Total marks (120)
Attempt questions 1 - 10
All questions are of equal value
Answer each question in a SEPARATE Writing Booklet. Extra Writing Booklets are available.

Question 1 (12 marks) Use a SEPARATE Writing Booklet.
Marks
(a) Solve $1-2 x<9$.
(b) Factorise $6 x^{2}-x-1$.
(c) Solve $|2 x-5|=8$.
(d) Sketch the graph of $3 y+x=6$, showing the intercepts on both axes.
(e) Rationalise the denominator of $\frac{5}{\sqrt{3}+3}$.
(f) Sketch $f(x)=\sqrt{9-x^{2}}$.

Question 2 (12 marks) Use a SEPARATE Writing Booklet.

Marks

(a) Differentiate with respect to x :
(i) $\quad\left(3+x^{2}\right)^{12}$. $\quad \mathbf{2}$
(ii) $\frac{\ln x}{e^{x}}$.

2
(iii) $\quad x^{2} \cos \frac{x}{2}$.
(b) (i) Find $\int \frac{x}{x^{2}-4} d x$.

1
(ii) Evaluate $\int_{1}^{4}\left(\frac{1}{x^{2}}-\sqrt{x}\right) d x$.
(iii) Evaluate $\int_{0}^{\frac{\pi}{8}} \sec ^{2} 2 x d x$.

Question 3 (12 marks) Use a SEPARATE Writing Booklet.

Marks

(a) Consider the triangle below.

(i) Find the size of the angle θ, correct to the nearest degree.
(ii) Find the area of the triangle, using your approximation for the angle found in (i). (correct to the nearest cm^{2}.)
(b)

(i) Show that $A B C D$ is a trapezium, by showing that $A D$ is parallel to $B C$.
(ii) Show that the equation of the line $B C$ is $4 x+5 y-80=0$.
(iii) Find the length of $B C$. (Leave in exact form)
(iv) Find the perpendicular distance of the point D from the line $B C$.
(v) Hence, or otherwise, find the area of the trapezium $A B C D$.

Question 4 (12 marks) Use a SEPARATE Writing Booklet.

Marks

(a) A triathlon course begins with a 500 m swim on a bearing of 110° from the start S. This is followed by a 1800 m cycling leg on a bearing of 185°. The triathlon is completed with a run back to S.
(i) Copy and complete this diagram. Find the size of $\angle S B R$.
(ii) How far was the run home? (nearest m)
(iii) Find the bearing of S from R. (nearest degree)

2

2
(b) Sarah plays computer games competitively. From past experience, she has a 0.9 chance of winning a game of Staplestory and a 0.6 chance of winning a game of Bota. In one afternoon of competition she plays two games of Staplestory and one of Bota.
(i) What is the probability that she will win all three games?
(ii) What is the probability that she wins at least one game of Staplestory and loses the game of Bota.?

2
(c) Each day a runner trains for a 10 km race. On the first day she runs 1000 m , and then increases the distance by 250 m on each subsequent day.
(i) On which day does she run a distance of 10 km in training?
(ii) What is the total distance she will have run in training by the end of that day?

Question 5 (12 marks) Use a SEPARATE Writing Booklet.
Marks
(a) Solve the equation $\sin \theta=-\cos \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ} .(\cos \theta \neq 0)$
(b) If α and β are the roots of the equation $5 x^{2}-3 x-2=0$, find the values of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2}+\beta^{2}$
(c)

The diagram above shows $\triangle A B C$, where $A P=P Q=Q C$ and $P Q R S$ is a rhombus.
(i) If $\angle S A P=x^{\circ}$ prove that $\angle S P Q=2 x^{\circ}$
(ii) Prove that $\angle A B C=90^{\circ}$

Question 6 (12 marks) Use a SEPARATE Writing Booklet.
Marks
(a) Consider the equation $4 x^{2}+k x+1=0$. For what values of k does this equation have two real and distinct roots?
(b) One model for the number of individuals connected to the internet worldwide is the exponential growth model.

$$
N=A e^{k t}
$$

where N is the estimate for the number of individuals connected to the internet (in millions), and t is the time in years after 1 January 2011. It is estimated that at the start of 2012 , when $t=1$, there will be 1800 million individuals connected to the internet, while at the start of 2013, when $t=2$, there will be 2400 million individuals connected to the internet.
(i) Show that $A=1350$ and $k=\ln \left(\frac{4}{3}\right)$.
(ii) According to the model, during which month and year will the number of individuals connected to the internet first exceed 4000 million.
(iii) At what rate will the number of individuals be increasing in 2015 ?
(c) Use Simpson's Rule with five function values to estimate the area under the curve $y=\ln (x+1)$ and the x-axis between $x=1$ and $x=5$. (correct to two decimal places)

Question 7 (12 marks) Use a SEPARATE Writing Booklet.

