

2015

YEAR 12

HSC Trial EXAMINATION

Mathematics

General Instructions

- Date of Task - Tuesday $18^{\text {th }}$ August
- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-16

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10 on answer sheet provided
- Allow about 15 minutes for this section
-

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1. Which term of the series with nth term $T_{n}=15-2 n$ is equal to -37 ?
(A) $\quad-26$
(B) 26
(C) -11
(D) 11
2. The diagram shows the right triangle $A B C$.
$\angle A B C=90^{\circ}, A B=5 \mathrm{~cm}$ and $A C=13 \mathrm{~cm}$.

What is the value of $\tan \angle B A C$?
(A) $\frac{5}{12}$
(B) $\frac{5}{13}$
(C) $\frac{13}{5}$
(D) $\frac{12}{5}$
3. An infinite geometric series has a first term of 3 and a limiting sum of 1.8.

What is the common ratio?
(A) $\quad-0 . \dot{3}$
(B) $-0 . \dot{6}$
(C) $\quad-1.5$
(D) $\quad-3.75$
4. What is the value of $\int_{0}^{1}\left(e^{3 x}+1\right) d x$?
(A) $\frac{1}{3} e^{3}$
(B) e^{3}
(C) $\frac{1}{3}\left(e^{3}+1\right)$
(D) $\frac{1}{3}\left(e^{3}+2\right)$
5. The diagram shows the function $y=f(x)$ in the domain $-9 \leq x \leq 9$.

What is the value of $\int_{-9}^{9} f(x) d x$?
(A) 9
(B) 0
(C) $\quad-9$
(D) $\quad-18$
6. Which graph represents a quadratic equation with discriminant $\Delta=0$?
(A)

(B)

(C)

(D)

7. What is the solution to the equation $2 \cos ^{2} x-1=0$ in the domain $0 \leq x \leq 2 \pi$?
(A) $x=\frac{\pi}{6}, \frac{11 \pi}{6}$
(B) $x=\frac{\pi}{4}, \frac{7 \pi}{4}$
(C) $x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
(D) $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
8. Which expression is the gradient function of $(5 x-4)^{7}$?
(A) $7(5 x-4)^{6}$
(B) $\frac{5}{8}(5 x-4)^{8}$
(C) $\frac{5}{7}(5 x-4)^{6}$
(D) $\quad 35(5 x-4)^{6}$
9. Find the focal length for the parabola $x^{2}=6 y+2 x+11$.
(A) 1
(B) $4 a$
(C) 6
(D) $\frac{3}{2}$
10. The equation $x=3 \sin (n t)+6$ has a period equal to $\frac{3 \pi}{4}$.

What is the value of n ?
(A) 2
(B) $\frac{1}{2}$
(C) $\frac{8}{3}$
(D) $\frac{4}{3}$

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section
Answer each question in the appropriate writing booklet.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
(a) Show that $\frac{1}{\sqrt{2}-1}-\frac{1}{\sqrt{2}+1}$ is a rational number
(b) Factorise $8 a^{3}-y^{3}$.
(c) Differentiate $\left(x^{3}-1\right)\left(x^{3}+1\right)$
(d) Evaluate $\int_{\frac{\pi}{2}}^{\pi} \sqrt{3} \sec ^{2} \frac{x}{3} d x$.
(e) Find the sum of the arithmetic series $24+28+32+\ldots \ldots . . .+136$
(f) The function $y=a x^{3}-x$ has a stationary point at $x=2$. Find the value of a.
(g) Evaluate $\log _{6} 9+\log _{6} 24$.
(a) Points $A(-3,1)$ and $B(1,3)$ are on a number plane.

Copy the diagram into your writing booklet.
(i) Find the gradient of line $O A$.
(ii) Show that $O A$ is perpendicular to $O B$.
(iii) $O A C B$ is a quadrilateral in which $B C$ is parallel to $O A$.

Show that the equation of $B C$ is $x+3 y-10=0$.
(iv) The point C lies on the line $x=-2$.

