Total marks (120)
Attempt questions 1 - 10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet
(a) Find the value of $4 \pi \sqrt{\frac{a}{g}}$ where $a=4.2$ and $g=9.8$. Give your answer
correct to 2 significant figures.
(b) Solve the pair of simultaneous equations

$$
\begin{aligned}
& x+y=2 \\
& 2 x-y=7
\end{aligned}
$$

(c) Factorise $2 x^{2}-3 x-14$
(d) Write down the exact value of 135^{0} in radians
(e) Find the value of x in the right angled triangle.
(g) Find the values of x for which $|x+2| \geq 5$.

Question 2 (12 marks)
(a) Differentiate the following functions:
(i) $y=x \sqrt{x}$

1
(ii) $y=x^{3} \log _{e} x$
(iii) $y=\cos ^{2} x$ 2
(iv) $y=\frac{x^{3}}{x^{2}-1}$
(b) Find $\int \sec ^{2} 8 x d x$
(c) Evaluate $\int_{0}^{2} e^{3 x}+4 d x$
(d) Find the equation of the tangent to the curve $y=(1+2 x)^{3}$ at the point $(0,1)$.

Question 3 (12 marks) Use a SEPARATE writing booklet

NOT TO SCALE

The diagram shows the points $A(-1,0)$ and $B(1,6) . \quad \angle B A C=\angle B C A$ Copy the diagram onto your examination paper.
(i) Find the length of AB in its simplest surd form $\mathbf{1}$
(ii) Find the midpoint of AB . 1
(iii) Find the gradient of AB . 1
(iv) Find the size of $\angle B A C$, correct to the nearest minute. $\mathbf{1}$
(v) Find the equation of the perpendicular bisector of AB . $\mathbf{2}$
(vi) Explain why the gradient of BC is -3 . $\mathbf{1}$
(vii) Show that the equation of BC is $y=-3 x+9$. $\mathbf{1}$
(viii) Find the coordinates of C. 1
(ix) Find the perpendicular distance from A to BC. $\mathbf{2}$
(x) Write down the co-ordinates of D such that BCAD is a parallelogram. 1

Question 4 (12 marks) Use a SEPARATE writing booklet
(a) The gradient function of a curve is given by $\frac{d y}{d x}=3 x^{2}-6 x-9$. The curve passes through the point $(1,-2)$.
(i) Find the equation of the curve. $\mathbf{2}$
(ii) Find the co-ordinates of the stationary points and determine their nature.
(iii) Find the co-ordinates of the point of inflexion.
(iv) Sketch the curve showing the stationary points, point of inflexion and the y-intercept.
(b) The equation of a parabola is given by $(x-2)^{2}=2 y+6$
(i) Find the co-ordinates of the vertex.
(ii) Find the co-ordinates of the focus.
(iii) Find the equation of the directrix.

Question 5 (12 marks) Use a SEPARATE writing booklet
(a) (i) Sketch the graph of $y=\frac{1}{x}$ and $x^{2}=8 y$ on the same axes.
(ii) Show the co-ordinates of the point of intersection of the two graphs are ($2, \frac{1}{2}$).
(iii) Find the area of the region bounded by the x-axis and the curves from $x=0$ to $x=2 e$.
(b) (i) Draw the graphs of $y=2 \sin x$ and $y=\tan x$ for $0 \leq x \leq 2 \pi$
(ii) Use the graph to find to determine the number of solutions to $2 \sin x=\tan x$.
(iii) Find all the values of x where $0 \leq x \leq 2 \pi$ are solutions to the equation $2 \sin x=\tan x$.

Question 6 (12 marks) Use a SEPARATE writing booklet
(a) In the diagram ABCD is a square. AB is produced to E so that $\mathrm{AB}=\mathrm{BE}$ and BC is produced to F so that $\mathrm{BC}=\mathrm{CF}$

(i) Copy the diagram on to your examination booklet.
(ii) Prove that $\triangle \mathrm{AED} \equiv \triangle \mathrm{BFA}$
(iii) Hence prove that $\angle A E D=\angle B F A$
(b) A five card hand is dealt from a regulation pack of cards. Find the probability of
(i) a flush (all five cards have the same suit).
(ii) four aces and any other cards.
(c) The mass, m, in grams of a radio active substance at the end of t years is given by $m=10 e^{-0.009 t}$. Find
(i) the mass, to the nearest gram, after 10 years.
(ii) the rate at which the mass is decreasing after 10 years
(iii) the number of years, to the nearest year, for the substance to reach its half-life.

