Student Number:

2015 YEAR 12 HSC Trial EXAMINATION

Mathematics

General Instructions

- Date of Task Tuesday 18th August
- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-16

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10 on answer sheet provided
- Allow about 15 minutes for this section
- •

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Written by JIO/KLA

Section I

10 marks **Attempt Questions 1–10** Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- Which term of the series with *n*th term $T_n = 15 2n$ is equal to -37? 1.
 - -26 (A) (B) 26 -11
 - (C)
 - 11 (D)
- 2. The diagram shows the right triangle ABC. $\angle ABC = 90^{\circ}, AB = 5 \text{ cm and } AC = 13 \text{ cm}.$

What is the value of tan $\angle BAC$?

- $\frac{5}{12}$ (A) 5 13 (B) 13 5 (C) $\frac{12}{5}$ (D)
- 3. An infinite geometric series has a first term of 3 and a limiting sum of 1.8. What is the common ratio?
 - (A) $-0.\dot{3}$
 - -0.6 (B)
 - (C) -1.5
 - (D) -3.75

4. What is the value of $\int_0^1 (e^{3x} + 1) dx$?

(A)
$$\frac{1}{3}e^{3}$$
 (B) e^{3}
(C) $\frac{1}{3}(e^{3}+1)$ (D) $\frac{1}{3}(e^{3}+2)$

5. The diagram shows the function y = f(x) in the domain $-9 \le x \le 9$.

What is the value of $\int_{-9}^{9} f(x) dx$?

(A) 9
(B) 0
(C) -9
(D) -18

6. Which graph represents a quadratic equation with discriminant $\Delta = 0$?

7. What is the solution to the equation $2\cos^2 x - 1 = 0$ in the domain $0 \le x \le 2\pi$?

(A) $x = \frac{\pi}{6}, \frac{11\pi}{6}$ (B) $x = \frac{\pi}{4}, \frac{7\pi}{4}$ (C) $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$ (D) $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$

8.

Which expression is the gradient function of $(5x-4)^7$?

(A)
$$7(5x-4)^{6}$$

(B) $\frac{5}{8}(5x-4)^{8}$

(C)
$$\frac{3}{7}(5x-4)^6$$

(D)
$$35(5x-4)^{5}$$

- 9. Find the focal length for the parabola $x^2 = 6y + 2x + 11$.
 - (A) 1
 - (B) 4*a*
 - (C) 6
 - (D) $\frac{3}{2}$
- 10. The equation $x = 3\sin(nt) + 6$ has a period equal to $\frac{3\pi}{4}$. What is the value of *n* ?

(A)	2
(B)	$\frac{1}{2}$
(C)	$\frac{8}{3}$
(D)	$\frac{4}{3}$

End of Section I

2

Section II

(g)

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Marks Show that $\frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1}$ is a rational number **(a)** 2 Factorise $8a^3 - y^3$. 2 **(b)** Differentiate $(x^3 - 1)(x^3 + 1)$ (c) 2 Evaluate $\int_{\frac{\pi}{2}}^{\pi} \sqrt{3} \sec^2 \frac{x}{3} dx$. **(d)** 3 Find the sum of the arithmetic series $24 + 28 + 32 + \dots + 136$ 2 **(e)** The function $y = ax^3 - x$ has a stationary point at x = 2. Find the value of a. **(f)** 2 Evaluate $\log_6 9 + \log_6 24$.

Question 12 (15 marks) **Start a new booklet**

Marks

2

(a) Points A(-3,1) and B(1,3) are on a number plane.

Copy the diagram into your writing booklet.

(i)	Find the gradient of line OA.	1
(ii)	Show that OA is perpendicular to OB.	1
(iii)	<i>OACB</i> is a quadrilateral in which <i>BC</i> is parallel to <i>OA</i> . Show that the equation of <i>BC</i> is $x + 3y - 10 = 0$.	2
(iv)	The point <i>C</i> lies on the line $x = -2$. What are the coordinates of point <i>C</i> ?	1
(v)	Show that the length of the line <i>BC</i> is $\sqrt{10}$.	1
(vi)	Find the area of <i>OACB</i> .	1

(b) The table shows the values of a function f(x) for five values of x.

x	1	1.5	2	2.5	3
f(x)	4	1.5	-2	2.5	8

Use Simpson's rule with these five values to estimate $\int_1^3 f(x) dx$.