What are the coordinates of point C ?
(v) Show that the length of the line $B C$ is $\sqrt{10}$.
(vi) Find the area of $O A C B$.
(b) The table shows the values of a function $f(x)$ for five values of x.

x	1	1.5	2	2.5	3
$f(x)$	4	1.5	-2	2.5	8

Use Simpson's rule with these five values to estimate $\int_{1}^{3} f(x) d x$.

Question 12 (Continued)

(c) The line $y=x$ and the hyperbola $y=\frac{1}{x}$ intersect at the point $A(1,1)$.

The line $y=x$ and the line $x=e$ intersect at the point $B(e, e)$

Calculate the area enclosed by the line $y=x$, the line $x=e$ and the hyperbola $y=\frac{1}{x}$.
(d) Bag A contains 3 red cubes and 2 white cubes. Bag B contains 2 red cubes and 3 white cubes. A bag is selected at random and then a cube is selected at random from that bag.
(i) Draw a tree diagram to show the possible outcomes. Show the probability on each branch.
(ii) What is the probability that the cube selected is white?

End of Question 12

(a) Consider the functions $y=x^{2}$ and $y=x^{2}-3 x+2$.
(i) Sketch the two functions on the same axes.
(ii) Hence or otherwise find the values of x such that $x^{2}>(x-1)(x-2)$.
(b) Evaluate $\int_{0}^{\frac{\pi}{6}}\left(x^{2}+\sin 2 x\right) d x$
(c) (i) Differentiate $\frac{x^{2}-2}{x^{2}+2}$.
(ii) hence evaluate $\int_{2}^{4} \frac{x}{\left(x^{2}+2\right)^{2}} d x$
(d) As shown in the diagram below, the bearing of Darwin (D) from Perth (P) is 039°.The distance between the two cities is 2650 km . The bearing of Adelaide (A) from Perth is 104° and the distance between these two cities is 2120 km .

(i) Calculate the distance from Adelaide to Darwin, to the nearest 10 kilometres.
(ii) Find the bearing of Darwin from Adelaide, to the nearest degree.
(a) Differentiate $f(x)=x \cos x$
(b) In quadrilateral $A B C D$ the diagonals $A C$ and $B D$ intersect at E.

Given $A E=3, E C=6, B E=4$ and $E D=8$.

(i) Show that $\triangle A B E\|\| D E C$ 3
(ii) What type of quadrilateral is $A B C D$? Justify your answer.
(c) Find the shortest distance between the point $(0,5)$ and the line $3 x-y+1=0$
(d) The parabola $y=a x^{2}+b x+c$ has a vertex at $(3,1)$ and passes through $(0,0)$.
(i) Find the other x-intercept of the parabola.
(ii) Find a, b and c.
(e) The region bounded by the curve $y=\sqrt{\sin x}$, the y-axis and the line $y=1$ is rotated around the x-axis to form a solid.

(i) If $y=\sqrt{\sin x}$ and $y=1$ and meet at the point A, show that the coordinates of A are $\left(\frac{\pi}{2}, 1\right)$.
(ii) Find the volume of the solid.
(a) A function $f(x)$ is defined by $f(x)=x^{2}(3-x)$.
(i) Find the stationary points for the curve $y=f(x)$ and determine their nature. Point(s) of inflexion are not required.
(ii) Sketch the graph of $y=f(x)$ showing the stationary points and x-intercepts.
(b) The quadratic equation $2 m^{2}-3 m+6=0$ has roots α and β.

By considering the sum and the product of the roots, find the value of

$$
\alpha^{2}+\beta^{2}
$$

(c) For the first 15 years of his working life, Jonathon puts $\$ 1000$ at the beginning of each month into a superannuation fund that pays 6% pa interest compounded monthly. For the next 20 years he puts $\$ 2000$ at the beginning of each month into a superannuation fund that pays 7.5% pa interest compounded monthly.

