

NORMANHURST BOYS HIGH SCHOOL New south wales

2013 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Student Number: _____

Teacher: _____

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
 - Black pen is preferred
- Board- approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-16

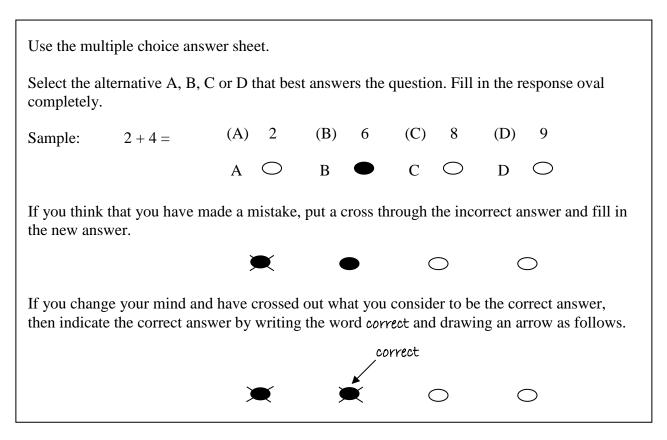
Total marks (100)

Section I

10 marks

- Attempt Questions 1-10
- Answer on the Multiple Choice answer sheet provided.
- Allow about 15 minutes for this section

Section II


90 marks

- o Attempt questions 11 16
- Start a new booklet for each question
- Allow about 2 hours 45 minutes for this section

Students are advised that this is a school-based examination only and cannot in any way guarantee the content or format of future Higher School Certificate Examinations.

Section I

10 marks Attempt all questions Allow about 15 minutes for this section

- (1) Which of the following is equal to 1.6 radians ?
 - (A) 91°40'
 - (B) $[1.6 \times \pi]$ radians

(C)
$$\left[1.6 \times \frac{\pi}{180}\right]$$
 radians

(D)
$$12^{\circ}37'$$

(2) In Mrs Lin's Year 6 class, 28 students play Badminton and 12 take chess as an activity. There are 33 students in the class and every student takes part in at least one of the activities mentioned. The probability that a particular student plays badminton and does not take chess as an activity is

(A)	$\frac{7}{10}$
(B)	$\frac{28}{33}$
(C)	86%
(D)	$\frac{7}{11}$

(3) The equation $x^2 + y^2 + 6y = 7$ describes a circle with:

1

- (A) Centre = (0,3) and radius = 4
- (B) Centre = (0, -9) and radius = 6
- (C) Centre = (0, -3) and radius = 4
- (D) Centre = (0,3) and radius = 6.

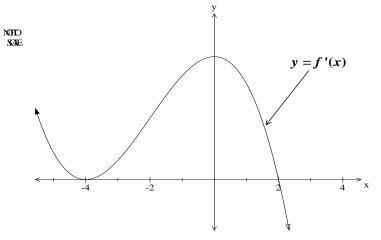
1

1

Marks

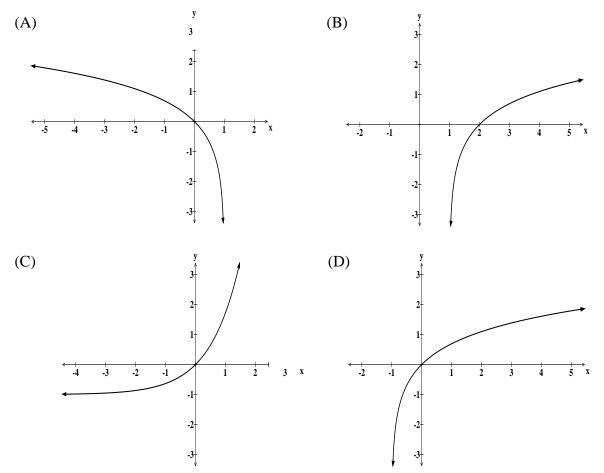
1

(4) Which of the following values of *m* make the points (4, -3), (0, m) and (-2, 5) collinear? 1