Question 12 (Continued)

(c) The line y = x and the hyperbola $y = \frac{1}{x}$ intersect at the point A(1,1). The line y = x and the line x = e intersect at the point B(e, e)

Calculate the area enclosed by the line y = x, the line x = e and the hyperbola $y = \frac{1}{x}$.

3

(d) Bag A contains 3 red cubes and 2 white cubes. Bag B contains 2 red cubes and 3 white cubes. A bag is selected at random and then a cube is selected at random from that bag.

- (i) Draw a tree diagram to show the possible outcomes. Show the probability on each branch.
- (ii) What is the probability that the cube selected is white?

1

3

Question 13 (15 marks)		(15 marks) Start a new booklet	Marks
(a)	Consi	der the functions $y = x^2$ and $y = x^2 - 3x + 2$.	
	(i)	Sketch the two functions on the same axes.	2
	(ii)	Hence or otherwise find the values of x such that $x^2 > (x-1)(x-2)$.	1
(b)	Evalu	tate $\int_{0}^{\frac{\pi}{6}} (x^2 + \sin 2x) dx$	2
(c)	(i) D	the inferentiate $\frac{x^2 - 2}{x^2 + 2}$.	2

(ii) hence evaluate
$$\int_{2}^{4} \frac{x}{(x^2+2)^2} dx$$
 3

(d) As shown in the diagram below, the bearing of Darwin (D) from Perth (P) is 039°. The distance between the two cities is 2650 km. The bearing of Adelaide (A) from Perth is 104° and the distance between these two cities is 2120 km.

- (i) Calculate the distance from Adelaide to Darwin, to the nearest 10 2 kilometres.
- (ii) Find the bearing of Darwin from Adelaide, to the nearest degree.

Que	stion 1	4 (15 marks) Start a new booklet	Mar
(a)	Diffe	rentiate $f(x) = x \cos x$	1
(b)	-	adrilateral ABCD the diagonals AC and BD intersect at E. AE = 3, EC = 6, BE = 4 and ED = 8.	
		A E Not to scale D	
	(i)	Show that $\triangle ABE \parallel \triangle DEC$	3
	(ii)	What type of quadrilateral is ABCD? Justify your answer.	2
(c)	Find t	the shortest distance between the point (0,5) and the line $3x - y + 1 = 0$	2
(d)	The p	arabola $y = ax^2 + bx + c$ has a vertex at (3, 1) and passes through (0, 0).	
	(i) (ii)	Find the other <i>x</i> -intercept of the parabola. Find <i>a</i> , <i>b</i> and <i>c</i> .	1 2
(e)	The r	rind u, b and c. region bounded by the curve $y = \sqrt{\sin x}$, the y-axis and the line $y = 1$ ated around the x-axis to form a solid. y = 1	2
	/	$y = \sqrt{\sin x}$	
	/	\wedge	

(i) If
$$y = \sqrt{\sin x}$$
 and $y = 1$ and meet at the point *A*, show that
the coordinates of *A* are $\left(\frac{\pi}{2}, 1\right)$. 1
(ii) Find the volume of the solid. 3

 \int

End of Question 14

x

Question 15 (15 marks)

Start a new booklet

3

- (a) A function f(x) is defined by $f(x) = x^2(3-x)$.
 - (i) Find the stationary points for the curve y = f(x) and determine their nature. Point(s) of inflexion are not required.
 (ii) Sketch the graph of y = f(x) showing the stationary points and
 - (ii) Sketch the graph of y = f(x) showing the stationary points and *x*-intercepts. 2
- (b) The quadratic equation $2m^2 3m + 6 = 0$ has roots α and β . By considering the sum and the product of the roots, find the value of

$$\alpha^2 + \beta^2$$
 2

(c) For the first 15 years of his working life, Jonathon puts \$1000 at the beginning of each month into a superannuation fund that pays 6% pa interest compounded monthly. For the next 20 years he puts \$2000 at the beginning of each month into a superannuation fund that pays 7.5% pa interest compounded monthly.

What is the total value of his superannuation?