What is the total value of his superannuation?
(d) The radiation in a rock after a nuclear accident was 8,000 becquerel (bq). One year later, the radiation in the rock was $7,000 \mathrm{bq}$. It is known that the radiation in the rock is given by the formula:

$$
R=R_{0} e^{-k t}
$$

where R_{0} and k are constants and t is the time measured in years.
(i) Evaluate the constants R_{0} and k.
(ii) What is the radiation of the rock after 10 years?

Answer correct to the nearest whole number.
(iii) The region will become safe when the radiation of the rock reaches 50 bq . After how many years will the region become safe?

End of Question 15

(a) The third and seventh terms of a geometric series are 1.25 and 20 respectively. What is the first term?
(b) The displacement of a particle moving along the x-axis is given by

$$
x=5 \sin \frac{\pi}{2} t
$$

where x is the displacement from the origin in metres, t is the time in minutes and $t \geq 0$.
(i) What is the furthest distance the particle moves away from the origin.
(ii) When does the particle first return to its starting position?
(iii) Find the acceleration of the particle when $t=3 \mathrm{~min}$.
(c) The graph of $f^{\prime}(x)$ shown in the diagram passes through the origin. As $x \rightarrow \pm \infty f^{\prime}(x) \rightarrow 0$ and $f(x) \rightarrow 0$.

Sketch the graph of $y=f(x)$, given $f(x)>0$.

Question 16 (Continued)

(d) A triangle $A B C$ is right-angled at C. D is the point on $A B$ such that $C D$ is perpendicular to $A B$. Let $\angle B A C=\theta$.
Draw a diagram showing this information.
(i) Given that $8 A D+2 B C=7 A B$, show that

$$
8 \cos \theta+2 \tan \theta=7 \sec \theta
$$

$$
2
$$

(ii) Hence or otherwise, find θ 2

End of Examination

STANDARD INTEGRALS

$$
\text { NOTE: } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Student number:

Trial HSC Examination, 2015
 Mathematics

Multiple Choice Answer Sheet for Section 1

Completely colour in the response oval representing the most correct answer.

1	A	\bigcirc	B	\bigcirc	C	\bigcirc	D
2	A	\bigcirc	B	\bigcirc	C	\bigcirc	D
3	A	\bigcirc	B	\bigcirc	C	\bigcirc	D
4	A	\bigcirc	B	\bigcirc	C	\bigcirc	D
5	A	\bigcirc	B	\bigcirc	C	\bigcirc	D
6	A	\bigcirc	B	\bigcirc	C	\bigcirc	D
7	A	\bigcirc	B	\bigcirc	C	\bigcirc	D
8	A	\bigcirc	B	\bigcirc	C	\bigcirc	D
9	A	\bigcirc	B	\bigcirc	C	\bigcirc	D
10	A	\bigcirc	B	\bigcirc	C	\bigcirc	D

Mark: /10

YR 12 mATHEMATELS TRIAL HSC 2015
Soldtions

SELTOU I (10 makus)
1.

$$
\begin{aligned}
15-2 n & =-37 \\
-2 n & =-52 \\
n & =26
\end{aligned}
$$

2.

$$
\begin{aligned}
C B & =\sqrt{13^{2}-5^{2}} \\
& =12
\end{aligned}
$$

$$
\tan \angle B A C=\frac{12}{5}
$$

D
3.

$$
\begin{aligned}
1.8 & =\frac{3}{1-r} \\
1.8-1.8 r & =3 \\
-1.8 r & =1.2 \\
r & =-\frac{12}{18}=-\frac{2}{3} \\
& =-0.6
\end{aligned}
$$

4. $\left[\frac{1}{3} e^{3 x}+x\right]_{0}^{1}$

$$
\begin{align*}
& =\left(\frac{1}{3} e^{3}+1\right)-\left(\frac{1}{3}+0\right) \\
& =\frac{1}{3} e^{3}+1-\frac{1}{3} \\
& =\frac{1}{3} e^{3}+\frac{2}{3} \\
& =\frac{1}{3}\left(e^{2}+2\right)
\end{align*}
$$