Question 7 (12 marks) Use a SEPARATE writing booklet
(a) The lengths of the rung of a ladder increase uniformly from 40 cm in the top rung to 75 cm in the bottom rung. If 13.8 m of wood are used to make the rungs, many rungs are there?
(b) An author writes a manuscript, so that on the first day he writes 54 pages, on the second day 36 pages and on each succeeding day he writes $\frac{2}{3}$ of the number of pages of the preceding day.
(i) How many pages does he write on the $5^{\text {th }}$ day?
(ii) What is the maximum number of pages he will write?
(c) Solve $\log _{3} x+\log _{3}(x+8)=2$
(d) Given the quadratic equation $x^{2}-(2+k) x+3 k=0$, find the value of k if the product of the roots is four times the sum.
(e) Consider the function given by $f(x)=\frac{1}{4+x^{2}}$ for $0 \leq x \leq 2$ and that you will be using Simpson's rule with 5 function values
(i) Copy and complete the table of values on your examination paper,

x					
$f(x)$					

(ii) Find an approximation of $\int_{0}^{2} f(x) d x$, correct to 3 decimal places.

Question 8 (12 marks) Use a SEPARATE writing booklet
(a)

The region between $y=\sqrt{x-4}, y=1$ and $x=8$ is rotated about the x-axis.
(i) Show that the co-ordinates of A are $(5,1)$.
(ii) Find the volume of the solid of revolution.
(b) The position $x \mathrm{~cm}$ of a particle P moving along the x-axis after t seconds is given by $x=5-9 t+6 t^{2}-t^{3}$
(i) Find expressions for the particle's velocity and acceleration.
(ii) In which direction does the particle initially move?
(iii) When does the particle change direction?
(iv) Where is the particle at these times?
(vi) Find the total distance travelled between $t=0$ and $t=3$

Question 9 (12 marks) Use a SEPARATE writing booklet
(a) Brian borrows $\$ 50000$ at 18% p.a. compounded monthly and repays the loan in equal monthly instalments over 5 years.
(i) Show that the amount owing after 2 months is

$$
A_{2}=50000(1.015)^{2}-M(1+1.015)
$$

(ii) Find the amount of each monthly repayment.
(iii) How much interest does Brian pay?
(b)

(i) Find the length of the minor $\operatorname{arc} \mathrm{AB}$. $\mathbf{1}$
(ii) Find the area of the minor sector AB . $\mathbf{1}$
(iii) Find the area of the minor segment AB. $\mathbf{2}$
(iv) If the major sector was taped to form a cone, what would be the radius of the base of the cone?
(v) What would be the surface area of the cone formed by joining A and B?

Question 10 (12 marks) Use a SEPARATE writing booklet
(a) At 1:00 p.m. a ship A leaves port P and sails in the direction $030^{\circ} \mathrm{T}$ at $12 \mathrm{~km} / \mathrm{h}$. Also at 1:00 p.m. ship B is 100 km due east of P and sailing at $8 \mathrm{~km} / \mathrm{h}$ towards P . Suppose t is the number of hours after 1p.m.
(i) Show that the distance $\mathrm{D}(\mathrm{t})$ between the 2 ships is given by

$$
D(t)=\sqrt{304 t^{2}-2800 t+10000}
$$

(ii) Find the minimum value of $[D(t)]^{2}$ for all $t \geq 0$
(iii) At what time, to the nearest minute, are the ships closest?
(b) Differentiate $y=\log _{e}\left[\frac{3 x-1}{x+2}\right]$.
(c) Evaluate $y=\int \frac{e^{5 x}+4}{e^{x}} d x$.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\quad \frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Note $\ln x=\log _{e} x, \quad x>0$