(d) The radiation in a rock after a nuclear accident was 8,000 becquerel (bq). One year later, the radiation in the rock was 7,000 bq. It is known that the radiation in the rock is given by the formula:

$$R=R_0e^{-kt}.$$

where R_0 and k are constants and t is the time measured in years.

(i) Evaluate the constants R₀ and k.
(ii) What is the radiation of the rock after 10 years?
(iii) Answer correct to the nearest whole number.
(iii) The region will become safe when the radiation of the rock reaches 50 bq. After how many years will the region become safe?

Question 16 (15 marks)	Start a new booklet	Mark
Question 16 (15 marks)	Start a new dooklet	Mar

- The third and seventh terms of a geometric series are 1.25 and 20 **(a)** respectively. What is the first term?
- The displacement of a particle moving along the *x*-axis is given by **(b)**

$$x=5\sin\frac{\pi}{2}t,$$

where x is the displacement from the origin in metres, t is the time in minutes and $t \ge 0$.

(i)	What is the furthest distance the particle moves away from the origin.	1
(ii)	When does the particle first return to its starting position?	1

- 3 (iii) Find the acceleration of the particle when $t = 3 \min$.
- The graph of f'(x) shown in the diagram passes through the origin. (c) 3 As $x \to \pm \infty$ $f'(x) \to 0$ and $f(x) \to 0$.

Sketch the graph of y = f(x), given f(x) > 0.

ks

3

Question 16 (Continued)

- (d) A triangle *ABC* is right-angled at *C*. *D* is the point on *AB* such that *CD* is perpendicular to *AB*. Let $\angle BAC = \theta$. Draw a diagram showing this information.
 - (i) Given that 8AD + 2BC = 7AB, show that

 $8\cos\theta + 2\tan\theta = 7\sec\theta$

(ii) Hence or otherwise, find θ

2

2

End of Examination

24

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, n\neq -1; x\neq 0, \text{ if } n<0$
$\int \frac{1}{x} dx$	$=\ln x, x>0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$
$\int \cos axdx$	$=\frac{1}{a}\sin ax, a \neq 0$
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln \left(x + \sqrt{x^2 + a^2} \right)$

NOTE: $\ln x = \log_e x$, x > 0

Student number:

Trial HSC Examination, 2015 Mathematics

Multiple Choice Answer Sheet for Section 1

Completely colour in the response oval representing the most correct answer.

1	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
2	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
3	А	0	В	\bigcirc	С	\bigcirc	D	\bigcirc
4	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
5	А	\bigcirc	В	\bigcirc	С	0	D	\bigcirc
6	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
7	А	\bigcirc	В	\bigcirc	С	0	D	\bigcirc
8	А	\bigcirc	В	\bigcirc	С	0	D	\bigcirc
9	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
10	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc

Mark: /10

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2
SETTON I (10 maans) 1. $15 - 2n = -37$ -2n = -52 n = 26 2. $cB = 112^{2} \cdot 5^{2}$ = 12 ton $LBAC = 12$ $T = (5x - 4)^{7}$ D $1 = (5x - 4)^{7}$ D $2 = 35(5x - a)^{6}$ D $1 = (5x - 4)^{7}$ $2 = 35(5x - a)^{6}$ $1 = (5x - 4)^{7}$ 2 = 2x + 1 = 67 + 11 $x^{2} - 2x + 1 = 67 + 12$ $(x - 1)^{2} = 6(7 + 2)$ 2 = -9 + 12 $1 = (5x - 4)^{7}$ $2 = 35(5x - a)^{6}$ 1 = 2x + 12 $(x - 1)^{2} = 6(7 + 2)$ 2 = 2x + 1 = 67 + 12 $(x - 1)^{2} = 6(7 + 2)$ 2 = 2x + 1 = 67 + 12 $(x - 1)^{2} = 6(7 + 2)$ 2 = -9 + 9 $10 = 2\frac{2\pi}{3} = 3\frac{\pi}{4}$ $3n = 8^{2}$ $n = \frac{4}{3} = \frac{2}{4}$ $2 = \frac{5}{3} = \frac{2}{4}$		2015
SETTON I (10 maaus) 1. $15 - 2n = -37$ -2n = -52 n = 26 B 2. $C8 = \sqrt{132 \cdot 5^2}$ = 12 ton $L8Ac = \frac{12}{5}$ $\frac{1}{15} - \frac{2}{15}$ $\frac{1}{15} - \frac{2}{15}$ $\frac{1}{15} - \frac{2}{15}$ $\frac{1}{15} - \frac{3}{1-c}$ $1.8 = \frac{8}{1-c}$ $1.8 = \frac{8}{1-c}$ 1.8 =	SOLUTIONS	í
1. $15 - 2n = -37$ -2n = -52 n = 26 B 2. $CB = \left[\frac{12^{2} \cdot 5^{2}}{12^{2} \cdot 5^{2}}\right]$ = 12 tan $LBAC = \frac{12}{5}$ $\frac{1}{12}$ $\frac{1}{5}$ $\frac{1}$		6. <u>A</u>
1. $15 - 2n = -37$ -2n = -52 n = 26 B 2. $CB = \begin{bmatrix} 123 - 52 \\ -212 \\ -312$	SECTION I (10 MARKS)	
$\begin{array}{c} -2n = -52 \\ n = 26 \\ \beta \end{array}$ $2. cB = \sqrt{10^{2} - 5^{2}} \\ = 12 \\ + on LBAC = 12 \\ + on LBAC = 12 \\ = -12 \\ + on LBAC = 12 \\ = -12 \\ + on LBAC = 12 \\ = -12 \\ + on LBAC = 12 \\ = -23 \\ = -7 \\ 1.8 \\ = 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ = 3 \\ 1 - c \\ 1.8 \\ 1 - c \\ 1 -$		$7, 2\cos^2 n = 1$
$n = 26 \qquad B$ $2. \qquad CB = \sqrt{13^2 \cdot 5^2}$ $= 12$ $4on \qquad CBAC = 12 \\ = 12$ $bon \qquad CBAC = 12 \\ = 12$ $bon \qquad CBAC = 12 \\ = 12$ $bon \qquad CBAC = 12 \\ = 12$ D $\frac{1}{1 - r}$ $18 = \frac{3}{1 - r}$ $18 = \frac{3}{1 - r}$ $18 = 12 \\ (1 - r)^2 = 37(5x - 4)^6 \qquad D$ $= 35(5x - 4)^6 \qquad$	1. 15 - 2n = -37	
$n = 26 \qquad B$ $2. \qquad CB = \sqrt{13^2 \cdot 5^2}$ $= 12$ $4on \qquad CBAC = 12 \\ = 12$ $bon \qquad CBAC = 12 \\ = 12$ $bon \qquad CBAC = 12 \\ = 12$ $bon \qquad CBAC = 12 \\ = 12$ D $\frac{1}{1 - r}$ $18 = \frac{3}{1 - r}$ $18 = \frac{3}{1 - r}$ $18 = 12 \\ (1 - r)^2 = 37(5x - 4)^6 \qquad D$ $= 35(5x - 4)^6 \qquad$	-2n = -52	$\cos n = \pm \frac{1}{12}$
2. $CS = \frac{18^{2} - 5^{2}}{12}$ = 12 $ton \ LBAC = \frac{12}{5}$ 3. $1.8 = \frac{3}{1-c}$ 1.8 - 1.8 = 3 1-c 1.8 - 1.8 = 3 1.8 - 1.2 1.8 - 1.2	n = 26 B	1
2. $CS = \frac{18^{2} - 5^{2}}{12}$ = 12 $ton \ LBAC = \frac{12}{5}$ 3. $1.8 = \frac{3}{1-c}$ 1.8 - 1.8 = 3 1-c 1.8 - 1.8 = 3 1.8 - 1.2 1.8 - 1.2	<u> </u>	$\mathcal{L} = \frac{1}{4}, 3 \frac{1}{4}, 5 \frac{1}{4}, 7 \frac{1}{4}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2. $CB = 13^2 - 5^2$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= 12	8.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tan $\angle BAC = \underline{12}$	$7 = (5x - 4)^7$
3. $1.8 = \frac{3}{1-r}$ 1.8 - 1.8r = 3 1-r 1.8 - 1.8r = 3 -1.8r = 1.2 $r = -\frac{12}{18} = -\frac{2}{3}$ = -0.6 4. $\left[\frac{1}{3}e^{-3k} + \pi\right]_{-2}^{1}$ $= \frac{1}{3}e^{-3} + 1 - \frac{1}{3}$ $= \frac{1}{3}(e^{2} + 2)$ $= -\frac{1}{3}(e^{2} + 2)$ = -		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{dy}{dx} = 7(5x-4).5$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		= 357(57-4)6