5. $-(3 \times 3)+-(3 \times 3)$

$$
=-9-9
$$

$$
=-18
$$

D
6. A

7

$$
\begin{aligned}
2 \cos ^{2} x & =1 \\
\cos ^{2} x & =\frac{1}{2} \\
\cos x= & =\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\therefore x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}, D
$$

8

$$
\begin{align*}
1 & =(5 x-4)^{7} \\
\frac{d y}{d x} & =7(5 x-4)^{6} \cdot 5 \\
& =35(5 x-4)^{6}
\end{align*}
$$

9.

$$
\begin{aligned}
x^{2}-2 x & =6 y+11 \\
x^{2}-2 x+1 & =6 y+12 \\
(x-1)^{2} & =6(y+2)
\end{aligned}
$$

vertex $(1,-2)$
Fowilengin: $\quad 4 a=6$ $a=\frac{\epsilon}{4 t}=1 \frac{1}{2}$
\therefore Fows $\left(1,-\frac{1}{2}\right) \quad D$
10.

$$
\begin{aligned}
\frac{2 \pi}{n} & =\frac{3 \pi}{4} \\
3 n & =8 \\
n & =\frac{8}{3}
\end{aligned}
$$

Question il (15 matans)
(a)

$$
\begin{aligned}
& \frac{1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} \cdots\left(\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}\right) \\
= & \frac{\sqrt{2}+1}{1}-\left(\frac{\sqrt{2}-1}{1}\right) \\
= & \sqrt{2}+1-\sqrt{2}+1 \\
= & 2
\end{aligned}
$$

(b)

$$
\begin{aligned}
&(2 a)^{3}-(y)^{3} \\
&=(2 a-y)\left(4 a^{2}+2 a y+y^{2}\right) \\
&)\left(x^{3}-1\right)\left(x^{3}+1\right) \\
&=x^{6}-1 \\
& \frac{d}{d x}\left(x^{6}-1\right)=6 x^{5}
\end{aligned}
$$

(d) $\left[3 \sqrt{3} \tan \frac{x}{3}\right]_{\frac{\pi}{2}}^{\pi}$

$$
=3 \sqrt{3}\left[\tan \frac{\pi}{3}-\tan \frac{\pi}{6}\right]
$$

$$
=3 \sqrt{3}\left[\sqrt{3}-\frac{1}{\sqrt{3}}\right]
$$

$$
=3 \times 3-3
$$

$$
=6
$$

(e) Find n

$$
\begin{aligned}
& a=24 \quad d=4 \quad T_{n}=136 \\
& 24+4(n-1)=136 \\
& 24+4 n-4=136 \\
& 4 n=116 \\
& n=29 \\
& S_{29}= \frac{29}{2}(24+136) \\
&= 1
\end{aligned}
$$

sit $x=2$

$$
\begin{gathered}
3 a \times 2^{2}-1=0 \\
12 a-1=0 \\
12 a=1 \\
a=\frac{1}{12}
\end{gathered}
$$

(9)

$$
\begin{array}{rl}
& \log _{6}(9 \times 24) \\
= & \log _{6} 216 \\
6^{2}= & 216 \\
x=3 & 1 \\
& \left(\frac{\text { or just wise }}{\text { change of }} \begin{array}{l}
\text { base } \\
\log _{10} 216 \\
\log _{10} 6
\end{array}\right.
\end{array}
$$

Question 12 (15 maRks)
(ब)

(1) God OA $=-\frac{1}{3}$
(ii) coad $O B=\frac{3}{1}=3$

$$
3 x-\frac{1}{3}=-1 \quad \therefore O A \perp O 3
$$

(iii) grad $=-\frac{1}{3} \quad p^{t}(1,3)$

$$
\begin{array}{lr}
y-3=-\frac{1}{3}(x-1) & 1 \\
3 y-9=-x+1 \\
x+3 y-10=0 & \text { Ean or BC } \tag{1}
\end{array}
$$