Marks

(a) Evaluate $\quad \sum_{n=1}^{\infty} 5\left(\frac{1}{2}\right)^{n}$.
(b) Let $f(x)=\frac{x^{3}}{3}+x-3$
(i) Show that the graph of $y=f(x)$ has no stationary points.
(ii) For what values of x is the graph of $y=f(x)$ concave up?
(c)

(i) Find the equation of the tangent line to the curve $y=\ln x$ at the point $(e, 1)$, and verify that the origin is on this line.
(ii) Show that $\frac{d}{d x}(x \ln x-x)=\ln x$.
(iii) The diagram shows the region enclosed by the curve $y=\ln x$, the tangent line and the line $y=0$. Use the result of part (ii) to show that the area of this region is $\frac{e}{2}-1$.

Question 8 (12 marks) Use a SEPARATE Writing Booklet.

Marks

(a) The velocity, \boldsymbol{v}, in $\mathrm{m} \mathrm{s}^{-1}$ of a particle moving in a straight line is given by $v=\mathrm{e}^{3 t-2}$, where t is the time in seconds.
(i) Find the acceleration of the particle at $t=1$.
(ii) At what value of t does the particle have a velocity of $22.3 \mathrm{~m} \mathrm{~s}^{-1}$? (correct to one decimal place)
(iii) Find the distance travelled in the first second .(correct to three decimal places)
(b) The graph of $y=\sin 2 x$ from $0 \leq x \leq \pi$ is shown below.

The area of the shaded region is 0.85 . Find the value of k. (correct to two decimal places)
(c) A point $P(x, y)$ moves in such a way that $P A$ is perpendicular to $P B$.

(i) Show that the equation of the locus is given by

$$
x^{2}-2 x+y^{2}-4 y=0 .
$$

(ii) Find the centre and radius of this circle.

Question 9 (12 marks) Use a SEPARATE Writing Booklet.
Marks
(a) The diagram shows the region bounded by the curve $y=3 x^{2}-12$, the line $y=6$, and the x and y axes.

Find the exact volume of the solid of revolution formed when the shaded region is rotated about the y axis.
(b) A Ferris wheel with centre O and a radius of 15 metres is represented in the diagram below. Initially seat A is at ground level. The next seat is B, where $A \hat{O} B=\frac{\pi}{6}$.

(i) Find the length of the arc AB .
(ii) Find the area of the sector AOB.
(iii) The wheel turns clockwise through an angle of $\frac{2 \pi}{3}$. Find the height of A above the ground.
(iv) The height, h metres, of seat C above the ground after t minutes, can be modelled by the function

$$
h(t)=15-15 \cos \left(2 t+\frac{\pi}{4}\right) .
$$

Find the time at which the height is changing most rapidly.

Question 10 (12 marks) Use a SEPARATE Writing Booklet.

Marks

(a) A car dealership has a car for sale for a cash price of $\$ 35000$. It can also be bought on terms over five years. The first six months are interest free and after that interest is charged at the rate of 1.5% per month on the balance owing for that month. Repayments are to be made in equal monthly installments of $\$ M$ with the first repayment applied at the end of the first month. A customer agrees to buy the car on these terms.

Let $\$ A_{n}$ be the amount owing at the end of the nth month.
(i) Find an expression for A_{6}.
(ii) Show that $A_{8}=(35000-6 M) 1.015^{2}-M(1+1.015)$.
(iii) Find an expression for A_{60}.
(iv) Find the value of M.
(b) An isosceles triangular pen is enclosed by two fences $A B$ and $B C$ each of length 50 m , and a river is the third side.

