Total marks (120)
Attempt questions 1-10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet
(a) Evaluate $\frac{5}{\log _{e} 5}$ correct to three significant figures.
(b) Simplify $\frac{5 x}{7}-\frac{2 x+1}{3}$.
(c) $\quad f(x)=\left[\begin{array}{ll}3-2 x & \text { for } x \leq 1 \\ x^{2}+2 & \text { for } x>1\end{array}\right.$

Evaluate $f(0)+f(2)$.
(d) Completely factorise $x^{3}+3 x^{2}-4 x-12$.
(e) Find the integers a and b such that $\frac{1}{1-\sqrt{2}}=a+b \sqrt{2}$
(f) Solve $|x-4|=3$2
(a) Differentiate the following functions:
(i) $y=(3 x-2)^{4}$
(ii) $y=e^{3 x-2}$
(iii) $y=x^{2} \cos 2 x \quad \mathbf{2}$
(iv) $y=\frac{x}{\log _{e} x}$
2
(b) Evaluate
(i) $\int_{1}^{2} \frac{1}{x^{3}} d x$

2
(ii) $\int_{0}^{3} e^{-4 x} d x$
(c) Find the equation of the tangent to the curve $y=2 \tan x$ at the point on the curve where $x=\frac{\pi}{4}$.

Question 3 (12 marks) Use a SEPARATE writing booklet
(a)

The diagram shows the points $A(1,0), B(4,2)$ and $C(0,8)$ in the Cartesian plane.
(i) Show that the equation of $B C$ is $3 x+2 y-16=0$.
(ii) Show that $\angle A B C$ is 90°.
(iii) Find the length of $A B$.
(iv) Find the equation of the circle with centre A that passes through B.
(b)

In the diagram, $A B C D$ is a straight line, and E lies on $C F$.
$B F=E F, \angle B F E=44^{\circ}, \angle D C E=146^{\circ}, \angle C B E=x^{\circ}$.
(i) Find the value of x giving reasons.
(ii) State why $B E=E C$.
(a) If α and β are the roots of the equation $2 x^{2}-5 x+3=0$ find the value of:
(i) $\alpha+\beta$

1
(ii) $\alpha \beta$
(iii) $\alpha^{2} \beta+\alpha \beta^{2}$

2
(b) Find the values of k for which the equation $x^{2}+2 k x+(3 k-2)=0$ has real roots.
(c) I walk 5 km due east from P to Q , then 8 km on a bearing of 130° to a point R .
(i) Use the Cosine Rule to find the straight line distance between my starting point and finishing point.
(ii) What is the bearing of P from R ?

Question 5 (12 marks) Use a SEPARATE writing booklet
(a) A function $f(x)$ is defined by

$$
f(x)=4 x^{3}-x^{4}
$$

(i) Find all solutions of $f(x)=0$.
(ii) Find the coordinates of any stationary points of the graph of $y=f(x)$ and determine their nature.
(iii) Hence sketch the graph of $y=f(x)$ in the domain $-1 \leq x \leq 4$, showing the stationary points and points where the curve meets the x-axis.
(b) A researcher is studying the increase of a population of rabbits in the North of the State. He concurs the population is given by the equation $A=1000 e^{0.15 t}$ where t is the time in days since the study began.

Find:
(i) the initial population of the rabbits in the study.
(ii) the number of rabbits 7 days into the study.
(iii) on which day the population will have increased to 250000 .
(a) Evaluate $\sum_{r=1}^{\infty}\left(\frac{2}{3}\right)^{r}$
(b) An enterprising year twelve student began a paper delivery round in his local neighbourhood. His earnings for the first three months formed a Geometric Progression as shown in the table below.

Month	1	2	3
Earnings (\$)	200	300	450

If his earnings continued to increase at the same rate,
(i) how much did he earn in the fourth month ?
(ii) what was his total earnings in the first year of business ?
(iii) how long would it take, to the nearest month, for the student to earn $\$ 10000$ in total?
(c) The probabilities that Alex, Bob and Colin will pass the next Probability test are $0.9,0.8$ and 0.7 respectively.
(i) Show that the probability that they all pass is greater than 50%.
(ii) Find the probability that at least one of the three boys pass the test.