(A) m = 1(B) $m = \frac{7}{3}$ (C) m = 4(D) $m = -\frac{1}{2}$

(5) Given that $\log_a 3 = x$ and $\log_a 2 = y$, $\log_a 36$ can be written as

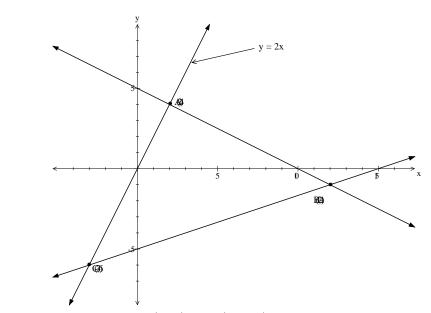
- (A) 2x + y
- (B) 2(x+y)
- (C) $(x+y)^2$
- (D) 2xy.
- (6) The first three terms of a geometric series are $\frac{1}{r} + \frac{1}{r^2} + \frac{1}{r^3} + \dots$. If the series has a limiting sum, then
 - (A) r < -1 or r > 1
 - (B) -1 < r < 1
 - (C) |r| < 1
 - (D) None of the above.
- (7) The roots of a quadratic are α and β . Given that $\alpha + \beta > 0$, $\alpha^2 + \beta^2 = 12$ and $\alpha\beta = 2$, **1** the equation of the quadratic could be written as
 - (A) $x^2 8x + 2 = 0$
 - (B) $2x^2 + 8x + 4 = 0$
 - (C) $x^2 4x + 2 = 0$
 - (D) $x^2 7x + 2 = 0$.


1

4

The diagram above represents a sketch of the **gradient function** of the curve y = f(x). Which of the following is a true statement? The curve y = f(x) has

- (A) a minimum turning point occurs at x = -4
- (B) a horizontal point of inflexion occurs at x = 2
- (C) a horizontal point of inflexion occurs at x = -4
- (D) a maximum turning point occurs at x = 2.
- (9) Which of the following graphs represents $y = \ln(x+1)$?


TRMA13_EXAM

5

- (10) Which of the following statements is mathematically correct?
 - (A) An arithmetic progression can have a limiting sum.
 - (B) All cubic functions have a point of inflexion.
 - (C) Not all parabolas are symmetric.
 - (D) Every function has a corresponding inverse function.

Section II Question 11 (15 marks) Use a SEPARATE writing booklet.

(a)

In the diagram above A = (2, 4), B = (12, -1) and C = (-3, -6). A and C both lie on the line y = 2x.

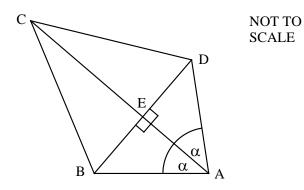
	(i)	Find the gradient of the line passing through <i>AB</i> .	1
	(ii)	Prove that the equation of the line AB is $x + 2y - 10 = 0$.	2
	(iii)	Prove that <i>AB</i> is perpendicular to <i>AC</i> .	1
	(iv)	Prove that $\triangle ABC$ is an isosceles triangle.	2
	(v)	Hence or otherwise, find the area of $\triangle ABC$.	1
(b)		nterior angles of a regular polygon are 165° each. Find the number of of this polygon.	2

(c) (i) Show that
$$\frac{x+1}{x-1} = 1 + \frac{2}{x-1}$$
. 1

(ii) Hence or otherwise graph
$$y = \frac{x+1}{x-1}$$
. 2

(d) Find the coordinates of the point on the curve $y = 2e^{3x} + 1$, where the tangent 3 to this curve is parallel to the line 12x - y + 1 = 0.

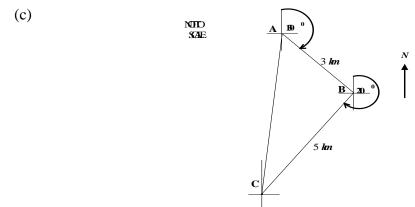
Marks


Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Differentiate the following with respect to *x*.

