm . The $\angle A O B$ is $\frac{\pi}{12}$. Find the exact area of the sector $A O B$.

NOT
TO
SCALE
(a) Fred has a monthly salary of $\$ 3000$. He decides to start a savings plan in which at the end of the first month he saves 5\% of his salary and each successive month increases this amount by $\$ 10$. How long will it take for his savings to exceed $\$ 6000$.
(b)

(figure not to scale)
$A B C D$ is a rhombus, $A X$ is perpendicular to $B C$ and intersects $B D$ at L.
(i) Copy the diagram and state why $\angle A D B=\angle C D B$. 1
(ii) Prove that the triangles ALD and CLD are congruent. $\mathbf{2}$
(iii) Show that $\angle D A L$ is a right angle. $\mathbf{1}$
(iv) Hence or otherwise find the size of $\angle L C D$. $\mathbf{1}$
(c) A ball is dropped from a high of 2 metres onto a concrete floor and rebounds to $\frac{2}{3}$ of the previous height. It continues to rebound to $\frac{2}{3}$ of the previous height for each of the following bounces.
(i) What is the maximum height reached by the ball after the third bounce?
(ii) What is the maximum total distance travelled by the ball from the time it was dropped until it eventually comes to rest on the floor?
(a) Consider the curve given by $y=x^{3}-3 x^{2}-9 x+1$.
(i) Find the coordinates of any stationary points.
(ii) Determine the nature of the stationary points.
(b) Draw a sketch for a function, which has the following features and indicate the nature of stationary points:

$$
\begin{aligned}
& f^{\prime}(x)=0 \text { at } x=0, x=2, x=4 \\
& f^{\prime \prime}(x)<0 \text { for } x<1 \\
& f^{\prime \prime}(x)>0 \text { for } 1<x<3 \\
& f^{\prime \prime}(x)<0 \text { for } 3<x<4 \\
& f^{\prime \prime}(x)>0 \text { for } x>4
\end{aligned}
$$

(c) A bag contains 3 red, 4 blue and 5 yellow balls. Three balls are drawn out, one at a time without replacement.

Find the probability that:
(i) Two yellow and one red ball are drawn out in any order.
(ii) At least one red ball is drawn out.

Question 7 (12 Marks) Use a SEPARATE writing booklet.
(a) For the function $y=\sin 2 x$:
(i) Sketch the function for the domain ($0 \leq x \leq \pi$).

2
(ii) Find the area bounded by $y=\sin 2 x$ and the x axis between $0 \leq x \leq \pi$.
(b)

The area in the first quadrant above is rotated about the y axis.
Calculate the volume of the solid formed.
(c) The diagram shows the cross-section of a river, with the depths of the river shown in metres, at 10 metre intervals. The river is 40 metres in width.

(i) Use the trapezoidal rule to find the approximate value for the area of the cross-section.
(ii) Give a way of improving the accuracy for measuring the cross section and explain how this improves the accuracy.

Question 8 (12 Marks) Use a SEPARATE writing booklet.
(a) An elderly marathon runner can run, such that his speed is given by $v=15(1-\sin 0.15 t) \mathrm{km} / \mathrm{h}$ up to the time he cannot run any further.

If a race starts is taken as $x=0 \mathrm{~km}$ and $t=0$ hours:
(i) Find to nearest minute the time taken for the runners speed to drop to $5 \mathrm{~km} / \mathrm{h}$.
(ii) How far to nearest metre would it taken the runner in three hours?
(b) Solve the equation $3^{2 x}+2 \times 3^{x}-15=0$.
(c) Consider the equation $x^{2}+(k-2) x+4=0$. For what values of k does the equation have:
(i) equal roots.
(ii) real and distinct roots.

