Total marks (120) Attempt questions 1 – 10 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Quest	tion 1 (12 marks) Use a SEPARATE writing booklet	Marks
(a)	Find the value of $4\pi \sqrt{\frac{a}{g}}$ where $a = 4.2$ and $g = 9.8$. Give your answer	2
	correct to 2 significant figures.	
(b)	Solve the pair of simultaneous equations x + y = 2 2x - y = 7	2
(c)	Factorise $2x^2 - 3x - 14$	1
(d)	Write down the exact value of 135° in radians	1
(e)	Find the value of x in the right angled triangle.	2
	$x \qquad 10 - x \\ 5 \\ 5$	

(f) Rationalise the denominator
$$\frac{2}{\sqrt{5}-\sqrt{3}}$$
. Answer in its simplest form. 2

(g) Find the values of x for which
$$|x+2| \ge 5$$
.

2

Question 2 (12 marks)Use a SEPARATE writing bookletMarks

(a) Differentiate the following functions:

(i)
$$y = x\sqrt{x}$$
 1

(ii)
$$y = x^3 \log_e x$$
 2

(iii)
$$y = \cos^2 x$$
 2

(iv)
$$y = \frac{x^3}{x^2 - 1}$$
 2

(b) Find
$$\int \sec^2 8x \, dx$$
 1

(c) Evaluate
$$\int_0^2 e^{3x} + 4 dx$$
 2

(d) Find the equation of the tangent to the curve
$$y = (1+2x)^3$$
 at the point (0,1). 2

Question 3 (12 marks)

Use a SEPARATE writing booklet

The diagram shows the points A(-1, 0) and B(1, 6). $\angle BAC = \angle BCA$

Copy the diagram onto your examination paper.

(i)	Find the length of AB in its simplest surd form	1
(ii)	Find the midpoint of AB.	1
(iii)	Find the gradient of AB.	1
(iv)	Find the size of $\angle BAC$, correct to the nearest minute.	1
(v)	Find the equation of the perpendicular bisector of AB.	2
(vi)	Explain why the gradient of BC is -3 .	1
(vii)	Show that the equation of BC is $y = -3x + 9$.	1
(viii)	Find the coordinates of C.	1
(ix)	Find the perpendicular distance from A to BC.	2
(x)	Write down the co-ordinates of D such that BCAD is a parallelogram.	1

Question 4 (12 marks) Use a SEPARATE writing booklet

(a) The gradient function of a curve is given by $\frac{dy}{dx} = 3x^2 - 6x - 9$. The curve passes through the point (1, -2).

(i)	Find the equation of the curve.	2
(ii)	Find the co-ordinates of the stationary points and determine their nature.	4
(iii)	Find the co-ordinates of the point of inflexion.	1
(iv)	Sketch the curve showing the stationary points, point of inflexion and the	2
	y-intercept.	

(b) The equation of a parabola is given by $(x-2)^2 = 2y+6$

(i)	Find the co-ordinates of the vertex.	1
(ii)	Find the co-ordinates of the focus.	1
(iii) Find the equation of the directrix.	1

Question 5 (12 marks) Use a SEPARATE writing booklet			
(a)	(i)	Sketch the graph of $y = \frac{1}{x}$ and $x^2 = 8y$ on the same axes.	2
	(ii)	Show the co-ordinates of the point of intersection of the two graphs are $(2, \frac{1}{2})$.	1
	(iii)	Find the area of the region bounded by the <i>x</i> -axis and the curves from $x = 0$ to $x = 2e$.	3
(b)	(i)	Draw the graphs of $y = 2\sin x$ and $y = \tan x$ for $0 \le x \le 2\pi$	2
	(ii)	Use the graph to find to determine the number of solutions to $2\sin x = \tan x$.	1
	(iii)	Find all the values of x where $0 \le x \le 2\pi$ are solutions to the equation $2\sin x = \tan x$.	3