$ \begin{array}{rcl} 1.8 & -1.8r & = & 3 \\ & & -1.8r & = & 1.2 \\ & & -1.8r & = & 1.2 \\ & & & r & = & 1.2 \\ & & & r & = & -2 \\ & & & & r & = & -2 \\ & & & & & r & = & -2 \\ & & & & & & r & = & -2 \\ & & & & & & & r & = & -2 \\ & & & & & & & & r & = & -2 \\ & & & & & & & & & r & = & -2 \\ & & & & & & & & & & & r & = & -2 \\ & & & & & & & & & & & & r & = & -2 \\ & & & & & & & & & & & & & r \\ & & & & & & & & & & & & r \\ & & & & & & & & & & & & r \\ \end{array} $ $ \begin{array}{c} 1.8r & -1.8r & = & 3r \\ & & & & & & & & & & & r \\ & & & & & & & & & & & & r \\ & & & & & & & & & & & & r \\ \end{array} $ $ \begin{array}{c} 1.8r & -1.8r & = & -2 \\ & & & & & & & & & & & & & r \\ & & & & & & & & & & & & & r \\ \end{array} $ $ \begin{array}{c} 1.8r & -1.2r & -2n & = & & & & & & & & & & r \\ & & & & & & & & & & & & & & & & & r \\ \end{array} $ $ \begin{array}{c} 1.8r & -1.2r & -2n & = & & & & & & & & & & & & & & & & & $	3, 1:8 = 3	
$\begin{array}{rcl} & -1.8r &= 1.2 \\ & r &= -\frac{12}{18} &= -\frac{2}{3} \\ &= -0.6 & \frac{8}{3} \\ &= -0.6 & \frac{1}{2} \\ &= -0.6 & \frac{8}{3} \\ &= -0.6 & \frac{1}{2} \\ &= -0.6 & \frac{8}{3} \\ &= -0.6 & \frac{1}{2} \\ &= -0.6 & \frac{8}{3} \\ &= -0.6 & \frac{1}{2} \\ &= -0.6 & \frac{8}{3} \\ &= -0.6 & \frac{1}{2} \\ &= -0.6 & \frac{1}{3} \\ &= -0.6 & \frac$		$q \sim 2$
$f = -\frac{12}{18} = -\frac{2}{3}$ $= -0.6 \qquad \frac{8}{-}$ $Vertex (1, -2)$ $Fowal length : 4a = 6$ $a = \frac{6}{-12}$ $= (\frac{1}{3}e^{-3} + \pi) - (\frac{1}{3} + 0)$ $= \frac{1}{3}e^{-3} + 1 - \frac{1}{3}$ $= \frac{1}{3}(e^{-2} + 2) \qquad D$ $Sn = 8$ $n = \frac{9}{-3} \qquad C$ $S_{-} - (3 \times 5) + - (3 \times 3)$ $= -9 - 9$		
$= -0.6 \qquad B \qquad $	and a second a second of the	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 = -== 18 = -== 8	$(\pi - 1) = G(\tau + 2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= -0.6	Vachar () 2)
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$4 - \left(3\pi - 7 \right)$	ya yiya a taranan an
$\begin{array}{c} = \left(\frac{1}{3}e^{3}+1\right) - \left(\frac{1}{3}+0\right) \\ = \frac{1}{3}e^{3}+1 - \frac{1}{3} \\ = \frac{1}{3}e^{3}+\frac{2}{3} \\ = \frac{1}{3}\left(e^{2}+2\right) \\ = \frac{1}{3}\left(e^{$	T $\left(\frac{1}{3}e^{2} + \mathcal{H}\right)$	$a = 6 - \frac{1}{2}$
$= \frac{1}{3} \frac{e^{3} + 1 - \frac{1}{3}}{1 - \frac{1}{3}}$ $= \frac{1}{3} \frac{e^{3} + 2}{3}$ $= \frac{1}{3} \left(\frac{e^{2} + 2}{2} \right)$ $= \frac{1}$		and the second
$= \frac{1}{3} = \frac{2^{3}}{3} + \frac{2}{3}$ $= \frac{1}{3} (e^{2} + 2) \qquad D \qquad 3n = 8$ $n = \frac{8}{3} \qquad C$ $5 = -(3 \times 3) + -(3 \times 3)$ $= -9 - 9$		$-$ Found $\left(1, -\frac{1}{2}\right) = \frac{1}{2}$
$= \frac{1}{3}(e^{2}+2) \qquad D \qquad \qquad 3n = 8' \\ n = \frac{9}{3} \qquad \qquad -\frac{9}{3} \qquad \qquad -\frac$		
$5(3\times 3) + -(3\times 3)$ = -9 -9	$\frac{1}{3} = \frac{1}{3} = \frac{1}{3}$	$10, \frac{211}{n} = \frac{511}{4}$
$5(3\times 3) + -(3\times 3)$ = -9 -9	$(1/n^2)$	7
$\begin{array}{c} 5, & -(3 \times 3) + -(3 \times 3) \\ \vdots & -9 - 9 \end{array}$	- <u>-</u> <u>-</u> <u>-</u>	
= -9 -9	5 (2.4) (2.5)	
	13	
		\bigcirc