(i)
$$y = \cos^3 2x$$
.

(ii)
$$y = \frac{e^{2x}}{2x+1}$$
. (leave your answer in simplified form) 3



In the above diagram, *ABCD* is a quadrilateral where *AC* is perpendicular to *BD* and $\angle BAE = \angle DAE$.

(i) Prove that $\triangle ABE = \triangle AED$.

(ii) Hence or otherwise prove that $\triangle BCD$ is an isosceles triangle.

A, B and C are markers in a yacht race. AB = 3 km and BC = 5 km. The bearing of B from A is 130° T and C from B is 210° T.

Copy the diagram in your solution booklet

(i)	Show clearly that $\angle ABC = 100^{\circ}$.	1
(ii)	Use the cosine rule to find the length of AC. (to 2 decimal places)	2
(iii)	Hence or otherwise, find the bearing of A from C.	2

Marks

2

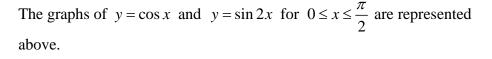
3

Que	stion 1	3 (15 marks) Use a SEPARATE writing booklet.	Marks
(a)	first	computer game Eduardo earned 40, 725 and 1050 points in each of the three rounds respectively. If this pattern of numbers continues in all the rounds find:	
	(i)	The number of points that Eduardo earned in the 10 th round.	1
	(ii)	The total number of points that Eduardo earned in all of the 1 st 10 rounds.	2
	(iii)	How many rounds must Eduardo play to accumulate more than 50000 points in total ?	3
(b)	(i)	Use the property that $\sin^2 x + \cos^2 x = 1$ to prove that $\sec^2 x = 1 + \tan^2 x$.	2

(ii) Hence or otherwise, evaluate
$$\int_{0}^{\frac{\pi}{4}} \tan^2 x \, dx$$
. 2

(c) Nam and Ambros each throw a normal six sided die.

(i)	Find the probability that they throw the same number.	1
(ii)	Find the probability that the number thrown by Nam is smaller than the number thrown by Ambros.	2
(iii)	If the number thrown by each of them is multiplied together find the	2


(iii) If the number thrown by each of them is multiplied together, find the probability that the result would be at least 20.

Question 14 (15 marks) Use a SEPARATE writing booklet.

- (a) Given that $2\sin^2\theta 5\sin\theta 3 = 0$, find the exact value of θ , for $0 \le \theta \le 2\pi$. **3**
- (b) At Nino's breakfast restaurant, the number (N) of customers in the restaurant at any time over a four hour period (*t hours*) is given by: $N = 4t^3 - t^4 + 20 \qquad 0 \le t \le 4$

(iv) Neatly sketch the curve $N = 4t^3 - t^4 + 20$ $0 \le t \le 4$, showing all 2 essential features.

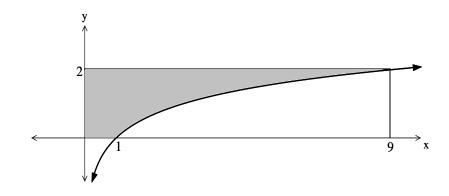


(i) Show that the x values of **A** and **B** (where the curves meet) are $\frac{\pi}{6}$ and $\frac{\pi}{2}$ respectively.

(ii) Hence or otherwise, find the exact area of the shaded region.

2

2


Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) Evaluate
$$\lim_{x \to 2} \left(\frac{x^2 - 4}{x - 2} \right)$$
 1

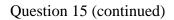
(b) Due to overfishing in a particular bay, the number (*N*) of a particular species of fish is dropping exponentially according to the formulae $\frac{dN}{dt} = -kN$, where time (*t*) is measured in years after 1930. It is known that in 1930 there were 25,000 fish of this species and by 2010 there were only 4000.