(i) If $A C=2 \times \mathrm{m}$, show that the area of the triangle is given by:

$$
A(x)=x \sqrt{2500-x^{2}} .
$$

(ii) Hence find the length of AC when the area is a maximum. (correct to the nearest m)

END OF PAPER

This page has been left intentionally blank

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Question 1

(a)

$$
\begin{gathered}
1-2 x<9 \\
-2 x<8 \\
x>-4
\end{gathered}
$$

(b)

$$
\begin{aligned}
& 6 x^{2}-x-1 \\
& =(2 x-1)(3 x+1) \quad \checkmark \square \square
\end{aligned}
$$

(c) $|2 x-5|=8$

$$
\begin{array}{rlll}
2 x-5 & =8 & \checkmark & \text { or }
\end{array} \quad-2 x+5=8 ~ 子 \begin{aligned}
& \\
& x=\frac{13}{2} \\
&
\end{aligned}
$$

(d) $\quad \checkmark \quad \boxed{\checkmark}$ One for each intercept
(e) $\frac{5}{\sqrt{3}+3} \times \frac{\sqrt{3}-3}{\sqrt{3}-3} \square$

$$
\begin{aligned}
& =\frac{5 \sqrt{3}-15}{3-9} \\
& =\frac{15-5 \sqrt{3}}{6}
\end{aligned}
$$

(f)

Question 2

(a) (i) Let $y=\left(3+x^{2}\right)^{12}$

$$
\begin{aligned}
& \therefore \frac{d y}{d x}=12\left(3+x^{2}\right)^{11} \times 2 x \\
& \therefore \frac{d y}{d x}=24 x\left(3+x^{2}\right)^{11}
\end{aligned}
$$

(ii) Let $y=\frac{\ln x}{e^{x}}$

$$
\begin{aligned}
& \therefore \frac{d y}{d x}=\frac{e^{x} \cdot \frac{1}{x}-e^{x} \ln x}{e^{2 x}} \quad \checkmark \\
& \therefore \frac{d y}{d x}=\frac{1-x \ln x}{x e^{x}}
\end{aligned}
$$

(iii) Let $y=x^{2} \cos \frac{x}{2}$

$$
\begin{aligned}
& \therefore \frac{d y}{d x}=-x^{2} \sin \left(\frac{x}{2}\right) \times \frac{1}{2}+2 x \cos \frac{x}{2} \\
& \therefore \frac{d y}{d x}=\frac{-x^{2}}{2} \sin \left(\frac{x}{2}\right)+2 x \cos \frac{x}{2}
\end{aligned}
$$

(b) (i) $\int \frac{x}{x^{2}-4} d x=\frac{1}{2} \int \frac{2 x}{x^{2}-4} d x$

$$
=\frac{1}{2} \ln \left(x^{2}-4\right)+c
$$

(ii) $\quad \int_{1}^{4}\left(\frac{1}{x^{2}}-\sqrt{x}\right) d x=\int_{1}^{4}\left(x^{-2}-x^{\frac{1}{2}}\right) d x \quad \square$

$$
\begin{aligned}
& =\left[\frac{1}{-x}-\frac{2 x^{\frac{3}{2}}}{3}\right]_{1}^{4} \\
& =\left(\frac{1}{-4}-\frac{2(4)^{\frac{3}{2}}}{3}\right)-\left(\frac{1}{-1}-\frac{2(1)^{\frac{3}{2}}}{3}\right) \\
& =-3 \frac{11}{12}
\end{aligned}
$$

(iii) $\int_{0}^{\frac{\pi}{8}} \sec ^{2} 2 x d x=\frac{1}{2}[\tan 2 x]_{0}^{\frac{\pi}{8}}$

$$
\begin{aligned}
& =\frac{1}{2} \tan \frac{\pi}{4}-\frac{1}{2} \tan 0 \\
& =\frac{1}{2}
\end{aligned}
$$

Question 3

(a) (i) $\frac{\sin \theta}{22}=\frac{\sin 60}{20} \checkmark$

$$
\sin \theta=\frac{22 \sin 60}{20}
$$

$$
\therefore \theta=72 \text { (nearest deg ree) } \checkmark
$$

(ii) Area $=\frac{1}{2} \times 20 \times 22 \times \sin 48$

$$
=163.49186 \mathrm{~m}^{2} \text { (nearest } \mathrm{cm}^{2} \text {) }
$$

(b) (i) Gradient $A D=\frac{4}{-3-2}=\frac{-4}{5}$

$$
\text { Gradient } B C=\frac{20}{-5-20}=\frac{-4}{5}
$$

$$
\therefore A D \square B C \boxed{\checkmark} \mid \boxed{ }
$$

(ii) Equation of BC: $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& y-0=\frac{-4}{5}(x-20) \\
& \therefore 5 y=-4 x+80 \\
& \therefore 4 x+5 y-80=0
\end{aligned}
$$