Year 12
zunit Mathematics Trial
2008

Question 1
a) $4 \pi \sqrt{\frac{a}{9}}=4 \pi \sqrt{\frac{4 \cdot 2}{9.8}}$

$$
\begin{aligned}
& =8.22662065 \\
& =8.2 \text { to } 2 \text { sig fig }
\end{aligned}
$$

b)

$$
\begin{align*}
& x+y=2 \tag{1}\\
& 2 x-y=7
\end{align*}
$$

(1) +2

$$
\begin{array}{r}
3 x=9 \\
x=3
\end{array}
$$

sub b $x+y=2$

$$
\begin{aligned}
3+y & =2 \\
y & =-1 \\
\therefore x=3, y & =-1
\end{aligned}
$$

c) $2 x^{2}-3 x-14=(2 x-7)(x+2)$
d)

$$
\begin{aligned}
180^{\circ} & =\pi^{c} \\
1^{\circ} & =\frac{\pi}{180} \\
135^{\circ} & =135 \times \frac{\pi}{180} \\
& =\frac{3 \pi^{c}}{4}
\end{aligned}
$$

e)

$$
\begin{aligned}
x^{2}+5^{2} & =(10-x)^{2} \\
x^{2}+25 & =100-20 x+x^{2} \\
20 x & =75 \\
x & =3 \frac{3}{4}
\end{aligned}
$$

$f)$

$$
\begin{aligned}
\frac{2}{\sqrt{5}-\sqrt{3}} & =\frac{2}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} \\
& =\frac{2(\sqrt{5}+\sqrt{3})}{5-3} \\
& =\frac{2(\sqrt{5}+\sqrt{3})}{2} \\
& =\sqrt{5}+\sqrt{3}
\end{aligned}
$$

g) $|x+2| \geqslant 5$

$$
\begin{array}{rr}
x+2 \leqslant-5 & , \\
x \leqslant-2 \geqslant 5 \\
x & , x \geqslant 3
\end{array}
$$

Question 2
a) (i) $y=x \sqrt{x}$

$$
\begin{aligned}
& =x^{\frac{3}{2}} \\
\frac{d y}{d x} & =\frac{3}{2} x^{\frac{1}{2}} \\
& =\frac{3}{2} \sqrt{x}
\end{aligned}
$$

(ii) $y=x^{3} \log _{e} x$
$u=x^{3} \quad v=\log x$
$=v v \quad u^{\prime}=3 x^{2} v^{\prime}=\frac{1}{x}$

$$
\begin{aligned}
\frac{d y}{d x} & =v u^{\prime}+u v^{\prime} \\
& =3 x^{2} \log _{e} x+x^{3} \times \frac{1}{x} \\
& =3 x^{2} \log _{e} x+x^{2}
\end{aligned}
$$

(ii)

$$
\text { (ii) } \begin{array}{rl}
y & =\cos ^{2} x \\
& =(\cos x)^{2} \\
\frac{d y}{d x} & =-2 \cos x \sin x \\
\text { (v) } \left.\quad \begin{aligned}
y & =\frac{x^{3}}{x^{2}-1} \\
& =\frac{u}{v}
\end{aligned} \right\rvert\, u^{\prime}=3 x^{3} & v=x^{2}-1 \\
\end{array}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{v u^{1}-u v^{1}}{v^{2}} \\
& =\frac{3 x^{2}\left(x^{2}-1\right)-x^{3} \times 2 x}{\left(x^{2}-1\right)^{2}} \\
& =\frac{3 x^{4}-3 x^{2}-2 x^{4}}{\left(x^{2}-1\right)^{2}} \\
& =\frac{x^{2}\left(x^{2}-3\right)}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

b) $\int \sec ^{2} 8 x d x=\frac{1}{8} \tan 8 x+c$
c) $\int_{0}^{2} e^{3 x}+4 d x=\left[\frac{1}{3} e^{3 x}+4 x\right]_{0}^{2}$

$$
=\left[\frac{1}{3} e^{b}+8\right]-\left[\frac{1}{3} e^{0}\right]
$$

$$
=\frac{1}{3} e^{6}+7 \frac{2}{3}
$$

d) $y=(1+2 x)^{3}$

$$
\begin{aligned}
\frac{d y}{d x} & =3(1+2 x)^{2} \times 2 \\
& =6(1+2 x)^{2} \quad \text { at } x=0 \\
& =6 \\
y-y_{1} & =m(x-x) \quad m=6,(0,1) \\
y-1 & =6(x-0) \\
y & =6 x+1
\end{aligned}
$$