(iv) Sue $x=-2$ into $x+3 y-10=0$

$$
\begin{gathered}
-2+3 y-10=0 \\
3 y=12 \\
y=4
\end{gathered}
$$

\therefore Pt c is $(-2,4)$
(v)

$$
\begin{aligned}
d_{B C} & =\sqrt{(-2-1)^{2}+(4-3)^{2}} \\
& =\sqrt{10} \text { units }
\end{aligned}
$$

(vi) $B C=$ fio units

$$
\begin{aligned}
\therefore A R E A \text { OACB } & =\sqrt{10} \times \sqrt{10} 1 \\
& =1059 . \text { - inits }
\end{aligned}
$$

\qquad
(b)

$$
\begin{align*}
& A=\frac{2-1}{t}\{f(1)+4 f(1.5)+f(2)\} \\
& +\frac{3-2}{6}\{f(2)+4 f(2.5)+f(3) \\
& =\frac{1}{6}\left[\begin{array}{c}
4+4 \times 1.5+(-2)+-2+4 \times 2.5 \\
+8
\end{array}\right. \\
& =\frac{1}{6}(3+16) \\
& \therefore 4 \tag{1}
\end{align*}
$$

$$
\text { (c) } \begin{aligned}
A & =\int_{1}^{e} x d x-\int_{1}^{e} \frac{1}{x} d x \\
& =\left[\frac{x^{2}}{2}-\ln x\right]_{1}^{e} \\
& =\left(\frac{e^{2}}{2}-1\right)-\left(\frac{1}{2}-0\right) \\
& =\frac{e^{2}}{2}-1-\frac{1}{2} \\
& =\frac{e^{2}}{2}-\frac{3}{2} \\
& \frac{1}{2}\left(e^{2}-3\right) \sec +\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
P(\text { winte }) & =P(4 \omega)+P(B \omega) \\
& =\frac{1}{2} \times \frac{2}{5}+\frac{1}{2} \times \frac{3}{5} \\
& =\frac{5}{10}=\frac{1}{2}
\end{aligned}
$$

Questions 13 (15 marks)
(a)

(ii)

$$
\text { i) } \begin{align*}
x^{2} & >x^{2}-3 x+2 \\
0 & >-3 x+2 \\
3 x & >2 \\
\therefore \quad x & >\frac{2}{3} \tag{1}
\end{align*}
$$

(b)

$$
\begin{aligned}
& {\left[\frac{x^{3}}{3}-\frac{1}{2} \cos 2 x\right]_{0}^{\frac{\pi}{6}} } \\
= & \left(\frac{\pi^{3}}{648}-\frac{1}{2} \cos \frac{\pi}{3}\right) \\
& -\left(0-\frac{1}{2}\right) \\
= & \frac{\pi^{3}}{648}-\frac{1}{4}+\frac{1}{2} \\
= & \frac{\pi^{3}}{648}+\frac{1}{4} \quad(0.297 \ldots)
\end{aligned}
$$

$$
\begin{aligned}
\text { (c)(c) } y & =\frac{x^{2}-2}{x^{2}+2} \\
\frac{d y}{d x} & =\frac{\left(x^{2}+2\right) \cdot 2 x-\left(x^{2}-2\right) \cdot 2 x}{\left(x^{2}+2\right)^{2}} \\
& =\frac{2 x^{3}+4 x-2 x^{3}+4 x}{\left(x^{2}+2\right)^{2}} \\
& =\frac{8 x}{\left(x^{2}+2\right)^{2}}
\end{aligned}
$$

(c)
(ii)

$$
\begin{aligned}
& =\left[\frac{1}{8}\left(\frac{x^{2}-2}{x^{2}+2}\right)\right]_{2}^{4} \\
& =\frac{1}{8}\left(\frac{4^{2}-2}{4^{2}+2}-\frac{2^{2}-2}{2^{2}+2}\right) i \\
& =\frac{1}{8}\left(\frac{14}{18}-\frac{2}{6}\right) \\
& =\frac{1}{8} \times \frac{4}{9}=\frac{1}{18} \quad i
\end{aligned}
$$