(iii) use $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& d=\sqrt{(20+5)^{2}+(0-20)^{2}} \\
& \therefore d=\sqrt{1025}=5 \sqrt{41}
\end{aligned}
$$

(iv) use $d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$
use $\quad d=\frac{|4(-3)+5(4)-80|}{\sqrt{(4)^{2}+(5)^{2}}}$
$\therefore d=\frac{72}{\sqrt{41}}$
(v) $A D=\sqrt{(-4)^{2}+5^{2}}$

$$
A D=\sqrt{41}
$$

Area of $\quad A B C D=\frac{1}{2} \times \frac{72}{\sqrt{41}}[\sqrt{41}+5 \sqrt{41}]$

$$
=196 u^{2}
$$

Question 4

(a) (i) $\angle S B R=105^{\circ} . \boxed{\text { From diagram. }}$
(ii) use d ${ }^{2}=1800^{2}+500^{2}-2 \times 1800 \times 500 \times \cos 105^{\circ}$

$$
\therefore d=\sqrt{1800^{2}+500^{2}-2 \times 1800 \times 500 \times \cos 105^{\circ}} \sqrt{\checkmark}
$$

$$
d=1989 \text { (nearest } m \text {) }
$$

(iii) now $\angle S R B=\cos ^{-1}\left(\frac{1989^{2}+1800^{2}-500^{2}}{2 \times 1989 \times 1800}\right)$

$$
\angle S R B=14^{\circ}
$$

\therefore Bearing of S from R is

$$
\left(360-14^{\circ}\right)+5^{\circ}=351^{\circ} T \quad(\text { nearest degree) } \checkmark
$$

(b) (i) $\quad P($ Sarah wins all 3 games $)=0.9 \times 0.9 \times 0.6$

$$
=0.486
$$

(ii) $P($ win 1S, lose1S and looseB $)+P($ win $2 S$, lose1S and looseB $)$

$$
\begin{aligned}
& +P(\text { lose } 1 S, \text { win1S and looseB }) \\
& =2 \times 0.9 \times 0.1 \times 0.4+0.9 \times 0.9 \times 0.4 \\
& =0.396
\end{aligned}
$$

(c) $1000,1250,1500$, \qquad ,10000
(i) use $T_{n}=a+(n-1) d$

$$
\begin{aligned}
& 1000+(n-1) 250=10000 \\
&(n-1) 250=9000 \\
&(n-1)=\frac{9000}{250} \\
& \therefore n=37^{\text {th }} \text { day } \checkmark
\end{aligned}
$$

(ii) use $S_{n}=\frac{n}{2}(a+l)$

$$
\begin{aligned}
& \therefore S_{37}=\frac{37}{2}(1000+10000) \\
& \therefore S_{37}=203500 \mathrm{~m}
\end{aligned}
$$

Question 5

(a) $\sin \theta=-\cos \theta$

$$
\therefore \tan \theta=-1 \quad(\cos \theta \neq 0)
$$

$\therefore \theta=180-45,360-45$
$\therefore \theta=135^{\circ}, 115^{\circ}$

(b) $5 x^{2}-3 x-2=0$
(i) $\alpha+\beta=\frac{-(-3)}{5}$

$$
=\frac{3}{5}
$$

(ii) $\alpha \beta=\frac{-2}{5}$
(iii) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$

$$
\begin{aligned}
& =\left(\frac{3}{5}\right)^{2}-2\left(\frac{-2}{5}\right) \\
& =\frac{29}{25}
\end{aligned}
$$