Question 7 (12 marks) Use a SEPARATE writing booklet
(a) The displacement of a particle moving in a straight line is given by:

$$
x=t^{3}-\frac{7}{2} t^{2}+2 t-1 \quad \text { (where } t \text { is in seconds, } x \text { is in metres). }
$$

Find:
(i) the particle's initial displacement. 1
(ii) the acceleration of the particle after 2 seconds. $\mathbf{3}$
(iii) when the particle is at rest. $\mathbf{1}$
(iv) the total distance the particle travels between $t=1$ and $t=3$ seconds. $\mathbf{2}$
(b) The rate of flow of water into a large container is given by:

$$
\frac{d V}{d t}=\frac{30}{t+1}
$$

where V is in litres and t is in minutes.
Initially, there is 40 litres of water in the container.
(i) Find the volume of water in the container after 4 minutes.
(ii) How long does it take for the container to hold 160 litres?
(a) Solve $\log (6 x-1)-\log (x+2)=\log 4$.

Give values correct to 2 decimal places where necessary.

x	-3.00	-2.00	-1.00	0.00	1.00
$f(x)$	0.20				

(ii) Use Simpson's Rule with 5 function values to approximate the area between the curve $f(x)=e^{x}(1-x)$ and the x-axis for $-3 \leq x \leq 1$.
(c)

The shaded region in the diagram is the area bounded by the lines $y=2$ and $x=1$, and the parabola $y^{2}=x$.

This region is rotated about the y-axis. Find the volume of the solid formed.
(d) Solve the following equation for α (correct to 2 decimal places where necessary).

$$
\begin{aligned}
& \quad 2 \cos ^{2} \alpha-3 \sin ^{2} \alpha+4 \sin \alpha=2 \\
& \text { for } 0^{\circ} \leq \alpha \leq 90^{\circ}
\end{aligned}
$$

Question 9 (12 marks) Use a SEPARATE writing booklet
(a) A new golf club is being designed for playing shots under bushes. The shape of its face is shown in the graph below.

Its curved part has the equation $y=2-\frac{(x-1)^{2}}{2}$, whilst its straight parts have the equations

$$
y=a x+b \text { and } y=0 .
$$

(i) Find the values of the constants a and b.
(ii) Find the area of the face of this new golf club.
(b) Helen borrows $\$ 300000$ at 6% p.a. interest rate. She aims to pay the loan back in equal monthly instalments of $\$ M$ over 25 years.
(i) Show that immediately after making her third monthly instalment, Helen owed

$$
\begin{equation*}
A_{3}=\$\left[300000 \times 1.005^{3}-M\left(1+1.005+1.005^{2}\right)\right] \tag{2}
\end{equation*}
$$

(ii) Calculate the value of M.
(iii) At the end of five years, the interest rate is increased to 7.2% per annum and Helen changes her repayments to $\$ 2600$ per month. How many more months are needed to pay off the remainder of the loan?

(a)

The diagram shows a straight section of a rowing course, 1 km wide and 2 km long. Sharon starts at S , rows in a straight line to the opposite bank gets out of the boat then runs to the finish line. Let the distance AP be x kilometres.

If Sharon can row at $6 \mathrm{~km} / \mathrm{hr}$ and run at $10 \mathrm{~km} / \mathrm{hr}$,
(i) Show that the time T, in hours, that Sharon takes to reach the finish line is given by

$$
T=\frac{\sqrt{x^{2}+1}}{6}+\frac{2-x}{10}
$$

(ii) Show that if Sharon wishes to minimise the time taken to complete her course, then she should row to a point $\frac{3}{4}$ kilometres from A .

Question 10 (continues)

Marks
(b)

ABC is a arc of a circle of radius r. If BD was extended the line would pass through the centre of the circle.

Draw the diagram in your answer booklet and indicate the point O which is the centre of the circle.
(i) If $A D=D C=1 \mathrm{~m}$ and $B D=10 \mathrm{~cm}$, show that the radius $r=505 \mathrm{~cm}$.
(ii) Find the area of the segment ABCD to the nearest square cm .