5

(a) In the diagram ABCD is a square. AB is produced to E so that AB = BE and BC is produced to F so that BC = CF

	(i)	Copy the diagram on to your examination booklet.	
	(ii)	Prove that $\triangle AED \equiv \triangle BFA$	3
	(iii)	Hence prove that $\angle AED = \angle BFA$	1
(b)	A five of	card hand is dealt from a regulation pack of cards. Find the probability of	
	(i) a	flush (all five cards have the same suit).	2
	(ii) fo	our aces and any other cards.	2
(c)		mass, <i>m</i> , in grams of a radio active substance at the end of <i>t</i> years is given by $=10e^{-0.009t}$. Find	
	(i)	the mass, to the nearest gram, after 10 years.	1
	(ii)	the rate at which the mass is decreasing after 10 years	1
	(iii)	the number of years, to the nearest year, for the substance to reach its half-life.	2

2

3

3

Question 7 (12 marks) Use a SEPARATE writing booklet

- (a) The lengths of the rung of a ladder increase uniformly from 40*cm* in the top rung to 75 *cm* in the bottom rung. If 13.8 *m* of wood are used to make the rungs, many rungs are there?
- (b) An author writes a manuscript, so that on the first day he writes 54 pages, on the second day 36 pages and on each succeeding day he writes $\frac{2}{3}$ of the number of pages of the preceding day.

(i)	How many pages does he write on the 5 th day?	1
(ii)	What is the maximum number of pages he will write?	1

(c) Solve
$$\log_3 x + \log_3 (x+8) = 2$$

- (d) Given the quadratic equation $x^2 (2+k)x + 3k = 0$, find the value of k 2 if the product of the roots is four times the sum.
- (e) Consider the function given by $f(x) = \frac{1}{4+x^2}$ for $0 \le x \le 2$ and that you will be using Simpson's rule with 5 function values
 - (i) Copy and complete the table of values on your examination paper,

x			
f(x)			

(ii) Find an approximation of $\int_0^2 f(x) dx$, correct to 3 decimal places.

Question 8 (12 marks)

(a)

(b)

The region between $y = \sqrt{x-4}$, y = 1 and x = 8 is rotated about the x-axis.

(i)	Show that the co-ordinates of A are $(5,1)$.	1
(ii)	Find the volume of the solid of revolution.	3
-	position x cm of a particle P moving along the x-axis after t seconds n by $x = 5 - 9t + 6t^2 - t^3$	
(i)	Find expressions for the particle's velocity and acceleration.	2
(ii)	In which direction does the particle initially move?	1
(iii)	When does the particle change direction?	2
(iv)	Where is the particle at these times?	1
(vi)	Find the total distance travelled between $t = 0$ and $t = 3$	2

Marks

Question 9 (12 marks) Use a SEPARATE writing booklet			Marks
(a)	Brian b	porrows \$50000 at 18% p.a. compounded monthly and repays	
	the loan	n in equal monthly instalments over 5 years.	
	(i)	Show that the amount owing after 2 months is	2
		$A_2 = 50000(1.015)^2 - M(1+1.015)$	
	(ii)	Find the amount of each monthly repayment.	2
	(iii)	How much interest does Brian pay?	2
(b)		taped edges	

(i)	Find the length of the minor arc AB.	1
(ii)	Find the area of the minor sector AB.	1
(iii)	Find the area of the minor segment AB.	2
(iv)	If the major sector was taped to form a cone, what would be the radius	1
	of the base of the cone?	
(v)	What would be the surface area of the cone formed by joining A and B?	1

Question 10 (12 marks) Use a SEPARATE writing booklet Marks At 1:00 p.m. a ship A leaves port P and sails in the direction 030° T at 12 km/h. (a) Also at 1:00 p.m. ship B is 100 km due east of P and sailing at 8 km/h towards P. Suppose t is the number of hours after 1p.m. (i) Show that the distance D(t) between the 2 ships is given by 4 $D(t) = \sqrt{304t^2 - 2800t + 10000}$ Find the minimum value of $[D(t)]^2$ for all $t \ge 0$ (ii) 3 At what time, to the nearest minute, are the ships closest? 2 (iii) Differentiate $y = \log_e \left[\frac{3x-1}{x+2} \right]$. 2 (b) Evaluate $y = \int \frac{e^{5x} + 4}{e^x} dx$. (c) 1 **END OF PAPER**