Question 3

(I)

$$
\begin{aligned}
A B & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-1-1)^{2}+(0-6)^{2}} \\
& =\sqrt{4+36} \\
& =\sqrt{40} \\
& =2 \sqrt{10}
\end{aligned}
$$

(ii) Midpoint $A B=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{-1+1}{2}, \frac{0+6}{2}\right) \\
& =(0,3)
\end{aligned}
$$

(III)

$$
\begin{aligned}
m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{6-0}{1--1} \\
& =3
\end{aligned}
$$

\therefore gradient $A B=3$
iv)

$$
\begin{aligned}
\mathrm{m} & =\tan \theta \\
\widehat{B A C} & =\tan ^{-1} 3 \\
& \fallingdotseq 71^{\circ} 33^{\prime} 54.18^{\prime \prime}
\end{aligned}
$$

$\hat{B A C}=71^{\circ} 34^{\prime}($ nearest min)
(v) Midpoint $A B=(0,3)$

Gradient $A B=3$
Gradient of required line $=-\frac{1}{3}$ as $m_{1} m_{2}=-1$ for perpendicular lines

$$
\begin{aligned}
\therefore & y-y_{1}=m\left(x-x_{1}\right) \\
y-3 & =-\frac{1}{3}(x-0) \\
3 y-9 & =-x \\
& x+3 y-9=0
\end{aligned}
$$

vi) $\hat{B A C}=\widehat{B C A}$

Tangent ratio is negative for angles in the second quadrant
vii)

$$
\begin{gathered}
(1,6) \quad m=-3 \\
y-y_{1}=m(x-x 1) \\
y-6=-3(x-1) \\
y-6=-3 x+3 \\
y=-3 x+9
\end{gathered}
$$

viiI)

$$
\begin{aligned}
y & =-3 x+9 \text { at } c, y=0 \\
0 & =-3 x+9 \\
3 x & =9 \\
x & =3
\end{aligned}
$$

$$
\therefore C \text { is }(3,0)
$$

ix) $3 x+y-9=0 \quad A(-1,0)$

$$
\begin{aligned}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|3(-1)+0-9|}{\sqrt{3^{2}+1^{2}}} \\
& =\frac{1-12 \mid}{\sqrt{10}} \\
& =\frac{12}{\sqrt{10}} \text { or } \frac{6 \sqrt{10}}{5}
\end{aligned}
$$

x) D is $(-3,6$

Question 4
a) (1)

$$
\begin{aligned}
& \frac{d y}{d x}=3 x^{2}-6 x-9 \\
& y=\int\left(3 x^{2}-6 x-9\right) d x
\end{aligned}
$$

$$
y=x^{3}-3 x^{2}-9 x+c \text { at }(1,-2)
$$

$$
-2=(1)^{3}-3(1)^{2}-9(1)+c
$$

$$
-2=1-3-9+c
$$

$$
c=9
$$

$$
\therefore y=x^{3}-3 x^{2}-9 x+9
$$

(ii) For stationary points

$$
\begin{gathered}
\frac{d y}{d x}=0 \\
3 x^{2}-6 x-9=0 \\
3\left(x^{2}-2 x-3\right)=0 \\
3(x-3)(x+1)=0 \\
x=3,-1
\end{gathered}
$$

when $x=3$

$$
\begin{aligned}
y & =x^{3}-3 x^{2}-9 x+9 \\
& =(3)^{3}-3(3)^{2}-9(3)+9 \\
& =-18
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =6 x-6 \text { at } x=3 \\
& =6(3)-6 \\
& =12
\end{aligned}
$$