END OF PAPER

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=\quad-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note $\ln x=\log _{e} x, \quad x>0$

प्रा2 Tral Nem 2007
Q1 (a) 3.11
(b)

$$
\begin{align*}
& \frac{15 x}{21}-\frac{7(2 x+1)}{21} \\
= & \frac{x-7}{21} \tag{2}
\end{align*}
$$

(c) $f(0)+f(2)=3+6$ \quad (1 each)

$$
=9
$$

(d)

$$
\begin{align*}
& x^{2}(x+3)-4(x+3) \\
= & (x+3)\left(x^{2}-4\right) \\
= & (x+3)(x+2)(x-2) \tag{2}
\end{align*}
$$

(e)

$$
\begin{align*}
& \frac{1}{1-\sqrt{2}} \times \frac{1+\sqrt{2}}{1+\sqrt{2}} \\
= & \frac{1+\sqrt{2}}{1-2} \\
= & -1-\sqrt{2} \\
& a=-1 \quad b=-1 \tag{2}
\end{align*}
$$

(f)

$$
\begin{align*}
& x-4=3 \\
& x=7 \\
& x-4=-3 \\
& x=1 \tag{2}
\end{align*}
$$

part (a) iswe with vudertanding of rig figp
(b) waral problem with negahive in 2nd
(c) Sowe worked out indiridual valves bit taved to add! some ded not undertord plece wire frotive at all
(d) Qucte a fee had wo ided

Some Eet' 1 tholets used factor theorem
many leff $\left(2^{2}-4\right)$ as a petor.
(e) Mony ded wost nealise hat $\frac{1+\sqrt{2}}{1}=-1-\sqrt{2} \quad($ whtead $-1+\sqrt{2})$
(f) Dore well.
$2(a)(i)$

$$
\begin{aligned}
y & =(3 x-2)^{4} \\
\therefore \frac{d y}{d x} & =4(3 x-2)^{3} 3=12(3 x-2)^{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
d x & =e^{3 x-2} \\
\therefore \frac{d y}{d x} & =3 e^{3 x-2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
y & =x^{2} \cos 2 x \\
\therefore \frac{d y}{d x} & =2 x \cdot \cos 2 x-2 x^{2} \sin 2 x
\end{aligned}
$$

(iv)

$$
\begin{aligned}
y & =\frac{x}{\ln x} \\
\therefore \frac{d y}{d x} & =\frac{\ln x-x \cdot \frac{1}{x}}{(\ln x)^{2}}=\frac{\ln x-1}{(\ln x)^{2}}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{x^{3}} d x & =\left[\frac{-1}{2 x^{2}}\right]_{1}^{2} \\
& =\frac{-1}{8}+\frac{1}{2} \\
& =\frac{3}{8}
\end{aligned}
$$

(ii)

$$
\begin{align*}
\int_{0}^{3} e^{-4 x} d x & =\left[-\frac{1}{4} e^{-4 x}\right]_{0}^{3} \\
& =-\frac{1}{4}\left(e^{-12}-1\right)=0.249998463 \tag{4}
\end{align*}
$$

(C)

$$
y=2 \tan x \quad \therefore \frac{d y}{d x}=2 \sec ^{2} x
$$

where $x=\frac{\pi}{4}: \quad y=2 \tan \frac{\pi}{4}=2$

$$
\begin{gathered}
\frac{d y}{d x}=2 \sec ^{2} \frac{\pi}{4}=4 \\
y-y_{1}=m\left(x-x_{1}\right) \quad \therefore \quad y-2=4\left(x-\frac{\pi}{4}\right) \\
\therefore \quad y-4 x-2+\pi=0
\end{gathered}
$$

(a) H mac= $-\frac{8-2}{0-4}$

$$
\begin{gathered}
=-\frac{3}{2} \\
y=-\frac{3}{2} x+8 \\
2 y=-3+4 \\
3 x+2 y-16=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { (a) } 135(68-2)-\log (x+2)=1004 \\
& \left.10.5\left(\frac{6 x-1}{x+1}\right)=\log \right)\binom{\text { Nomank }}{\text { andand }} \\
& \frac{8 x-1}{3+2}=4
\end{aligned}
$$

$$
\begin{aligned}
& 2 x=\text { a } \\
& x=\frac{3}{2}
\end{aligned}
$$

(ii) $m_{n s}=\frac{2-0}{4-1}=\frac{2}{3}$

$$
M_{n c} \times M_{\mathrm{Q}} 2=\frac{2}{3} \times \frac{-3}{2}=-1
$$

$$
\therefore \quad \text { K } B+8 C
$$

$$
\sqrt{13} \text { ans }
$$

$$
(2-1)^{2}+3^{2}=13^{2}
$$

$$
\begin{aligned}
& =\pi\left[\frac{2^{5}}{5}\right]_{1}^{2}-\pi \\
& =\frac{31 \pi}{5}-\pi \\
& =\frac{26}{5} \text { unats }
\end{aligned}
$$