STANDARD INTEGRALS

 $\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x , \qquad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \qquad a \neq 0$ $\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$ $\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$ $\int \frac{1}{a^2 + r^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

Note
$$\ln x = \log_e x, x > 0$$

$$\frac{1}{2} \underbrace{2 \operatorname{corr} 12}_{2} \underbrace{2 \operatorname{unit} Mathematics Trad}_{2} \underbrace{2 \operatorname{cors}}_{2} \underbrace{2 \operatorname{cors}}_{2} \underbrace{2 \operatorname{unit} Mathematics Trad}_{2} \underbrace{2 \operatorname{cors}}_{2} \underbrace{2 \operatorname{cors$$

b)
$$\int \sec^{2} 8 \sec dx = \frac{1}{6} \tan 8 \sec 4c$$
(ii) Midpoint RE $\left(\frac{2(-12)}{2}, \frac{3(-12)}{2}\right)$

$$= \left[\frac{1}{2}e^{\frac{1}{2}} + 1\frac{3}{2}\right]$$
(ii) Magoint RE $\left(\frac{2(-12)}{2}, \frac{3(-12)}{2}\right)$

$$= \left[\frac{1}{2}e^{\frac{1}{2}} + 1\frac{3}{2}\right]$$
(ii) Mag $= \frac{3(-12)}{2(-12)}$

$$= \frac{3(-12)}{2(-12)}$$
(ii) Mag $= \frac{3(-12)}{2(-12)}$
(iii) Mag $= \frac{3(-12)}{2(-12)}$

$$= \frac{3(-12)}{2(-12)}$$

$$= \frac{3($$

$$\begin{array}{rcl} \text{will} & y = -3\infty + 9 & \text{at } C, y = 0 \\ 0 = -3\infty + 9 \\ 3x = 9 \\ x = 3 \\ \therefore & C \text{ is } (3,0) \\ \text{det} & z = 3 \\ \end{array} \\ \begin{array}{rcl} & z = 3 \\ \hline & z = 3 \\ \hline & z = 3 \\ \hline & z = 3 \\ \end{array} \\ \begin{array}{rcl} & z = 3 \\ \hline & z = 3 \\ \hline & z = 3 \\ \hline & z = 3 \\ \end{array} \\ \begin{array}{rcl} & z = 3 \\ \hline & z = 3 \\ \hline & z = 3 \\ \hline & z = 3 \\ \end{array} \\ \begin{array}{rcl} & z = 3 \\ \hline & z = 12 \\ \hline & z = 12$$

c) (1)
$$m = \log^{-0} \cos \alpha_{1} \frac{1}{2} \cos \alpha_{1} \frac{1}{2} \cos \alpha_{2} \cos \alpha_{3} \frac{1}{2} \cos \alpha_{3} \cos$$

a)
$$f(x) = \frac{1}{1+x^{2}} \circ sx \leq z$$

b)
$$x = s - qt + bt^{2} - t^{2}$$

$$\frac{x}{1+x^{2}} \circ \frac{1}{1+x^{2}} \frac{1}{2} \frac{1}{2}$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[f(a) + uf(\frac{a}{2}) ta \right]$$

$$\int_{x}^{b} f(x) dx = \frac{b - a}{b} \left[$$

····.

*

$$\frac{Gupstion 9}{(1 - GS^{-1})} = \frac{2}{(1 - GS^{-1})} = \frac{2}{(1 - GS^{-1})} = \frac{2}{(1 - GS^{-1})} = \frac{1}{(1 - G$$

•