Ň

`

.

 $\frac{109_{10} \cdot 216}{1009_{10} \cdot 6} = 3$

$$\begin{array}{c} \boxed{Q_{\text{LESTION}} & 12 \\ (15 \text{ MARLS}) \\ (4) \\$$

•

`

.

`

•

.

QUESTION 14 (15 MARKS) (d) () Porobola is symmetrical (a) $f(x) = x \cos x$ about the vertex (3,1) $F'(n) = \pi - sinn + \cos n + 1$ COSR - USINK (b) in A ABE and D DEC, 1. Other 2 - intercept is (6, 2) LAES = LDEC (vert opp Li 1 are equai) (1) All three points (0,0) (3,1) (6,0) $\frac{AE}{EC} : \frac{3}{6} = \frac{1}{2} \qquad \frac{BE}{ED} = \frac{4}{8} = \frac{1}{2}$ satisfy y = ax2 + bx+c So, sit points into y=0x2+brtc : DAJE III D DEC (two pairs of corresponding sides and create 3 eq. ations ste in proportion and the included (0,0) 0 = 0 + 0 + Cangles are equal) 1. C=0 (3,1) 1 = 9a + 3b - 0(6.0) 0: 36a+66 - 2 (11) LBAE = LDCE (matching Solve () and (2) simultaneously L's in similar H. Onges () x 2 2 = 180 + 66 - 3 ceequi) 0 = 369 +66 -2 ". LBAE and LDCE are -2 = 189 2-3 sitemate angles and eq. al. $a = -\frac{1}{9}$ AB/ICD (alternate angles so only equal if the lines A) Sub into () 1 = 9x - 4 + 36 . ABCD is a tropezium 1 = -1 + 3bb = (one pair opposite sides parallel) $a = -\frac{1}{9}, b = \frac{2}{2}$ and c = 0. (C) (0.5) 3x-y+1=0 Q=3 b=-1 C=1 (e) PTO d= 0.3 + 5. -1 + 1 $\sqrt{3^2 + (-1)^2}$ $= \frac{1-41}{\sqrt{10}} = \frac{4}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}}$ 4/10 = 2/10

14 continued (e) (i) Sinn = Sin x Ξ ١ $\mathcal{H} = \overline{\Pi}$ 1 Coordinates $ae(\underline{T}, 1)$ (ii) $V = TT \int_{-\infty}^{\frac{\pi}{2}} y^2 dx$ $= TT \int^{\frac{T}{2}} | dx - TT \int^{\frac{T}{2}} sin x dx$ $= \pi \left[x \right]_{0}^{\frac{\pi}{2}} + \pi \left[\cos x \right]_{-}^{\frac{\pi}{2}}$ = TT, (T - 0) + TT $(\cos \pi - \cos \sigma)$ + 17 0 - 1) TT <u>*</u> $\frac{11^2}{2} - 11$ $TT\left(\frac{T}{2}-1\right)$ crunits