$$
\text { (ii) } \frac{\sin \angle P D A}{2120}=\frac{\sin 65^{\circ}}{2600}
$$

$$
\begin{aligned}
\sin \angle P D A & =\frac{\sin 65^{\circ}}{2600} \times 21201 \\
& =1.738959426 .
\end{aligned}
$$

$$
\angle D A P=48^{\circ} \text { (nearest degree) }
$$

$$
\angle N, D P=180^{\circ}-39^{\circ}=141^{\circ}
$$

$$
\therefore \angle T, D A=360^{\circ}-141^{\circ}-48^{\circ}
$$

$$
=171^{\circ}
$$

\therefore Baoring of Dowwim fom Attelad

$$
\begin{aligned}
& \text { (d) (i) } \angle P A A=104^{\circ}-39^{\circ} \\
& =65^{\circ} \\
& A D^{2}=2650^{2}+2120^{2}-2.2450 .2120^{\frac{1}{2}} \\
& \cos 65^{\circ} \\
& =6768361.211 \ldots \\
& A=2601.60 \% \\
& \doteq 2600 \mathrm{~km}\left(\begin{array}{c}
\text { - } \\
\hline 10 \mathrm{~km} \\
\hline
\end{array}\right.
\end{aligned}
$$

QUESTION 14 (15 MARKS)
(a)

$$
\begin{aligned}
f(x) & =x \cos x \\
f^{\prime}(x) & =x-\sin x+\cos x=1 \\
& =\cos x-x \sin x
\end{aligned}
$$

(b) (1) in $\triangle A B E$ ana $\triangle D E C$

$$
\angle A E B=\angle D E C \text { (vert Opp } \angle S \quad 1
$$ are equal)

$$
\frac{A E}{E C}=\frac{3}{6}=\frac{1}{2} \quad \frac{B E}{E_{0}}=\frac{4}{5}=\frac{1}{2}
$$

$\therefore \triangle A B E I I I \triangle D E C$
(two pairs of corresporoling sides 212 in pioporti=n w.red the incu sled anglas one ex-a11)
(ii) $\angle B A E=\angle D C E$ (matehing Ls in similor rongles we esai)
$\therefore \angle B A E$ and $\angle D C E$ are atterate angles and eq-al $\therefore 43 / / C D$ (alternate angles va only equal if the lines It
$\therefore A B C D$ is a tropezian
(ove pair opposite sides porally)
$3 x-y+1=0$
$a=3 \quad b=-1 \quad c=1$

$$
\begin{aligned}
d & =\frac{|0 \cdot 3+5-1+1|}{\sqrt{3^{2}+(-1)^{2}}} \\
& =\frac{1-41}{\sqrt{10}} \\
& =\frac{4}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} \\
& =\frac{4 \sqrt{10}}{10}=\frac{2 \int_{10}}{51}
\end{aligned}
$$

(d) (i) farabola is Stmmetrival atout the vertex $(3,1)$

\therefore Other x-intercept is $(6,0)$
(ii) All threes points $(0,0),(3,1),(6,0)$ satisty $y=a x^{2}+b x+c$
So, sit points into $y=a x^{2}+b x+c$ and create 3 ap-ations
$(0,0) \quad 0=0+0+c$

$$
\therefore \quad c=0
$$

$(3.1) \quad 1=9 a+3 b$
$(6,0) \quad 0=36 a+6 b$
Solee (1) and (2) Simultaneously
(1) $\times 2$

$$
\begin{align*}
& 2=18 a+6 b \tag{3}\\
& 0=36 a+6 b \tag{2}\\
& -2=18 a \\
& a=-\frac{1}{9}
\end{align*}
$$

(2) - (3)
sut into (1)

$$
\begin{aligned}
& 1=9 x-\frac{1}{9}+3 b \\
& 1=-1+3 b \\
& b=\frac{2}{3}
\end{aligned}
$$

$\therefore a=-\frac{1}{9}, b=\frac{2}{3}$ and $c=0$.
(e) PTo

14 contined
(e)

$$
\begin{array}{r}
\sqrt{\sin x}=1 \\
\sin x=1 \\
x=\frac{\pi}{2}
\end{array}
$$

coodinates are $\left(\frac{\pi}{2}, 1\right)$
(ii)