Ap $\frac{d^{2} y}{d x^{2}}>0$ the curve is concave up \uparrow
$\therefore(3,-18)$ is a local minimum
when $x=-1$

$$
\begin{aligned}
y & =x^{3}-3 x^{2}-9 x+9 \\
& =(-1)^{3}-3(-1)^{2}-9(-1)+9 \\
& =14
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =6 x-6 \text { at } x=-1 \\
& =6(-1)-6 \\
& =-12
\end{aligned}
$$

As $\frac{d^{2} y}{d x^{2}}<0$ the curve is concave down \curvearrowleft
$\therefore(-1,14)$ is a local maximum
(iii) For points of inflexion $\frac{d^{2} y}{d x^{2}}=0$ and there is a change in concavity

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}=b x-b & =0 \\
x & =1
\end{aligned}
$$

when $x=1, y=x^{3}-3 x^{2}-9 x+9$

$$
=(1)^{3}-3(1)^{2}-9(1)+9
$$

x	1^{-}	1	1^{+}
$d^{\frac{5}{3}}$	-		+

\therefore changein concaurty
$\therefore(1,-2)$ is a point of inflexion

Question 5

ii)

$$
\begin{align*}
& y=\frac{1}{x} \\
& y=\frac{x^{2}}{8}
\end{align*}
$$

sub (1) in ∞

$$
\begin{gathered}
\frac{1}{x}=\frac{x^{2}}{8} \\
x^{3}=8 \\
x=2
\end{gathered}
$$

sub (1)

$$
\begin{aligned}
y & =\frac{1}{x} \\
& =\frac{1}{2}
\end{aligned}
$$

$\therefore\left(2, \frac{1}{2}\right)$ is the point of intersection
b) $(x-2)^{2}=2(y+3)$

$$
\begin{aligned}
4 a & =2 \\
a & =\frac{1}{2}
\end{aligned}
$$

(1) $v=r \operatorname{tex}(2,-3)$
(ii) focus $\left(2,-2 \frac{1}{2}\right)$
(iii) directrix $y=-3 \frac{1}{2}$
iii)

$$
\text { iii) } \begin{aligned}
A & =\int_{0}^{2} \frac{x^{2}}{8} d x+\int_{2}^{2 e} \frac{1}{x} d x \\
& =\left[\frac{x^{3}}{24}\right]_{0}^{2}+[\ln x]_{2}^{2 e} \\
& =\left[\frac{2^{3}}{24}-0\right]+[\ln 2 e-\ln 2] \\
& =\frac{8}{24}+\ln 2+\ln e-\ln 2 \\
& =\frac{1}{3}+1 \\
\text { Area } & =1 \frac{1}{3} \operatorname{units}
\end{aligned}
$$

(i) $2 \sin x=\tan x$
has s solutions
(III)

$$
\begin{gathered}
2 \sin x=\tan x \\
2 \sin x-\tan x=0 \\
2 \sin x-\frac{\sin x}{\cos x}=0
\end{gathered}
$$

$2 \sin x \cos x-\sin x=0$
$\sin x(2 \cos x-1)=0$
$\sin x=0$ or $\cos x=\frac{1}{2}$

$$
\begin{array}{ll}
x=0, \pi, 2 \pi & x=\frac{\pi}{3} ; \pi-\frac{\pi}{3} \\
& x=\frac{\pi}{3}, \frac{5 \pi}{3}
\end{array}
$$

$$
\therefore x=0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}, 2 \pi
$$

Question 6

In $\triangle A E D$ and $\triangle B F A$
$A D=A B \quad A B C D$ is a square
$A E=B F \quad A B C D$ is a square

$$
A B=B E, B C=C F
$$

$\hat{D A E}=\hat{A B F} \quad$ ABCD is a square

$$
\begin{aligned}
& \therefore \triangle A E D \equiv \widehat{\triangle F F A} \text { SAB } \\
& \therefore \widehat{A E D}=\widehat{B F A}
\end{aligned}
$$

corresponding angles in congruent triangles

$$
\begin{aligned}
b_{11} P(f l u s h) & =1 \times \frac{12}{51} \times \frac{11}{50} \times \frac{10}{49} \times \frac{9}{48} \\
& =\frac{11880}{5997600} \\
& =\frac{33}{16660}
\end{aligned}
$$