(c) (i) since $P Q R S$ is a rhombus then $P Q=A P=S P \quad \therefore \triangle A P S$ is isosceles if $\angle S A P=x^{\circ}$ then $\angle A S P=x^{\circ}$
$\therefore \angle S P Q=2 x \quad$ (exterior angle theorem of a triangle)
(ii) $\angle S P Q=2 x^{\circ}$
$\angle R Q P=180-2 x$ (co-interior angles as $S P \| R Q$)
since $P Q=Q R=Q C$ then $\triangle Q R C$ is an isoceles Δ
$\therefore \angle Q R C=\angle R C Q=90-x$
since $\angle S A P=x^{\circ}$ and $\angle R C Q=90-x$
then $\triangle A B C=180-(90-x)-x=90^{\circ} \quad($ angle sum of $a \Delta)$

Question 6

(a) Roots are real and distinct if

$$
\begin{aligned}
& \square>0 \\
& k^{2}-16>0 \\
& \therefore(k-4)(k+4)>0 \\
& \therefore k>0 \text { or } k<-4
\end{aligned}
$$

(b) (i) given $1800=A e^{k}$. \qquad

$$
\text { and } \quad 2400=A e^{2 k} \text {. }
$$

$\therefore(2) \div(1)$ gives

$$
\begin{align*}
& e^{k}=\frac{4}{3} \therefore k=\ln \left(\frac{4}{3}\right) \\
& \therefore A e^{\ln \left(\frac{4}{3}\right)}=1800 \\
& \therefore A=\frac{1800}{4 / 3}=1350
\end{align*}
$$

(ii) let $N=4000$

$$
\begin{aligned}
& \therefore 1350 e^{\ln \left(\frac{4}{3}\right) t}=4000 \\
& \ln \left(\frac{4}{3}\right) t=\ln \left(\frac{4000}{1350}\right)
\end{aligned}
$$

$$
\therefore t \approx 3.776 \text { years }
$$

October 2014
(iii) Now $N=1350 e^{\ln \left(\frac{4}{3}\right) t}$

$$
\begin{aligned}
& \therefore \frac{d N}{d t}=1350 \ln \left(\frac{4}{3}\right) e^{\ln \left(\frac{4}{3}\right) t} \\
& \text { let } t=4 \quad \therefore \frac{d N}{d t} \approx 1227 \text { million individuals / year }
\end{aligned}
$$

(c) Using Simpson's Rule with 5 function values

x	1	2	3	4	5
$\ln (x+1)$	$\ln 2$	$\ln 3$	$\ln 4$	$\ln 5$	$\ln 6$

$$
\begin{aligned}
\therefore \text { Area } & \approx \frac{1}{3}((\ln 2+\ln 6)+4(\ln 3+\ln 5)+2 \ln 4)=5.36 \\
& =5.36 u^{2}
\end{aligned} \quad \begin{aligned}
\text { or Area } & \approx \frac{3-1}{6}[\ln 2+4 \ln 3+\ln 4]+\frac{5-3}{6}[\ln 4+4 \ln 5+\ln 6] \\
& =5.36 u^{2}
\end{aligned}
$$

Question 7

(a) $\sum_{n=1}^{\infty} 5\left(\frac{1}{2}\right)^{n}=5\left(\frac{1}{2}\right)+5\left(\frac{1}{2}\right)^{2}+5\left(\frac{1}{2}\right)^{3}+$
as $\quad S_{\infty}=\frac{a}{1-r}$

$$
S_{\infty}=\frac{\frac{5}{2}}{1-\frac{1}{2}}=\frac{5}{2-1}=5
$$

(b) (i) $f(x)=\frac{x^{3}}{3}+x-3$
$f^{\prime}(x)=x^{2}+1 \quad \square$
let $\quad f^{\prime}(x)=0$

$$
\begin{aligned}
& \text { as } \quad x^{2} \neq-1 \quad \checkmark \\
& f^{\prime}(x) \neq 0 \quad \therefore \text { no stationary points. }
\end{aligned}
$$

(ii) $f^{\prime \prime}(x)=2 x$
concave up when $f^{\prime \prime}(x)>0$
\therefore when $x>0$
(c) (i) $y=\ln x$
$\frac{d y}{d x}=\frac{1}{x} \quad \therefore$ Gradient $=\frac{1}{e} \quad$ when $x=e$.
$\therefore \tan$ gent is $y-1=\frac{1}{e}(x-e) \quad \therefore y=\frac{1}{e} x$
$(0,0)$ satisfies this