(t) Kxs a $_{6}=\int_{-3}^{1} e^{x}(-x)$ an

$$
\therefore \quad 2 \cdot 44 \operatorname{sen}^{2}
$$

(b) $(t)+(x)=e^{x}(1-x)$

x	-3	$-z$	-1	0	1
$-(x)$	0.20	0.4	3	3	1

$$
=\frac{1}{3}(0.2+4 \times 0.41+280.14+4 \times 1)
$$

$$
\begin{array}{r}
\cos ^{2} \theta-3 \operatorname{sen}^{2} \theta+4 \operatorname{con}^{2} \theta=1 \\
1+\operatorname{son}^{2} \theta-3 \sin ^{2} \theta+4 \sin \theta=1 \\
2 \sin \theta-4 \sin ^{2} \theta=0
\end{array}
$$

$$
\sin \theta \mid+\sin \theta)=0
$$

$486=286$

$$
\begin{aligned}
& \sin 5 y
\end{aligned}
$$

$2 v$ Maths Trial 2007
Qu
a) i) $\alpha+\beta=\frac{--5}{2}=\frac{5}{2} V$
$a, b-7$
$c-5$
ii) $\alpha \beta=3 / 2$
iii)

$$
\begin{aligned}
\alpha \beta(\alpha+\beta)^{V} & =3 / 2 \times \frac{5}{2} \\
& =15 / 4
\end{aligned}
$$

b)

$$
\begin{aligned}
& \Delta \geq 0 \\
& (2 k)^{2}-4(1)(3 k-2) \geq 0 \\
& 4 k^{2}-12 k+8 \geq 0 \\
& k^{2}-3 k+2 \geq 0 \\
& (k-2)(k-1) \geq 0 \\
& k \geq 2 \text { or } k \leq 1
\end{aligned}
$$

c)

$$
\begin{aligned}
& P R^{2}=5^{2}+8^{2}-2 \times 5 \times 8 \times \cos 140 \\
& P R=12.3 \checkmark(12.2590 \ldots)
\end{aligned}
$$

$u \operatorname{sing} 130^{\circ}$

$$
a=11.9
$$

$$
\theta=18^{\circ} 47^{\prime}
$$

Bearing $=291^{\circ} 33^{\prime}$

$$
14^{\circ}+7^{\prime}\left(\begin{array}{ll}
11 \\
1 y^{\prime} & 12.3^{2}
\end{array}\right)
$$

$$
\text { Bearing }=270+40-15^{\circ} 12^{\prime}
$$

$$
=294^{\circ} 48^{\prime}
$$

$$
360-50-\theta
$$

$$
\text { or } 294^{\circ} 52^{\prime}
$$

$$
\begin{aligned}
& \frac{\sin \theta}{s}=\frac{\sin 140}{12.3} \\
& \theta=15^{\circ} 12^{\prime} \\
& 15^{\circ} 08^{\prime}(\text { using 12.3) }
\end{aligned}
$$

$56 \cdot \quad f(x)=4 x^{3}-x^{4}$

$$
\begin{aligned}
& f^{\prime}(x)=12 x^{2}-4 x^{3} \\
& f^{\prime \prime}(x)=24 x-12 x^{2}
\end{aligned}
$$

(1)

$$
\begin{aligned}
f(x)=4 x^{3}-x^{4} & =0 \\
x^{3}(4-x) & =0 \\
x & =0,41
\end{aligned}
$$

ii) For st pt $f^{\prime}(x)=0$

$$
\begin{aligned}
12 x^{2}-4 x^{3} & =0 \\
4 x^{2}(3-x) & =0 \\
x & =0,3
\end{aligned}
$$

when $x=0$

$$
f(0)=0.1
$$

$$
\begin{aligned}
x & =3 \\
f(3) & =4(3)^{3}-3^{4} \\
& =108-81 \\
& =27
\end{aligned}
$$