(II)

$$
\begin{aligned}
P(4 a c e s) & =\frac{4}{52} \times \frac{3}{51} \times \frac{2}{50} \times \frac{1}{49^{x}} 1 \\
& =\frac{24}{6497400} \\
& =\frac{1}{270725}
\end{aligned}
$$

C)
(1)
$m=10 e^{-0.009 t}$

$$
\begin{aligned}
& =10 e^{-0.009 \times 10} \\
& =10 e^{-0.09} \\
& \equiv 9.139311853
\end{aligned}
$$

Moss $=9$ grams to nearest gram
(II)

$$
\begin{aligned}
\frac{d m}{d t} & =-0.009 \times 10 e^{-0.009} \\
& =-0.09 e^{-0.09} \\
& =-0.082253806
\end{aligned}
$$

\therefore Decrearsung at the Tate of 0.089 per yean (tozdp.)
(iii) when $t=0 \quad m_{0}=10, m=5$

$$
\begin{aligned}
m & =10 e^{-0.009 t} \\
s & =10 e^{-0.009 t} \\
\frac{1}{2} & =e^{-0.009 t} \\
\ln \left(\frac{1}{2}\right) & =\ln \left(e^{-0.009 t}\right) \\
-0.099 t & =\ln \left(\frac{1}{2}\right) \\
t & =\frac{\ln \left(\frac{1}{2}\right)}{-0.009} \\
& \doteq 77.0163534
\end{aligned}
$$

The time to reach its half life is 77 years to nearest year

Question 7
a) Let there be n rungs

$$
\begin{aligned}
& a=40, L=75 \quad S_{n}=1380 \\
& S_{n}=\frac{n}{2}(a+L) \\
& 1380=\frac{n}{2}(40+75) \\
& \frac{n}{2}=\frac{1380}{115} \\
&=12 \\
& n=24
\end{aligned}
$$

c) $\log _{3} x+\log _{3}(x+8)=2$

$$
\begin{aligned}
\log _{3} x(x+8) & =2 \\
x(x+8) & =3^{2} \\
x^{2}+8 x-9 & =0 \\
(x+9)(x-1) & =0 \\
x & =-9,1
\end{aligned}
$$

But $x>0 \therefore x=1$ is the only solution
d)

$$
\begin{gather*}
x^{2}-(2+k) x+3 k=0 \\
\alpha+\beta=-\frac{b}{a} \\
\alpha+\beta=2+k \\
\alpha \beta=\frac{c}{a} \\
\alpha \beta=3 k \tag{2}\\
\alpha \beta=4(\alpha+\beta) \\
3 k=4(2+k) \\
3 k=8+4 k \\
k=-8
\end{gather*}
$$

$$
\text { e) } \left.\begin{array}{rl}
f(x) & =\frac{1}{4+x^{2}} \quad 0 \leq x \leq 2 \\
\qquad \begin{array}{|c|c|c|c|c|c|}
\hline x & 0 & \frac{1}{2} & 1 & 1 \frac{1}{2} & 2 \\
\hline f(x) & \frac{1}{4} & \frac{4}{17} & \frac{1}{5} & \frac{4}{25} & \frac{1}{8} \\
\hline
\end{array} \\
\\
\int_{a}^{b} f(x) d x & =\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \\
\int_{0}^{2} \frac{1}{4+x^{2}} d x & =\frac{1-0}{6}\left[\frac{1}{4}+\frac{1}{8}+4\left(\frac{4}{17}+\frac{4}{2} 5\right)+2 \times \frac{1}{5}\right]
\end{array}\right]
$$