(ii) $\frac{d}{d x}(x \ln x-x)=\ln x+x \times \frac{1}{x}-1$

$$
\begin{aligned}
& =\ln x+1-1 \\
& =\ln x
\end{aligned}
$$

$$
\checkmark
$$

(a) (i) let $\frac{d x}{d t}=e^{3 t-2}$

$$
\begin{gathered}
\therefore \frac{d^{2} x}{d t^{2}}=3 e^{3 t-2} \\
\text { when } t=1 \quad \frac{d^{2} x}{d t^{2}}=3 e
\end{gathered}
$$

(ii) \quad let $e^{3 t-2}=22.3$

$$
\begin{aligned}
\therefore 3 t-2 & =\ln 22.3 \\
t & =\frac{2+\ln 22.3}{3} \\
\therefore t & =1.7 \mathrm{sec} \quad \checkmark
\end{aligned}
$$

(iii) dist in 1st sec $=\int_{0}^{1} e^{3 t-2} d t$

$$
\begin{aligned}
& =\frac{1}{3}\left[e^{3 t-2}\right]_{0}^{1} \\
& =\frac{1}{3}\left[e-e^{-2}\right] \\
& =0.861 \mathrm{~m}
\end{aligned}
$$

b) The graph of $y=\sin 2 x$ from $0 \leq x \leq \pi$ is shown below.
let $\quad \int_{0}^{k} \sin 2 x d x=0.85$

$$
\begin{aligned}
& -\frac{1}{2}[\cos 2 x]_{0}^{k}=0.85 \\
& \cos 2 k-1=-1.7 \\
& \cos 2 k=-0.7 \\
& 2 k=\pi-\cos ^{-1} 0.7 \\
& k=1.17
\end{aligned}
$$

(correct to two decimal places)
(c) (i) $P(x, y)$ moves in such a way that $P A$ is perpendicular to $P B$,
$\therefore \frac{y-4}{x} \quad \times \frac{y}{x-2}=-1$
$\therefore y^{2}-4 y=-x^{2}-2 x$
$\therefore x^{2}+2 x+y^{2}-4 y=0$
(ii) $(x+1)^{2}+(y-2)^{2}=5$ centre $(-1,2)$ and radius $=\sqrt{5}$ \square

Question 9

(a) $y=3 x^{2}-12$

$$
\therefore x^{2}=\frac{1}{3}(y+12)
$$

\therefore Volume $=\pi \int_{0}^{6} x^{2} d y$

$$
\begin{aligned}
& V=\pi \int_{0}^{6} \frac{1}{3}(y+12) d y \\
& V=\frac{\pi}{3}\left[\frac{y^{2}}{2}+12 y\right]_{0}^{6} \\
& V=\frac{\pi}{3}(18+72)
\end{aligned}
$$

$$
V=30 \pi \text { cubic units }
$$

(b) (i) Arc length $=r \theta=15 \times \frac{\pi}{6}=\frac{5 \pi}{2} \mathrm{~m}$
(ii) Area of \sec tor $=\frac{1}{2} r^{2} \theta=\frac{225 \pi}{12} m^{2}$

(iii)

In $\triangle C 1 O M$
$\sin \frac{\pi}{6}=\frac{M C 1}{15}$
$\therefore M C 1=15 \times \frac{1}{2}=\frac{15}{2}$
\therefore Height $=15+\frac{15}{2}=22.5 \mathrm{~m} \quad \checkmark$
(iv) $\quad h(t)=15-15 \cos \left(2 t+\frac{\pi}{4}\right)$

$h^{\prime}(t)=30 \sin \left(2 t+\frac{\pi}{4}\right)$
$h^{\prime \prime}(t)=60 \cos \left(2 t+\frac{\pi}{4}\right)$
let $h^{\prime \prime}(t)=0$, height changes most rapidly when acceleration is zero.

$$
\begin{aligned}
60 \cos \left(2 t+\frac{\pi}{4}\right) & =0 \\
2 t+\frac{\pi}{4} & =\frac{\pi}{2} \\
\therefore \quad t & =\frac{\pi}{8} \text { sec onds. }
\end{aligned}
$$