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{2}} y^{2} d x \\
& =\pi \int_{0}^{\frac{\pi}{2}} 1 d x-\pi \int_{0}^{\frac{\pi}{2}} \sin x d x \\
& =\pi[x]_{0}^{\frac{\pi}{2}}+\pi[\cos x]_{0}^{\frac{\pi}{2}} \\
& =\pi\left(\frac{\pi}{2}-0\right)+\pi\left(\cos \frac{\pi}{2}-\cos 0\right) \\
& =\frac{\pi^{2}}{2}+\pi(0-1) \\
& =\frac{\pi^{2}}{2}-\pi\left(\pi^{2}\left(\frac{\pi}{2}-1\right) \operatorname{conits}\right)
\end{aligned}
$$

Q-ESTDN is (15 MARKS)
ia) $f(x)=x^{2}(3-x)$
x-intercents ove $x=0, x=3$

$$
\begin{aligned}
& f(x)=3 x^{2}-x^{3} \\
& F^{\prime}(x)=6 x-3 x^{2} \\
& F^{\prime \prime}(x)=6-6 x
\end{aligned}
$$

(1)
st.pt ouer when $f(x)=0$

$$
\begin{gathered}
6 x-3 x^{2}=0 \\
3 x(2-x)=0 \\
x=0 \\
(0,0)
\end{gathered}
$$

Test:

$$
f^{\prime \prime}(0)=t>0 \quad f^{\prime \prime}(2)=6-12
$$

M, twin. $p+$ at (0,0)

$$
\therefore \operatorname{MAX} \text { O+ }
$$

$$
(2,4)
$$

(ii)

(b)

$$
\begin{aligned}
& \alpha+\beta=-\frac{3}{2}=1^{\frac{1}{2}} \\
& \alpha \beta=\frac{6}{2}=3
\end{aligned}
$$

$$
\begin{align*}
\alpha \beta & =\frac{\theta}{2}^{2}=3 \\
x+\beta)^{2} & =\alpha^{2}+2 \alpha \beta+\beta^{2} \\
\therefore \alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =\left(\frac{3}{2}\right)^{2}-2 \times 3 \\
& =\frac{9}{4}-6 \tag{1}\\
& =-\frac{15}{4}=-3 \frac{3}{4}
\end{align*}
$$

(c) For First 15 yeors

$$
f=\$ 1000 \quad \begin{array}{rlrl}
r & =6 \% p .9 \quad n=15 \times 12 \\
& =0.005 & =180 \\
& &
\end{array}
$$

$A=1000(1.005)^{150}+1000(1.005)^{175}+$

$$
\begin{array}{r}
1 \cdots+1000(1.005)^{2}+1000(1.005 \\
=1000\left[1.005+1.005^{2}+\cdots+1.005^{150}\right. \\
=1000\left[\frac{1.05(1.005 \cdot 0)}{1.005-1}\right] \\
a=1.0051=1.005 \\
n=180
\end{array}
$$

For NExt 20 years

$$
\begin{array}{rlrl}
P=\$ 2000 & r=7.5 \% 9 & n= & 20 \times 12 \\
& =00062 & & =240 \\
& p e r \text { monn } & & \text { montms }
\end{array}
$$

$$
A=2000(1.00625)^{243}+2000\left(1.00625^{139}\right.
$$

So, total the two amounts

$$
\begin{aligned}
\text { TOkal }= & W+\$ \% \\
= & \$ 292272.806+ \\
& \$ 1114383.084 \\
= & 1406655.59 \\
= & \$ 1406656
\end{aligned}
$$