Test the naticre

$$
\begin{aligned}
& f^{\prime \prime}(x)=24 x-12 x^{2} \\
& f^{\prime \prime}(0)=0
\end{aligned}
$$

$$
F^{\prime \prime}(x)=24 x-12 x^{2}
$$

$$
\equiv 24(3)-12(3)^{2}
$$

check concavity

x	0	0
$f^{\prime \prime} x$	-	
$(0,0)$	is a	

Ar $f^{\prime \prime}(x)<0$ the curve is concave down \curvearrowright. I

$$
\therefore(3,-27) \text { is a }
$$

local max
of inflexion
NB
Must check concauty if using
tho Did derwatio

Endpoints
when $x=-1$

$$
\begin{array}{rlrl}
f(B) & =4(-1)^{3}-(-1)^{4} & x=4 \\
& =-4-1 & f(4) & =4(4)^{3}-4 \\
& =0
\end{array}
$$

$$
=-5
$$

(1) endpounts
(1) Shape
b) $A=1000$
ii)

$$
\begin{aligned}
& A=1000 e^{0.15 \times 7} \\
&=1000 e^{1.05} \\
&=2857.65115 \\
&=\left\{\frac{85}{2} 85\right. \text { to nearest whale no } \\
& \text { o marks if they answered }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
250000 & =1000 e^{0.5 t} \\
250 & =e^{0.15 t} \\
\ln 250 & =\ln e^{0.15 t} \\
0.15 t & =\ln 250 \\
t & =\frac{\ln 250}{0.15} \\
& =36.80973945
\end{aligned}
$$

In the 37 day 1

Question 6
a)

$$
\begin{aligned}
& S \infty=\frac{a}{1-r} \\
& a=2 / 3 r=2 / 3 \\
& S \infty=\frac{2 / 3}{1-2 / 3}=\frac{2}{3} \times \frac{3}{1} \\
& =2
\end{aligned}
$$

b) i) $450 \times 1 \frac{1}{2}=675$
ii)

$$
\begin{aligned}
S_{12} & =\frac{200\left(1.5^{12}-1\right)}{1.5-1} \\
& =\$ 51498.54
\end{aligned}
$$

iii) $70000=\frac{200\left(1.5^{n}-1\right)}{1.5-1}$

$$
\frac{35000}{200}=200\left(1.5^{n}-1\right)
$$

$$
\begin{aligned}
175 & =1.5^{n}-1 \\
\log 1.5^{n} & =\log 701176 \\
n & =\frac{\log 175}{\log 1.5} \\
& =12.737
\end{aligned}
$$

13 months
c) i) $P(P P P)=0.9 \times 0.8 \times 0.7=0.504>50 \%$
ii)

$$
\begin{aligned}
P(\text { atleast } 1 \text { pass }) & =1-P(\text { all fail }) \\
& =1-(0.1 \times 0.2 \times 0.3) \\
& =0.994
\end{aligned}
$$

7

$$
\begin{aligned}
& x=t^{3}-\frac{1}{2} t^{2}+2 t-1 \\
& x=3 t^{2}-7 t+2 \\
& x=6 t^{-7}
\end{aligned}
$$

(1) initial displacement $-1 m$ or one metre to the left
ii)

$$
\begin{align*}
x & =3 t^{2}-7 t+2 \text { (1) } \tag{1}\\
\dot{x} & =6 t-7 \text { (1) at } t=2 \\
& =6(2)-7 \\
& =5
\end{align*}
$$

acceleration is $5 \mathrm{~ms}^{-2}$
(iii) $3 t^{2}-7 t+2=0$ at rest $\dot{x}=0$

$$
(3 t-1)(t-2)=0
$$

$t=\frac{1}{3}, 2$ (1) both must be correct
iv) $A t t=1, x=1^{3}-\frac{7}{2}(1)^{2}+2(1)-1$
(1) mark for

$$
\begin{aligned}
& \text { At } t=2 \quad x=2^{3}-\frac{7}{2}(2)^{2}+2(2)-1 \\
& =-3
\end{aligned}
$$