Question 9 (12 Marks) Use a SEPARATE writing booklet.
(a) Solve $\frac{1}{2} \log _{e}(12-x)=\log _{e} x$

2
(b) A retiring couple estimate that they will need an income of $\$ 3750$ per month to be paid at the end of each month for twenty years to see them through they retirement years. Estimating an average interest rate of 6\% p.a. compounding monthly for the twenty year at which time their investment has been reduced to zero. Let P be the amount of money they invest to achieve they desired income:
(i) Show that after two months the amount of money remaining in the 1 investment is $A_{2}=P(1.005)^{2}-3750(1.005)-3750$.
(ii) Show that after n months, $A_{n}=P(1.005)^{n}-750000\left((1.005)^{n}-1\right)$.
(iii) Calculate the value of P.

2
(c) The amount A grams of a given carbon isotope in the wood of a Dark Age coffin is given by $A=A_{0} e^{-k t}$ where A_{0} and k are positive constants, and where t is measured in years from the time the wood was cut from a tree.
(i) Show A satisfies the equation $\frac{d A}{d t}=-k A$.
(ii) Find the value of k if the amount of isotope halved every 500 years.
(iii) When tested the wood only had 15% of the original amount in the living tree. How long ago was the wood cut from a tree. Give your answer to the nearest 100 years.

Question 10 (12 Marks) Use a SEPARATE writing booklet.
(a)

The diagram above is of a kite ABCD .
(i) Show that the equation of AC is $y=\frac{a-c}{5}(x-4)+a$.
(ii) Find the mid point of BD.
(iii) Hence or otherwise show that $b=\frac{2 c+8 a-5 d}{5}$.
(b)

A cylinder of radius rcm and height hcm is inscribed in a cone with base radius 6 cm and height 20 cm as in the diagram.
(i) Using similar triangles, show that the volume V of the cylinder is given by:

$$
V=\frac{10 \pi r^{2}(6-r)}{3}
$$

(ii) Hence find the values of r and h for the cylinder which has maximum volume.
(iii) What is the maximum volume?

End of Paper.

BLANK PAGE

Year 12 Mathematics Trial 2006

QI
(a)

$$
\begin{aligned}
& =0.057690897 \ldots \\
& =0.0577 \quad(3 \mathrm{sig} \cdot \mathrm{fig} . \mathrm{s})
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \quad x^{2}+2 x-15=0 \\
& \therefore(x+5)(x-3)=0 \\
& \therefore x=-5 \text { or } 3
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Let } x & =0.171717 \ldots \\
\therefore \quad 100 x & =17.171717 \ldots \\
\therefore \quad 99 x & =17 \\
\therefore \quad x & =17 / 99 \\
\therefore 0.17 & =\frac{\frac{17}{100}}{1-\frac{1}{100}} \\
& =17 \mathrm{k9}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \frac{1}{x^{2}-1}+\frac{x}{x+1} \\
= & \frac{1}{(x-1)(x+1)}+\frac{x(x-1)}{(x-1)(x+1)} \\
= & \frac{1+x^{2}-x}{(x-1)(x+1)}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \quad|2 x-1|>3 \\
& \therefore(2 x-1)^{2}>9 \\
& \therefore 4 x^{2}-4 x+1>9 \\
& \therefore 4 x^{2}-4 x-8>0 \\
& \therefore 4\left(x^{2}-x-2\right)>0 \\
& \therefore 4(x-2)(x+1)>0 \\
& +\quad+\quad+\quad+ \\
& \therefore \quad x<-1 \text { or } x^{2}>2
\end{aligned}
$$

1 Mark - correct answer
1 Mark - 3 sig. figs

1 Mark - correctly factorise
1 Mark - solution

Marking scale:
1 Mark: attempted to use correct method (but fails 2 Marks : correct solution

I Mark -common denominate
1 Mark - solution

2 Marks -one per solution
Note: -1 mark if inequality was combined
(f)

$$
\tan \frac{2 \pi}{3}=-\sqrt{3}
$$

1 Mark: negative
I Mark: $\sqrt{3}$

Irl ${ }^{\prime} \alpha$ TKIAL +BX α UNII 2006
(2) a) $\lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{x}\right)=\lim _{x \rightarrow 0}\left(5 \times \frac{\sin 5 x}{5 x}\right)=5 \lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{5 x}\right)=5$
b) (i) ${ }^{\text {st }}$ chget
(ii) 12 ± 21 dvisible by 3
(1) Heebiagam