Question 8
a) \cdot

$$
\begin{aligned}
& y=\sqrt{x-4} \quad \text { at } y=1 \\
& 1=\sqrt{x-4} \\
& 1=x-4 \\
& x=5
\end{aligned}
$$

$$
\therefore A \text { is }(5,1)
$$

ii) $V=\pi \int_{a}^{b} y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{5}^{8}(\sqrt{x-4})^{2} d x-\pi 1^{2} \times 3 \\
& =\pi \int_{5}^{8}\left(\frac{x-4)}{8} d x-3 \pi\right. \\
& =\pi\left[\frac{x^{2}}{2}-4 x\right]_{5}^{8}-3 \pi \\
& =\pi\left[\frac{8^{2}}{2}-4(8)\right]-\left[\frac{5^{2}}{2}-4(5)\right]-3 \pi \\
& =4 \frac{1}{2} \pi
\end{aligned}
$$

\therefore Volume is $4 \frac{1}{2} \pi$ units 3
b)

$$
\begin{aligned}
& x=5-9 t+6 t^{2}-t^{3} \\
& \dot{x}=-9+12 t-3 t^{2} \\
& \therefore=12-6 t
\end{aligned}
$$

ii) Initial $\dot{x}=-9 \mathrm{cms}^{-1}$

That is moving with a vebcity of coms^{-1} is the negative direction
iii) Partide changes direction when $\dot{x}=0$

$$
\begin{aligned}
-9+12 t-3 t^{2} & =0 \\
t^{2}-4 t+3 & =0 \\
(t-3)(t-1) & =0 \\
t & =1,3
\end{aligned}
$$

Partide changes direction after 1 second and 3 seconds
(iv) When $t=1$

$$
\begin{aligned}
x & =5-9 t+6 t^{2}-t^{3} \\
& =5-9(1)+6(1)^{2}-(1)^{3} \\
& =5-9+6-1 \\
& =1
\end{aligned}
$$

when $t=3$

$$
\begin{aligned}
x & =5-9 t+6 t^{2}-t^{3} \\
& =5-9(3)+6(3)^{2}-3^{3} \\
& =5
\end{aligned}
$$

when $t=1$ the particle is 1 cm to the right of O and when $t=3$ the particle is 5 cm to the right of 0
v)

t	0	1	2	3
x	5	1	3	5

$$
\text { Total distance }=4+2+2
$$

$$
=8 \mathrm{~cm}
$$

Question 9
a) Let A_{n} be the amount awing at the end of the $n^{\text {th }}$ month
Let M be the morithly repayment

$$
\left.\begin{array}{rl}
n=5 \times 12 & r
\end{array}\right) \frac{18}{12} \%
$$

$$
\begin{aligned}
A_{1} & =50000+1.5 \% \text { of 5000s }-M \\
& =50000+0.015 \times 50000-m \\
& =50000(1.015)-m
\end{aligned}
$$

$$
\begin{aligned}
A_{2} & =A_{1}+1.5 /_{0}, A_{1}-m \\
& =A_{1}+0.015 \times A_{1}-m \\
& =A_{1}(1.015)-m \\
& =[50000(1.015)-m](1.015)-m \\
& =50000(1.015)^{2}-m(1+1.015)
\end{aligned}
$$

continuing the pattern

$$
A_{60}=50000(1.015)^{60}-m(1+1.015+\quad(\ldots+1.015)
$$

But after bomonthis the loan is repand $\therefore A_{60}=0$

$$
50000(1.015)^{60}-m(1+1.015+. .+1.015)=0
$$

$$
\begin{aligned}
m & =\frac{50000(1.015)^{60}}{1+1.015+\cdots+1.015^{59}} \\
& =\frac{50000(1.015)^{60}}{\frac{1\left(1.015^{60}\right)}{1.015-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{50000(1.015)^{60}(0.015)}{\left(1.015^{60}-1\right)} \\
& =1269.671371 \\
& =1269.67+02 \mathrm{dp}
\end{aligned}
$$