$A t E=3 \quad x=3^{3}-\frac{7}{2}$

$$
(3)^{2}+2(3)-1
$$

showing understand of concept

$$
=\frac{1}{2}
$$

(i) correct answer

$$
\begin{aligned}
\text { Total distance } & =1 \frac{1}{2}+3 \frac{1}{2} \\
& =5
\end{aligned}
$$

NBOmarks
If students did at $t=1, x=-1 \frac{1}{2}$ at $t=3, x=\frac{1}{2}$, total distance $=2$
2 marks if correct integration was used
b) 1)

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{30}{t+1} \\
v & =\int \frac{30}{t+1} d t \\
& =30 \log _{e}(t+1)+c \text { (1) at } t=0 \quad v=40 \\
40 & =30 \log _{e}(t+1)+c \\
c & =40 \text { (1) } \\
v & =30 \log _{e}(t+1)+40 \text { at } t=4 \\
& =30 \log _{e}(4+1)+40 \text { No penalty for } \\
& \doteqdot 88 \cdot 283187 \text { No ling }
\end{aligned}
$$

Volume is $\$ 8 L$ to nearest L (1)
ii)

$$
\begin{aligned}
160 & =30 \log _{e}(t+1)+40 \\
120 & =30 \log _{e}(t+1) \\
4 & =\log _{e}(t+1)(1) \\
t+1 & =e^{4} \\
t & =e^{4}-1 \\
& =53 \cdot 59815003 \text { No penalty } \\
& =54 \text { for nearest whole no }
\end{aligned}
$$

$$
\text { time is } 54 \mathrm{~min} \text { to nearest min }
$$

412 Tral Mattw 2007
09
(a) (i) $a=2 \quad b=0$
(ii)

$$
\text { (i) } \begin{align*}
a & =2 \quad b=0 \\
\text { Area } & =\frac{1}{2} \times 1 \times 2+\int_{1}^{3} 2-\frac{(x-1)^{2}}{2} d x \\
& =1+\left[2 x-\frac{(x-1)^{3}}{6}\right]_{1}^{3} \\
& \left.=1+\left[6-\frac{8}{6}\right)-2\right] \tag{4}\\
& =3 \frac{2}{3} u^{2}
\end{align*}
$$

(b) (i) I/ A_{i} i amount owed after $i^{\text {in }}$ unitalmat.

$$
\begin{align*}
A_{1} & =300000 \times 1.005-M \quad \text { mondily efest rate } 0.5 \% \\
A_{2} & =(300000 \times 1.005-M) 1.005-M \\
& =300000 \times 1.005^{2}-M \times 1005-M \\
A_{3} & =\left(300000 \times 1.005^{2}-M \times 1-005-m\right) 11005-M \\
& =300000 \times 1005^{3}-M \times 1005^{2}-M \times 1.005-M \\
& =300000 \times 1.005^{3}-M\left(1+1.005+1-005^{2}\right) \tag{2}
\end{align*}
$$

(ii) $A_{30}=300000 \times 1.003^{350}-M\left(1+1.005+\ldots+1.005^{2999}\right)$

Loan paid when $A_{300}=0$

$$
\begin{aligned}
0 & =300000 \times 1.005^{300}-\frac{m \times 1\left(1.005^{300}-1\right)}{1.005-1} \\
M & =\frac{300000 \times 1.00)^{350} \times 0.005}{\left(1.005^{300}-1\right)} \\
& =\$ 1932.90
\end{aligned}
$$

(iii) Ather 5 yas amount owed is $A_{60}=300000 \times 1.005^{60}-\frac{1932.9 \times\left(1.005^{60}-1\right)}{0.005}$

$$
=\$ 269796.55
$$

Find 1 Neh Rat $0=269796.55 \times 1.006^{n}-\frac{2600 \times\left(1.006^{n}-1\right)}{0.006}$

$$
\begin{align*}
& 0=0.6226-\times 1.006^{n}-1.006^{n}+1 \\
& 1.0066^{n}=2.64976 \\
& \begin{aligned}
n \log 1.006 & =\log 2.64976 \\
n & =\frac{\log 2.64976}{\log 1.006} \\
& =163 \text { monto }
\end{aligned}
\end{align*}
$$

412 Tral Matly 2007
Q9 Comment.
(a)iyhney stident did for tos nuvh wovk heme (eg using sumultaneos equationis).
(ii) Moil used trangle to fuil fust ored Some herrice integration.
Some "muitpled twrogh by 2" t verove pactous (?).
A couple paled to add areas.
(b) (i)Many had ho ided

Somi jest wrote out A_{1} and A. in a sumer woy $A A_{3}$ wh no explenation (only I mark could be geared). Best sowlowin uvilied terahive pociss.
(ii) Sow puled to connert month.