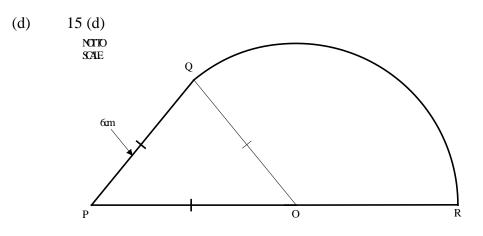
(i)	Show that $N = Ae^{-kt}$, where A and k are constants.	1
(ii)	Find the value of A and show that $k = 0.0229$.	2

(iii) This species of fish will be declared extinct in this bay when the number drops below 100 fish. In what year will this occur ?

The above diagram shows the graph of $y = \log_3 x$ between x = 0 and x = 9. The shaded region, bounded by $y = \log_3 x$, the line y = 2 and the x and y axes, is rotated about the y-axis to form a solid.

(i) Show that the volume of the solid is given by: 3


$$V = \pi \int_{0}^{z} \left(e^{y \ln 9} \right) dy$$


(ii) Hence find the volume of the solid, leaving your answer is simplified 2 exact form.

Question 15 continues over the page

(c)

Marks

 $\triangle OPQ$ is an equilateral triangle of sides 6 cm. *PR* is a straight line. *QR* is an arc of a circle, centre *O*. Giving answers is exact form, find:

(i)	The perimeter of the region PQRO.	2
(ii)	The area of the region PQRO.	2

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) Write down the domain of
$$y = \frac{1}{\sqrt{9 - x^2}}$$
 2

- (b) (i) Use the Trapezoidal rule with three functions to find an approximation 2 to the area under the curve $y = e^x$ between x = a and x = 5a, where a is a positive number.
 - (ii) Hence by rewriting the result in part (i), show that it can be written as $Area = ae^{a} \left[e^{2a} + 1 \right]^{2} units^{2}$
- (c) Felix bought a second hand car for \$30,000 with borrowed money from a finance company which charged him 18% p.a. reducible interest calculated monthly. Felix agreed to pay back the loan plus interest at \$900 per month.
 - (i) Show that the amount that Felix owed after his second payment was $A_2 = 30,000(1.015)^2 900(1+1.015)$.
 - (ii) Show that the amount owing after *n* payments have been made can be expressed as $A_n = 60,000 30,000(1.015)^n$
 - (iii) Hence find the number of months that Felix required to pay back the loan plus interest.
- (d) A particle is moving in a straight line. Its displacement from the origin $(x \ cm)$ as a function of time $(t \ minutes)$ is given by $x = t \sin t + \cos t$.
 - (i) Show that $v = t \cos t$. 1
 - (ii) Hence find the 1st four occasions when the particle changes 2 direction.
 - (iii) Show that $t = \frac{\pi}{2} + 2n\pi$ (where *n* is an integer) are the occasions when the particle changes from a positive to a negative direction.

END OF PAPER

Marks

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec^2 ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

2013 Trial HSC Mathematics Solutions

Section II	
Question 11 (15 marks)	
11(a) (i) (1 mark)	
Outcomes Assessed: P4	
Targeted Performance Bands: 2-3	
Criteria	Mark
Correct answer	1
Answer	
$m = \frac{4+1}{2}$	
$m = \frac{1}{2 - 12}$	

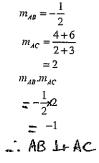
11(a) (ii) (2 marks)

 $=-\frac{1}{2}$

Outcomes Assessed: P4

Targeted	Performance	Randes 2.3
1 (1) 2 0 10(1	1 <i>CI IVI MURCE</i>	Danas: 2-3

Criteria	Marks
 Substitutes into correct formulae 	1
Correct working	1


Answer

$$y-4 = -\frac{1}{2}(x-2)$$
$$2y-8 = -x+2$$

x + 2y - 10 = 0

11(a) (iii) (1 mark)	
Outcomes Assessed: P4	
Targeted Performance Bands: 2-3	
Criteria	Mark
Correct working	1