Hence $P(\div 3)=\frac{2}{6}=1 / 3$
c) $x=t^{2}-6 t+8$
(i) $\frac{d x}{d t}=2 t-6$.
(1) $x(0)=8 m,\left(\frac{d x}{d t}\right)_{t=0}^{(1)}=-6 m / s$ (1)
(ii) Changes durection $\frac{d x}{d t}=0 \quad \therefore 2 t-6=0 \quad t=35$ (1)
(iii)

$$
\begin{array}{ll}
t=0, & x=8 \\
t=3, & x=9-18+8=-1 \\
t=4, x=16-24+8=0 \tag{1}
\end{array}
$$

(1) Splting time intenal appopinately
Total distance travelled $=9+1=10 \mathrm{~m}$
(Subtract I mask for att missing wheits
d)

$$
\begin{aligned}
& 2 \sin x+\sqrt{3}=0 \\
& 2 \sin x=-\sqrt{3} \\
& \sin x=-\sqrt{3} / 2
\end{aligned}
$$

$\pi / 3$ but $3^{2 d}+4^{*}$ quadrants (1)

$$
\begin{equation*}
x=\frac{4 \pi}{3}, \frac{5 \pi}{3} \tag{1}
\end{equation*}
$$

MARKERS COMMENTS
a) This is a standard ASC quection year in year ont. Far too man students made inconed statements $\sin 5 x \neq 5 \sin x$ ete. even though these aloo gove the anower 5 albent spunonsly. b) Sudents were exptuithy told to hot outcomes, many dixit. Lots faikd to read queshon and woed replacement
b(III) Corves prosusoviey 19 five.. vimurien unorgrow. ."urvea inion
c) (i) Lots found velocity function but not initial velour here
Man dropped negatwe sign failfig to realise l velour is a vector quantity.
(iii) Change in direction confused many when calculating stank. Some simply added displacements at second intervals
second inewabs
Failure to include any units on the four answers cost
students one mark
d). Moot completed well.

Too many gave answers in degrees not rachitis
(3) i $m_{A B}=\frac{2-6}{7-1}=\frac{-4}{6}=-\frac{2}{3} \quad$ (OR $\left.\frac{6-2}{1-7}=\frac{4}{-6}=-\frac{2}{3}\right)$
(1) "SHON" must miscues subtraction
(ii) $m_{A B}=\tan \alpha \quad-\frac{2}{3}=\tan \alpha$ (1)

$$
\alpha=\tan ^{-1}\binom{-2}{5}=180-3341^{\prime}
$$

$=146^{\circ} 19^{\prime}$ (nearest min.) (1)
(iii) $m=-\frac{2}{3}$ through $(-2,-2)$

$$
\begin{gather*}
(y-2)=-\frac{2}{3}(x-2) \\
y+2=-\frac{2}{3}(x+2) \\
3 y+6=-2 x-4 \tag{1}\\
2 x+3 y+10=0
\end{gather*}
$$

(1) "SHOW" - 1 mark substation I mark rearranging
(iv) $p=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}=\frac{12 \times 7+}{\sqrt{2^{2}}}$
(v) $M=\left(\frac{7-2}{2}, \frac{2+-2}{2}\right)=\left(\frac{5}{2}, 0\right)$ (1)
b) (i) $\frac{9 \mathrm{~cm}}{6 \mathrm{am}}$

$$
\cos \theta=\frac{11^{2}+9^{2}-6^{2}}{2 \times 9 \times 11}=0.8383 \ldots
$$

$$
\theta=33^{\circ} 02^{\prime} \text { (nearest min) (1) }
$$

(i)

$$
\begin{aligned}
A=\frac{1}{2} b c \sin \theta & =\frac{1}{2} \times 9 \times 11 \times \sin 33^{\circ} 02^{\prime} \\
& =26.98 \ldots \\
& =27 \mathrm{~cm}^{2} \quad \text { (request whole) (1) }
\end{aligned}
$$