As lenel of accuracy ini stated, mares ivene not deduoted for oundeng isues Some put 301 or 299 m un if seres
10.(a)

$$
\text { 1) } \begin{aligned}
S P & =\sqrt{1+x^{2}} \\
P F & =2-x \\
T_{\text {row }} & =\frac{S P}{6}=\frac{\sqrt{x^{2}+1}}{6} \\
T_{\text {ron }} & =\frac{P F}{10}=\frac{2-x}{10} \\
\therefore T & =\frac{\sqrt{x^{2}+1}}{6}+\frac{2-x}{10}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{d T}{d x} & =\frac{\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot 2 x}{6}-\frac{1}{10} \\
& =\frac{2 x}{12 \sqrt{x^{2}+1}}-\frac{1}{10} \\
& =\frac{x}{6 \sqrt{x^{2}+1}}-\frac{1}{10} \\
& =\frac{5 x}{30 \sqrt{x^{2}+1}}
\end{aligned}
$$

$\therefore \frac{d T}{d x}=0$ when $5 x-3 \sqrt{x^{2}+1}=0$

$$
\begin{aligned}
5 x & =3 \sqrt{x^{2}+1} \\
25 x^{2} & =9\left(x^{2}+1\right) \\
25 x^{2} & =9 x^{2}+9 \\
16 x^{2} & =9 \\
x^{2} & =9 / 16 \\
x & = \pm 3 / 4
\end{aligned}
$$

\therefore stat. pt at $x=3 / 4$ (ignore neg. length)

$$
\begin{aligned}
\frac{d^{2} T}{d x^{2}} & =\frac{6 \sqrt{x^{2}+1} \cdot 1-x \cdot 6 \cdot \frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot 2 x}{36\left(x^{2}+1\right)} \\
& =\frac{6 \sqrt{x^{2}+1}-6 x^{2}\left(x^{2}+1\right)^{-1 / 2}}{36\left(x^{2}+1\right)} 6 \\
\text { a tx } \frac{3}{4} \quad \frac{d^{2} T}{d x^{2}} & =\frac{6 \sqrt{\frac{25}{16}}-\frac{1}{16} \cdot \frac{1}{\sqrt{25 / 16}}}{36 \cdot \frac{25}{16}}=\frac{\frac{30}{4}-\frac{216}{80}}{225 / 4}=\frac{32}{38}
\end{aligned}
$$

(b)

(i)

$$
\begin{aligned}
& A D=100 \quad B D=10 \\
\therefore & O D=r-10 \\
\therefore & (r-10)^{2}+100^{2}=r^{2} \\
\therefore & r^{2}-20 r+100+10000=r^{2} \\
\therefore & \therefore-20 r+10100=0 \\
\therefore & 20 r=10100 \\
\therefore & r=505 \mathrm{~cm}
\end{aligned}
$$

(ii)

$$
A=\frac{1}{2} r^{2}(\theta-\sin \theta)
$$

$$
\sin \frac{\theta}{2}=\frac{100}{505} \quad \therefore \frac{\theta}{2}=\sin ^{-1} \frac{100}{505}
$$

$$
\begin{aligned}
\therefore \theta & =2 \sin ^{-1} \frac{100}{505}
\end{aligned}
$$

$$
\begin{aligned}
\therefore A & =\frac{1}{2} \cdot 505^{2} \cdot\left[2 \sin ^{-1} \frac{100.39867461}{505}-\sin \left(2 \sin ^{-1} \frac{100}{505}\right)\right] \\
& =1335.996203 \\
& =1336 \mathrm{~cm}^{2}
\end{aligned}
$$