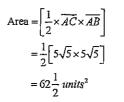
Answer

11(a) (iv) (2 marks) Outcomes Assessed: P4, H2 Targeted Performance Bands: 3-4

	Criteria	Marks
•	Uses the distance formulae once correctly	1
٥	Correct proof	1

Answer

$\overline{AB} \simeq \sqrt{100 + 25}$
$=\sqrt{125}=5\sqrt{5}$
$\overline{AC} = \sqrt{25 + 100}$
$=\sqrt{125}=5\sqrt{5}$


Since $\overline{AB} = \overline{AC}$: $\triangle ABC$ is isosceles

11(a) (v) (1 mark)

Outcomes Assessed: P4 Targeted Performance Bands: 2-3

	Criteria	Mark
l	Correct answer	1

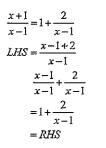
Answer

11(b) (2 marks) **Outcomes Assessed: H5** Targeted Performance Bands: 3-4

_			Criteria	Marks
Ŀ	•	Lorrect	working.	1
	•	Correct answer		1

Answer

Each exterior angle $= 180^{\circ} - 165^{\circ}$


$$= 15^{\circ}$$

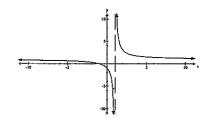
number of sides $= \frac{360}{15}$

= 24 sides

11(c) (i) (1 mark) Outcomes Assessed: P3 Targeted Performance Bands: 2-3

Criteria	Mark
Correct working	1

Answer



11(c) (ii) (2 marks)

Outcomes Assessed: H5 Targeted Performance Bands: 3-4

Criteria	Marks
· Lotrect asignificates	1
· Correct grouph	1

Answer

11(d) (3 marks) Outcomes Assessed: H6 Targeted Performance Bands: 3-4

		Criteria	Marks
۰	Differentiates correctly		1
•	Achieves $x = \frac{\ln 2}{3}$	•	1
٠	Correct answer		1

Answer

$$y' = 6e^{3x} \quad m = 12$$

$$\therefore 6e^{3x} = 12$$

$$e^{3x} = 2$$

$$3x = \ln 2$$

$$x = \frac{\ln 2}{3}$$

$$f\left(\frac{\ln 2}{3}\right) = 2e^{3\left(\frac{\ln 2}{3}\right)} + 1$$

$$= 5$$

$$Pt = \left(\frac{\ln 2}{3}, 5\right)$$

Question 12 (15 marks) 12(a) (i) (2 marks) Outcomes Assessed: H5 Targeted Performance Bands: 3-4

Criteria	Marks
 Either uses the chain rule correctly or differentiates cos2x correctly 	1
Correct answer	1

Answer

÷

 $y = \cos^3 2x$

 $y' = -6\cos^2 2x\sin 2x$

,

~

12(a) (ii) (3 marks) Outcomes Assessed: H3

Targeted Performance Bands: 2-4

	Criteria	Marks
0	Uses the quotient rule (or product rule after rewriting)	1
•	Correct working with one mistake	1
٥	Correct answer	1

Answer

٠

$y = \frac{e^{2x}}{2x+1}$
$y' = \frac{(2x+1) \cdot 2e^{2x} - 2e^{2x}}{2e^{2x} - 2e^{2x}}$
$y' = \frac{(2x+1)2e^{-2e}}{(2x+1)^2}$
, ,
$=\frac{4xe^{2x}}{1}$
$(2x+1)^2$

12(b) (i) (2 marks) Outcomes Assessed: H5

Targeted Performance Bands: 2-3

L	Criteria	Marks
4	• Uses correct test	1
4		1

Answer

\therefore In $\triangle ABE \& \triangle A$	1ED
$\angle BAE = \angle DAE$	(given)
$\angle DEA = \angle BEA$	(90°,given)
AE is common	
$\Delta ABE = \Delta AED$	(A.A.S)

12(b) (ii) (3 marks)

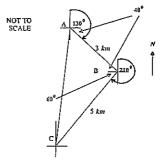
Outcomes Assessed: H5

Targeted Performance Bands: 2-3

Criteria	Marks
· Show BE-ED	1
· Prove ABGE = A CDE	1
· Correct priorf :	1

Answer

$I_{in} \Delta BCE \& \Delta CDE$	
BE = ED	(corresponding sides of congruent triangles ARE & AED)
$\angle BEC = \angle DEC$	(90°, given)
EC is common	
$\Delta BCE = \Delta CDE$	(S.A.S)
$\therefore \Delta BCD$ is isosceles	(CB = CD, corresponding sides of congruent triangles)


12(c) (i) (1 mark) Outcomes Assessed: H5

Targeted Performance Bands: 3-4

L	Criteria	Mark
L	Correctly working	1

.