\therefore Each monthly instalment is $\$ 1269.67$
(III)

$$
\begin{aligned}
I & =1269.67 \times 60-50000 \\
& =26180.2
\end{aligned}
$$

\therefore Interest pard is $\$ 26180.20$
b) (1)

$$
\begin{aligned}
L & =r \theta \quad r=8 \quad \theta=\frac{3 \pi}{4} \\
& =8 \times \frac{3 \pi}{4} \\
& =6 \pi
\end{aligned}
$$

length of the arc is $6 \pi \mathrm{~cm}$
(II)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} 8^{2} \times \frac{3 \pi}{4} \\
& =24 \pi
\end{aligned}
$$

Area is $24 \pi \mathrm{~cm}^{2}$
(III)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& =\frac{1}{2} \times 8^{2}\left(\frac{3 \pi}{4}-\sin \frac{3 \pi}{4}\right) \\
& =32\left(\frac{3 \pi}{4}-\frac{1}{\sqrt{2}}\right) \\
& =24 \pi-16 \sqrt{2} \\
& =8(3 \pi-2 \sqrt{2}) \\
& =12 \pi-2 \sqrt{2}) \mathrm{cr}
\end{aligned}
$$

\therefore Area is $8(3 \pi-2 \sqrt{2}) \mathrm{cm}^{2}$
(or $52.77580669 \mathrm{~cm}^{2}$
iv)

$$
\begin{aligned}
r \text { Arc } & =r e \\
& =8 \times \frac{5 \pi}{4} \\
& =10 \pi \\
2 \pi r & =10 \pi \\
r & =5
\end{aligned}
$$

\therefore Raidus is 5 cm
v)

$$
\begin{aligned}
S . A & =\pi r L \\
& =\pi \times 5 \times 8 \\
& =40 \pi
\end{aligned}
$$

Surface area is $40 \pi \mathrm{~cm}^{2}$

Question 10

$A t$ time, $P A=12 t$

$$
P B=100-8 t
$$

Using cosine rule

$$
\begin{aligned}
& p^{2}=a^{2}+b^{2}-2 a b \cos P \\
& A B^{2}=(100-8 t)^{2}+(12 t)^{2} \\
& -2(100-8 t)(12 t) \cos 60 \\
& =10000-1600 t+64 t^{2}+144 t^{2} \\
& -1200 t+96 t^{2} \\
& =10000-2800 t+304 t^{2} \\
& \therefore D(t)=\sqrt{304 t^{2}-2800 t+10000} \\
& \text { (11) }[D(t)]^{2}=304 t^{2}-2800 t+10000 \\
& \frac{d[D(t)]^{2}}{d t}=608 t-2800
\end{aligned}
$$

$608 t-2800=0$

$$
t=4 \frac{23}{38}
$$

$$
\begin{aligned}
{[D(t)]^{2} } & =10000-2800 t+304 t^{2} \\
& =10000-2800\left(4 \frac{23}{38}\right)+304\left(4 \frac{23}{38}\right)^{2} \\
& =3552.631579 \\
& =3553 \text { to nearest } \mathrm{km}
\end{aligned}
$$

t	$4 \frac{23}{38}$	$4 \frac{23}{38}$	$4 \frac{23}{38}$
$\frac{[D(t)]^{2}}{d t}$	-	0	+

\therefore Murumum value of

$$
[D(t)]^{2} \text { is } 3553
$$

(iii) $1 p m+4 \frac{23}{38} h r$

$$
\begin{aligned}
& =1 \mathrm{pm}+4 \mathrm{hr} 36 \mathrm{~min} \\
& =5: 36 \mathrm{pm}
\end{aligned}
$$

b)

$$
\text { b) } \begin{aligned}
y & =\log _{e}\left(\frac{3 x-1}{x+2}\right) \\
& =\log _{e}(3 x-1)-\log _{e}(x+2) \\
\frac{d y}{d x} & =\frac{3}{3 x-1}-\frac{1}{x+2} \\
& =\frac{3(x+2)-(3 x-1)}{(3 x-1)(x+2)} \\
& =\frac{7}{(3 x-1)(x+2)} \\
& =\int\left(\frac{e^{5 x}+4}{e^{x}}\right) d x \\
& =\int\left(e^{4 x}+4 e^{-x}\right) d x \\
& =\frac{1}{4 e^{4 x}-4 e^{-x}+c}
\end{aligned}
$$

c)