MARKERS COMMENTS
a) (ii) Most students fail to recognise that angle of inclination is from posture x-asks ie obtuse in tho case. Many dint know $m=$
(iv) Lot of students don't know perpendicular diotance formula
(v) Concussion from midpoint calculation were vague in many case
b)(i) Students should recognise smallest angle is opposite smathe side, many performed calculation tire or thee times.
(ii) Some used $\cos \theta$ not $\sin \theta$ in formula. Lots, did not include units.

Question 4
a)

$$
\begin{aligned}
& {[3 \ln (x+1)]_{0}^{1} } \\
= & 3 \ln 2-3 \ln 1 \\
= & 3 \ln 2
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{x}, m=\frac{1}{e} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{1}{e}(x-e) \\
& e y-e=x-e \\
& 0=x-e y
\end{aligned}
$$

e)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times 6^{2} \times \frac{\pi}{12} V \\
& =\frac{18 \pi}{12} \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

b) i) $\tan x^{2}+x \sec ^{2} x$
ii)

$$
\text { i) } \begin{aligned}
& \frac{x \times \frac{1}{x}-1 \times \ln x}{x^{2}} \\
= & \frac{1-\ln x}{x^{2}}
\end{aligned}
$$

d) $a=7 \quad d=2 \quad n=6$

$$
\begin{aligned}
S_{6} & =\frac{6}{2}(2 \times 7+5 \times 2) \\
& =3(14+10) \\
& =72
\end{aligned}
$$

(a) $150+160+170+\cdots \cdot$
n is a pestive number.

$$
n>23.0532 \ldots
$$

Imark - eotabishing $A P$

$$
a=150 \quad d=10
$$

1 maik (solo into formula) purit shans inequaluty.

Imout (sub into quad. $\binom{$ Grmuke correcthy }{ frantheir mad anty } fran their imacisinty OR seme other correct apprepreata method

$$
\therefore n=24 . \text { matti }
$$

$$
\begin{aligned}
& A P \\
& \left.\begin{array}{l}
a=150 \\
d=10
\end{array}\right] / 1 \\
& n=\text { ? } \\
& S_{n}=6000 \\
& S_{n}=\frac{n}{2}(2 a+(n-1) d) \\
& 6000<\frac{n}{\alpha}(300+(n-1) 10) / 1 \\
& 12000<n(300+10 m-10) \\
& 12000<290 n+10 n^{2} \\
& 10 n^{2}+290 n-12000>0 \\
& n^{2}+29 n-1200>0 \\
& n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& n=\frac{-29^{+}-\sqrt{29^{2}+(4 \times 1 \times 1200)}}{2} \\
& n=\frac{-29 \pm \sqrt{5641}}{2} \\
& n=\frac{-104.1065909}{2}=52.0532 \ldots \\
& n=\frac{4 k \cdot 10 \Leftrightarrow 540 c_{1} 2}{2}=23.0532
\end{aligned}
$$

(b)

(1) $\angle A D B=\angle C D B$

Diagonals bisect the vertices in a rhombos.

1 mark reason be corre.
(ii) in $\triangle A L D$ anal $\triangle C L D$ $A D=C D$ (equat sides in a rhombus)
$D L$ in comman side
$\angle A D B=\angle C D B$ (diagonalisbise ot verhee)
in a rhembus (from(1)) \rightarrow Imait

$$
\begin{aligned}
& \angle A D B=\angle C D B \quad \text { (diagonalisbised verhee } \\
& \text { in a rhembos (from(1))) } \\
& . \triangle A L D \equiv \triangle C L D(S . A . S) .
\end{aligned}
$$ Muat be correct.

$$
\therefore \angle A L D \equiv \Delta C L D(S . A . S)
$$

$$
\therefore \angle D A L=90^{\circ}
$$

$$
\begin{aligned}
& A D \| B C \text { in rhon } \\
& +X \perp C-)
\end{aligned}
$$