Q-ESTIDN 15 (15 MARKS) (c) FOR FIRST 15 years 1= \$1000 1= 6% p.g n= 15x12 (a) $f(n) = n^2(3-n)$ = 0.005 permontn = 180 mo.ntm x-intercepts ove n=0, n=3 A= 1000(1.005) + 1000(1.005) + $f(n) = 3n^2 - n^3$ $1 - - - + 1000 (1.005)^2 + 1000 (1.005)^2$ $F'(n) = 6n - 3n^2$ $= 1000 \int 1.005 + 1.005^2 + ... + 1.005^{150}$ $= 1000 \left[\frac{1.005(1.005^{10}-1)}{1.005(1-1)} \right]$ F''(n) = 6 - 6n1 (1)st pt occur when f'(z)=0 a=1.005 /=1.005 $6n - 3n^2 = 0$ n = 150 $3\pi(2-\pi)=0$ FOR NEXT 20 YEARS n = 2 P=\$2000 F= 7.5% p.a n= 20×12 カニロ (0,0) (2,4)= 0 00625 = 240 per month months Test: f"(0) = 6 70 f''(z) = 6 - 12 $= -620 \quad A = 2000 \left(1.00625 \right) + 2000 \left(1.00625 \right)^{237}$ Mr tuin.pt MAX OH at (0,0) ++ 2000 (1.30625) + 2000 (1.00625) (2,4)= 2000 1100625 + 1.00625 + ... + 1.00621 i (2.11) ஞ் $= 2000 \left[1.00625 \left(1.00625 - 1 \right) \right]$ --> r 3 a = 1. 20625 1= 1-00625 n = 240(b) $\chi + \beta = -\frac{3}{2} = 1\frac{1}{2}$ So, total the two amounts $\alpha\beta = \frac{6}{2} = 3$ Total = 業 + 米 $(\pm \pm \beta)^2 = (\pm^2 \pm 2\alpha\beta \pm \beta^2)$ = \$292272 .806 + $\therefore \ \chi^2 + \beta^2 = (\chi + \beta)^2 - 2 \ \chi \beta$ \$ 1114 383.084 = 1406655.89 $= \left(\frac{3}{2}\right)^2 - 2 \times 3$ 3 $= \frac{9}{4} - 6$ = $-\frac{15}{4} - 3\frac{3}{4}$ = \$ 1406 656 (7)

15 contine

(d) (i) Initially t=0, R=8000 R = Roe-Kt R = 8000 e-Kt A150, when t=1, R = 7000 7000 = 8000 e $7000 = 8000 e^{-k}$ $e^{-h} = \frac{7}{8}$ $\ln e^{-k} = \ln \frac{7}{5}$ $-k = \ln \frac{7}{8}$ $k = -\ln(7/8) = 0.13353139$ (\dot{n}) when t=10 $R = 5000 e^{0.13353... \times 10}$ = 2104.604.. 2105 69. (iii) Find t when R=50 50 = 8000 C-0, 13353 ~~ e^{-0,13353...xt} = 5 600 $-0 \quad 13353 \quad xt = \ln\left(\frac{1}{160}\right)$ $t = \ln (160) \div -0 = 13353.$ 38.0073458. 5 1 38 years.

B 16 (c) D ì (1) 60 C. $\cos \Theta = \frac{AD}{AC}$ $\cos \Theta = Ac$ AB $tan \Theta = \frac{BC}{AC}$ $AB = AC \times \frac{1}{\cos \Theta}$ AD = AC COSO BC = AC ton @ AC Sec 0 8AD + 2BC = 7ABNOW 8 Ac coso + 2Ac tono = 7 Ac see0 -7 AC $...8 \cos \Theta + 2 \tan \Theta = 7 \sec \Theta$. 2 ton 0 = 7 sec 0 (i) Θ soci 8 2 sin O ర్ బాం ల - <u>7</u> .cog@ cos O 8 6520 $2\sin\Theta =$ ŧ 7 7 $8(1-\sin^2\Theta) + 2\sin\Theta =$ 8 sin20 - 2 sin 0 - 1 = 0 $8 y^2 - 2y - 1 = 0$ Let u=sing (2 - 1) (4 + 1) = 3v = 1 or v = -4 $\sin \Theta = 1$ $\sin \Theta = -1$ $\Theta = 30^{\circ}$ $\Theta = 165^{\circ}31^{\circ}$ 0'E 0 E 90" (D is in a right angled trangle) Since ⊖ = 30~