Answer

 $\angle ABC = 40^{\circ} + 60^{\circ} = 100^{\circ}$

12(c) (ii) (2 marks)

Outcomes Assessed: H5

Targeted Performance Bands: 2-3

Criteria		Marks
0	Uses the cosine rule correctly	1
٥	Correct answer	1

Answer

 $AC^{2} = 3^{2} + 5^{2} - 2 \times 3 \times 5 \times \cos 100^{\circ}$

 $AC = 6.26 \, kan$

12(c) (iii) (2 marks)

Outcomes Assessed: H5

Targeted Performance Bands: 2-4

L	Criteria	Marks
	• Obtains ∠ACB	1
	Correct answer	1

Answer

Let <	ACB =0 sin100°
<u>sin 0</u> _	<u>sin100</u> °
3	6.26
$\sin \theta =$	$\frac{3\sin 100^{\theta}}{1-1}$
51110	6.26
-	= 28°
:	Bearing of A from $C = 90^{\circ} - [28^{\circ} + 60^{\circ}]$
=	- 2° T

Question 13 (15 marks)

13(a) (i) (1 mark) Outcomes Assessed: H5

Targeted Performance Bands: 2-3 Criteria Mark ۰ Correct - wishing and answer

Answer

 $T_n = a + (n-1)d$ $T_{10} = 400 + (9)325$ ≃3325 points

13(a) (ii) (2 marks) Outcomes Assessed: H5 Targeted Performance Bands: 2-3

Criteria	
· Just Correct · Watking	1
Correct answer	1

Answer

 $S_n = \frac{n}{2} \{a+l\}$ $S_{t0} = \frac{10}{2} \{400 + 3325\}$ =18625 points

13(a) (iii) (3 marks) Outcomes Assessed: H5 Targeted Performance Bands: 3-4

		Criteria	Marks
•	Correct working		1
•	Obtains correct quadratic		1
6	Correct answer		1

Answer

2

$$\frac{n}{2} \{2a + (n-1)d\} = 50000$$

$$\frac{n}{2} \{800 + (n-1)325\} = 50000$$

$$\frac{n}{2} \{325n + 475\} = 50000$$

$$325n^2 + 475n - 100000 = 0$$

$$13n^2 + 19n - 4000 = 0$$

$$n = \frac{-19 \pm \sqrt{208361}}{26}$$

$$\pm 16.8256, \text{ as } n > 0$$

Eduardo must play 17 games.

13(b) (i) (1 mark)

Outcomes Assessed: H5

Targeted Performance Bands: 4-5

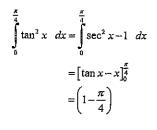
Criteria	Marks	
- Works towards answer		
• Correct proof		

Answer

.

 $\sin^2 x + \cos^2 x = 1$

 $\frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$ $\tan^2 x + 1 = \sec^2 x$


13(b) (ii) (2 marks)

Outcomes Assessed: H5

Targeted Perform	ance Bands: 3-4

	Criteria	Marks
0	Correct integration	1
0	Correct answer	1

Answer

13 (c) (i) (1 mark) **Outcomes Assessed: H5** Targeted Performance Bands: 2-3

	Criteria	Mark
 Correct answer 	·	1

Answer

 $P(E) = \frac{6}{36}$ $=\frac{1}{6}$

13(c) (ii) (2 marks) **Outcomes Assessed: H5 Targeted Performance Bands: 3-4**

Criteria	Marks
 Notes that there will be 15 occasions when this will occur 	1
Correct answer	1