(N) $\angle D A L=\angle D C L\binom{$ comeoponding angles in }{ cengrvent ficangies }
 reatenmust! given. $A D \| B C$ runt rare.
frasin part (il)

$$
\therefore \angle D A L=\angle L C D=90^{\circ}
$$

Imark: correct reaso: rust besjuien

Bornce $2=\frac{2}{3} \times \frac{4}{3}=\frac{5}{4} m$
Bunce $3=\frac{2}{3} \times \frac{8}{9}=\frac{10}{27} \mathrm{~m}$
\therefore height aftur 3id ${ }^{9}$ bavire in $\frac{1 k}{23} \mathrm{~m}$
(11) $2+2\left(\frac{4}{3}+\frac{8}{9}+\frac{1 k}{2}+\cdots\right)$
$=2+2\left(\frac{9}{1-r}\right) \quad$ limiting sum a $=\frac{4}{3} r=\frac{2}{3} \quad$ curnectily inte formula.
$=2$ totaldistance
$=2+2\left(\frac{4}{3}\right.$
$\left.=2+2(4)^{r^{-2 / 3}}\right)=10 \mathrm{~m}$
\therefore total distance travellea in 10 m . I mark correet annmor

Solutions
6 (a) $\quad y=x^{3}-3 x^{2}-9 x+1$
(i) $\frac{d y}{d x}=\frac{3 x^{2}}{-6 x}-9$

If $\frac{d y}{d x}=0$ then $3 x^{2}-6 x+9 \leq 0$
$3\left(x^{2}-2 x-3\right)-0$
$3(x-3)(x+1)=0$
$\therefore \quad x=3$ or -1
$x, y=3, y=-26$ and $y=x=-1, y=6$
(e. $(3,-26)$ and $(-1,6)$ are d. plo.

$\left(v\right.$, if $x-1=-1=$ then $d y^{d h^{2}}=-12<0$ max $t \rho$ [ink each
(6) (18) ft pt at $x=0,2$ or 4

Concave down then $x<1$ ce pt of inflexion $x=1$
Concave up when $1<x<3$ poi of $x=3$
Concave down ahem $3<x<4$ ie. poi at $x=4$.
Concave up when $x>4$

(c) 3 Red, 4 Blue, 5 Yellow

$$
\dot{A} P(Z Y, R)=P(R Y Y)+P(Y Y R)+P(Y R Y)
$$

$$
x+x+x
$$

$$
\begin{aligned}
& =\frac{3}{22}, x: \\
& =x \text { inks (correl an } \\
& \text { lade (for correct) } \\
& \text { /arrangmat.) }
\end{aligned}
$$

(ii) 3 Red, 9 Non-red
\qquad

$$
\begin{aligned}
& \text { w } \quad, ~ N O M=\lambda-\pi P(N, N, N) \text {. } \\
& \therefore=1 \left\lvert\,=1-\left(\frac{Q^{3}}{k_{4}^{\prime 2}} \cdot \frac{z^{2}}{\frac{2}{10}}\right)\right.
\end{aligned}
$$

solutions
Q 7 Maths
(a) \qquad Auglitad =1
Reined $=\frac{2 \pi}{2}=\pi$.
(i)

(ii)

$$
=2 \int_{0}^{0} \sin 2 x d x
$$

(b)

3 its for coned ans. two for arrect integral
lath for coned regerables.
I ale for correct subset.

$$
\begin{aligned}
& \text { For } \quad y=-x^{2}+2 \\
& \therefore \quad x^{2}=2-y \\
& \therefore \quad \text { Volume }=\pi \int_{0}^{2} x^{2} d y \\
&=\pi \int_{0}^{2}(2-y) d y \\
&=\pi\left[\left(2 y-y^{2}\right)\right]_{0}^{2} \\
&=\pi[2] \\
&=2 \pi \text { culac unit. }
\end{aligned}
$$

(c)

(i): Area $\div \frac{10}{2}[0+2(5 \cdot 2)+2(5 \cdot 5)+2(6)+0]$.