15 continued
(d)
(i) Initially $t=0, \quad R=8000$

$$
\begin{aligned}
& R=R_{0} e^{-k t} \\
& R=8000 e^{-k t}
\end{aligned}
$$

Also, when $t=1, \quad R=7000$

$$
\begin{aligned}
7000 & =8000 e^{-k x 1} \\
7000 & =8000 e^{-k} \\
e^{-k} & =\frac{7}{8} \\
\ln e^{-k} & =\ln 7 / 8 \\
-k & =\ln 7 / 8 \\
\therefore k & =-\ln (7 / 8)=0.13353139
\end{aligned}
$$

(ii) when $t=10$

$$
\begin{aligned}
R & =8000 e^{-0.13353 \ldots \times 10} \\
& =2104.604 \ldots \ldots \\
& =210569 .
\end{aligned}
$$

(iii) Find t when $R=50$

$$
\begin{aligned}
50 & =8000 e^{-0.13353 \ldots x t} \\
e^{-0.13353 \times t} & =\frac{5}{800} \\
-0.13353 \ldots \times t & =\ln \left(\frac{1}{160}\right) \\
t & =\ln (1 / 160) \div-0.13353 \\
& =38.0073458 \\
& =38 \text { years. }
\end{aligned}
$$

Question 16 (15 maRks)
(a)

$$
\begin{align*}
& a r^{6}=20 \\
& a r^{2}=1.25 \tag{2}
\end{align*}
$$

$1 \div 2$

$$
\begin{aligned}
r^{4} & =16 \\
r & = \pm 2
\end{aligned}
$$

1
.

Sue into (2) $2 \times(2)^{2}=1.25$

$$
a=\frac{5}{16} \quad \frac{1}{2}
$$

b)

(ii) $t=2$ minutes
(iii)

$$
\begin{aligned}
& v=x=\frac{5 \pi}{2} \cos \frac{\pi}{2} t \\
& a=x=-\frac{5 \pi^{2}}{4} \sin \frac{\pi}{2} t
\end{aligned}
$$

swen $t=3$
acceleration

$$
\begin{aligned}
& =-\frac{5 \pi^{2}}{4} \times \sin \frac{3 \pi}{2} \\
& =\frac{5 \pi^{2}}{4} \mathrm{~m} / \mathrm{min}^{2}-1 \\
& \left(12.337 \ldots \mathrm{~m} / \mathrm{min}^{2}\right)
\end{aligned}
$$

(c)

1 show max formiog tat us
\therefore correet shap - correct postast

(d) P.T.O

$$
\cos \theta=\frac{A D}{A C}
$$

$$
\tan \theta=\frac{B C}{A C}
$$

$$
\cos \theta=\frac{A C}{A B}
$$

$A D=A C \cos \theta$

$$
B C=A C \tan \theta
$$

$$
\begin{aligned}
A B & =A C \times \frac{1}{\cos \theta} \\
& =A C \sec \theta
\end{aligned}
$$

NON $\quad 8 A D+2 B C=7 A B$
$8 A C \cos \theta+2 A C \tan \theta=7 A C \sec \theta$
\therefore Ac $\quad \therefore 8 \cos \theta+2 \tan \theta=7 \sec \theta$
(ii)

$$
\begin{aligned}
& 8 \cos \theta+\frac{2 \tan \theta}{8 \cos \theta+\frac{2 \sin \theta}{\cos \theta}=7 \sec \theta} \\
& 8+\frac{7}{\cos \theta} \\
& 8\left(1-\cos ^{2} \theta+2 \sin \theta=7\right. \\
& 8 \sin ^{2} \theta-2 \sin \theta=7
\end{aligned}
$$

Let $-=\sin \theta \quad 8 J^{2}-2 v-1=0$

$$
\begin{array}{ll}
(2 \nu-1)(4 \nu+1)=0 \\
\nu=\frac{1}{2} & \nu=-\frac{1}{4} \\
\sin \theta=\frac{1}{2} & \sin \theta=-\frac{1}{4} \\
\theta=30^{\circ} & \theta=165^{\circ} 31^{\circ}
\end{array}
$$

Since $\quad 0^{\circ} \leqslant 0 \leqslant 90^{\circ}$ (0 is in a light angled triangle)

$$
\theta=30^{\circ}
$$