Question 10

(a) Let $r=1.015$ and $\$ A_{n}$ be the amount owing at the end of the nth month.
(i)

$$
\begin{aligned}
& \therefore A_{1}=35000-M \\
& \qquad \begin{array}{l}
A_{2}=35000-2 M \\
A 3= \\
\\
\quad \therefore 5000-3 M \\
\quad
\end{array} A_{6}=35000-6 M .
\end{aligned}
$$

(ii) $A_{7}=(35000-6 M) 1.015-M$

$$
A_{8}=((35000-6 M) 1.015-M) 1.015-M
$$

$$
\therefore A_{8}=(35000-6 M) 1.015^{2}-M 1.015-M
$$

$$
\therefore \quad A_{8}=(35000-6 M) 1.015^{2}-M(1.015+1)
$$

(iii) $A_{9}=(35000-6 M) 1.015^{3}-M(1.015+1) 1.015-M$

$$
\begin{aligned}
& A_{9}=(35000-6 M) 1.015^{3}-M\left(1.015^{2}+1.015+1\right) \\
& \therefore A_{60}=(35000-6 M) 1.015^{54}-M\left(1+1.015+1.015^{2}+\ldots \ldots \ldots . .+1.015^{53}\right) \\
& \therefore A_{60}=(35000-6 M) 1.015^{54}-M\left(\frac{1.015^{54}-1}{1.015-1}\right) \\
& A_{60}=(35000-6 M) 1.015^{54}-M\left(\frac{1.015^{54}-1}{0.015}\right) .
\end{aligned}
$$

(iv) let $A_{60}=0$

$$
\begin{aligned}
& (35000-6 M) 1.015^{54}-M\left(\frac{1.015^{54}-1}{0.015}\right)=0 \\
& M\left(\frac{1.015^{54}-1}{0.015}\right)=35000 \times 1.015^{54}-6 \times 1.015^{54} M \\
& M\left(\frac{1.015^{54}-1}{0.015}\right)+6 \times 1.015^{54} M=35000 \times 1.015^{54} \\
& M\left(\frac{1.015^{54}-1}{0.015}+6 \times 1.015^{54}\right)=35000 \times 1.015^{54} \\
& M=35000 \times 1.015^{54} \div\left(\frac{1.015^{54}-1}{0.015}+6 \times 1.015^{54}\right) \\
& M=\$ 817.17 \quad \text { (nearest cent) }
\end{aligned}
$$

(b)

(i) as $\square A B C$ is isosceles. $(A B=B C)$

$$
M C=x(\square B M C \equiv \square B A)
$$

$U \sin g$ Pythagoras

$$
B M^{2}=2500-x^{2}
$$

$$
\therefore B M=\sqrt{2500-x^{2}}
$$

$$
\checkmark
$$

$$
\therefore \text { area of } \square A B C=\frac{1}{2} \times A C \times B M
$$

$$
\therefore \text { area of } \square A B C=\frac{1}{2} \times 2 x \times \sqrt{2500-x^{2}}
$$

$$
\therefore \text { area of } \square A B C=x \sqrt{2500-x^{2}}
$$

(ii) Now $A(x)=x\left(2500-x^{2}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& A^{\prime}(x)=x \times \frac{1}{2}\left(2500-x^{2}\right)^{-\frac{1}{2}} \times(-2 x)+\left(2500-x^{2}\right)^{\frac{1}{2}} \times 1 \\
& A^{\prime}(x)=\frac{-x^{2}}{\sqrt{2500-x^{2}}}+\sqrt{2500-x^{2}} \\
& A^{\prime}(x)=\frac{-x^{2}+2500-x^{2}}{\sqrt{2500-x^{2}}} \\
& A^{\prime}(x)=\frac{2500-2 x^{2}}{\sqrt{2500-x^{2}}} \\
& \text { let } A^{\prime}(x)=0 \quad \therefore 2500-2 x^{2}=0 \\
& \therefore x=\sqrt{1250}(x>0) \\
& \therefore x=25 \sqrt{2}
\end{aligned}
$$

First derivative test : $A^{\prime}(25 \sqrt{2}-0.2)>0$

$$
A^{\prime}(25 \sqrt{2}+0.2)<0 \quad \therefore \text { Max when } x=25 \sqrt{2} \text {. }
$$

\therefore Max area occurs when $A C=50 \sqrt{2}$

$$
A C=71 m \text { (nearest } m \text {) }
$$