(ii) The Lack If acciviany if t thirs mottiod is the inathee of the shaght line does not matec the curve. A beter numod is Simpson's hilerithich unes a curre The apprexinate the gap:
OK.
 the valae fl: K

Qevestron -
a) i)

$$
\begin{aligned}
& 5=15(1-\sin 0.15 t) \\
& \frac{1}{3}=1-\sin 0.15 t \\
&-\frac{2}{3}=-\sin 0.15 t \\
& 0.15 t=\sin ^{-1}\left(\frac{2}{3}\right) \\
& t=\frac{\sin ^{-1}\left(\frac{2}{3}\right)}{0.15} \\
&=4 \text { hrs } 52 \text { mins } \\
& 4.865 \quad(292 \text { mins })
\end{aligned}
$$

ii)

$$
\frac{d x}{d t}=15-15 \sin 0.15 t
$$

$$
\begin{aligned}
& x=\int 15-15 \sin 0.15 t d t \\
& =15 t+\frac{15}{0.15} \cos 0.15 t+c \\
& x=0 \quad t=0 \\
& 0=0+100 \cos 0+c \\
& c=-100 \\
& x=15 t+100 \cos 0.15 t-100 \\
& t=3 \\
& x=45+100 \cos 0.45-100 \\
& =35.045 \mathrm{~km}
\end{aligned}
$$

(3)
b) $3^{2 x}+2 \times 3^{x}-15=0$

Let $u=3^{x}$

$$
\begin{gather*}
u^{2}+2 u-15=0 \\
(u+5)(u-3)=0 \\
u=-5 \text { or } 3 \\
3^{x}=-5 \quad 3^{x}=3 \tag{3}
\end{gather*}
$$

No soln $\& x=1$
c)

$$
\begin{aligned}
& \Delta=b^{2}-4 a c \\
& =(k-2)^{2}-4 \times 1 x^{4} \\
& =k^{2}-4 k+4-16 \\
& =k^{2}-4 k-12
\end{aligned}
$$

i)

$$
\begin{gather*}
\Delta=0 \\
k^{2}-4 k-12=0 \\
(k-6)(k+2)=0 \\
k=6 \text { or }-2 \tag{2}
\end{gather*}
$$

$i i)$

$$
\begin{aligned}
& \Delta>0 \\
& (k-6)(k+2)>0 \\
& k>0 \text { or } k<-2
\end{aligned}
$$

Year 12 Mathematics Trial 2006

QQ
(a)

$$
\begin{aligned}
& \frac{1}{2} \ln (12-x)=\ln x \\
& \therefore \ln (12-x)=2 \ln x \\
& \therefore \ln (12-x)=\ln x^{2} \\
& \therefore \quad 12-x=x^{2} \\
& \therefore \quad x^{2}+x-12=0 \\
& \therefore \quad(x+4)(x-3)=0 \\
& \therefore x=-4 \text { or } 3
\end{aligned}
$$

but $\ln -4$ is undefined

$$
\therefore x=3
$$

I Mark - solved quadratic
1 Mark -discarded -4
(b) (i) $r=\frac{0.06}{12}=0.005$ per month

$$
\begin{aligned}
\therefore A_{1} & =P(1.005)-3750 \\
\therefore A_{2} & =[P(1.005)-3750](1.005)-3750 \\
& =P(1.005)^{2}-3750(1.005)-3750 \quad \text { 1 Mark }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\therefore A_{n} & =P(1.005)^{n}-3750(1.005) n-1-\ldots-3750(1.005)-3750 \\
& =P(1.005)^{n}-3750\left[1.005^{n-1}+\ldots+1.005+1\right]_{\text {I Mark }} \\
& =P(1.005)^{n}-3750\left(\frac{1.005^{n}-1}{1.005-1}\right) \\
& =P(1.005)^{n}-\frac{3750}{0.005}\left(1.005^{n}-1\right) \\
& =P(1.005)^{n}-750000\left(1.005^{n}-1\right) \quad \text { I Mark }
\end{aligned}
$$

(iii) $A_{240}=0$

I Mark

$$
\begin{aligned}
\therefore \quad O & =P(1.005)^{240}-750000\left(1.005^{240}-1\right) \\
\therefore P & =\frac{750000\left(1.005^{240}-1\right)}{1.005^{240}} \\
& =\$ 523427.89
\end{aligned}
$$

1 Mark

$$
\text { Q9(c)(i) } \begin{aligned}
A & =A_{0} e^{-k t} \\
\therefore \frac{d A}{d t} & =-k A_{0} e^{-k t} \\
& =-k A
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { (ii) } T=500 \quad A=\frac{A_{0}}{2} \\
\therefore \quad \frac{A_{0}}{2}=A_{0} e^{-500 k} \\
\therefore e^{-500 k} & =\frac{1}{2} \\
\therefore-500 k & =\ln \frac{1}{2} \\
\therefore \quad k & =\frac{-\ln \frac{1}{2}}{500} \\
& =\frac{\ln 2}{500} \\
& =0.001386
\end{array}\right\} \text { all accepted } \quad \text { I Mark } \quad \text { Mark }
$$

(iii)

$$
\begin{aligned}
& A=0.15 A_{0} \\
& \therefore 0.15 A_{0}=A_{0} e^{-k t} \\
& \therefore 0.15=e^{-k t} \\
& \therefore-k t=\ln 0.15 \\
& \therefore \quad t=-\frac{\ln 0.15}{k} \\
& =1368.48 \\
& \approx 1400 \text { years } \\
& \text { I Mark } \\
& \text { I Mark }
\end{aligned}
$$

Note: accepted answers based on mistakes in part (ii)

Question 10
a) $A C \quad M_{A C}=\frac{a-c}{4-1}=\frac{a-c}{5}$
i)

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \quad(4, a) \\
& y-a=\frac{a-c}{5}(x-4) \\
& y=\frac{a-c}{5}(x-4)+a
\end{aligned}
$$

ii) Midpoint $\left(\frac{1+5}{2}, \frac{b+d}{2}\right)$

$$
=\left(3, \frac{b+d}{2}\right)
$$

iii)

$$
\frac{b+d}{2}=\frac{a-c}{5}(3-4)+a
$$

$$
b+d=\frac{-2(a-c)}{5}+2 a
$$

$$
b+d=\frac{-2 a+2 c+10 a}{5}
$$

$$
b=\frac{8 a+2 c}{5}-d=\frac{2 c+8 a-5 d}{5}
$$

b) i)

$$
v=\pi r^{2} h
$$

$$
\begin{aligned}
V & =\pi r n \\
& =\pi r^{2} \times \frac{20(6-r)}{6}
\end{aligned}
$$

$$
=\frac{10 \pi r^{2}(6-r)}{3}
$$

$$
\text { ii) } \begin{aligned}
& V=\frac{60 \pi r^{2}-10 \pi r^{3}}{3} \\
& \frac{d V}{d r}=\frac{120 \pi r}{3}-\frac{30 \pi r^{2}}{3} \\
&=40 \pi r-10 \pi r^{2} \\
& 0=10 \pi(4-r) \\
& r=0 \text { or } 4 \\
& \frac{d_{2} V}{d r^{2}}=40 \pi-20 \pi r \\
& d_{2} V=-40 \pi 2
\end{aligned}
$$

$$
\therefore r=4
$$

$$
h=\frac{20(6-4)}{6}
$$

$$
=\frac{20 \times 2}{6}=\frac{40}{6}
$$

iii) $\therefore V=\pi(4)^{2}\left(\frac{70}{6}\right)$

$$
=106 \frac{2}{3} \pi \text { units }
$$

when $x=t \quad \frac{d_{2} v}{d r^{2}}=-40 \pi \angle 0$

$$
\approx 3351
$$