Answer

13(c) (iii) (2 marks) **Outcomes Assessed: H5**

Targeted Performance Bands: 3-4

ļ	Criteria	Marks
ļ	 Notes that there will be 8 occasions when this will occur 	1
Į	Correct answer	1

Answer

$$P(E) = \frac{8}{36}$$
$$= \frac{2}{9}$$

14(a) (3 marks) Outcomes Assessed: H5 Targeted Performance Bands: 3-4

	Criteria	Marks
0	Correctly factors quadratic	1
6	Obtains one answer $\theta = \frac{7\pi}{6}, \frac{4\pi}{6}$	1
0	Correct answer	<u> </u>

Answer

$$2\sin^2 \theta - 5\sin \theta - 3 = 0$$

$$(2\sin \theta + 1)(\sin \theta - 3) = 0 \qquad \checkmark$$

$$\sin \theta = -\frac{1}{2} \qquad \sin \theta = 3$$

$$\theta = \frac{7\pi}{6}, \frac{11\pi}{6} \qquad \theta = \text{no solutions}$$

$$\therefore \theta = \frac{7\pi}{6}, \frac{11\pi}{6} \qquad \checkmark$$

Question 14 (15 marks)

2

14(b) (i) (1 mark)

Outcomes Assessed: H1

Targeted Performance Bands: 2-3

1	Criteria	Mark
	Correct answer	1

Answer

t = 0 N = 20

14(b) (ii) (3 marks)

Outcomes Assessed: H6

Targeted Performance Bands: 3-4

	Criteria	Marks
0	Obtain stationary points	1
•	Determines their nature	1
٥	Correct answer	1

Answer

 $N = 4t^3 - t^4 + 20$

 $N' = 12t^2 - 4t^3$

 $N^{"} = 24t - 12t^{2}$

Stationary points occur when N'=0 $12t^2 - 4t^3 = 0$

 $12t - 4t \equiv 0$

 $3t^2 - t^3 = 0$

 $t^{2}(3-t)=0$

t = 0, 3

N(0) = 20

N(3) = 108 - 81 + 20 = 47Check concavity: $N''(0) = 0 \qquad \therefore (0,0) \text{ is a possible P.I.}$ $N''(3) = -36 \qquad \therefore (3,47) \text{ is a maximum}$

Max number of customers = 47.

14(b) (iii) (2 marks) Outcomes Assessed: H6 Targeted Performance Bands: 5-6

Criteria	Marks
• Solves $N''(t) = 0$	1
· Correct answer & shows N'(1) changes Sign arour	1 t=2 1

Answer

Number of customers increase most rapidly when N'' = 0

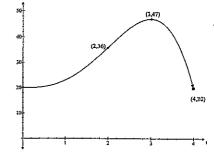
 $24t - 12t^2 = 0$ $2t - t^2 = 0$

t(2-t) = 0

t = 0, 2

Check	:						
	t.	-1	0	1	2	3	
ĺ	N"	-	0	12	0	-36	

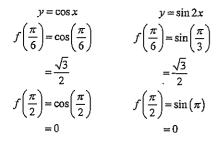
Therefore (0, 0) and (2,36) are points of inflexion.


At t=2 is the time when the number of customers increase most rapidly N'(2) = +

14(b) (iv) (2 marks)

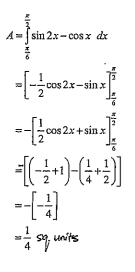
Outcomes Assessed: H6 Targeted Performance Bands: 4-5

Criteria	Marks
 Notes turning point and point of inflexion 	1
· Conect graph	1


Answer

14(c) (i) (2 marks) Outcomes Assessed: P4 Targeted Performance Bands: 2-3

Criteria	Marks
Correct working for A	1
 Correct working for B (note for Ext 1 students achieve answers by solving 	1
$\cos x = \sin 2x$)	


Answer

14(c) (ii) (2 marks) Outcomes Assessed: H8 Targeted Performance Bands: 3-4

L	Criteria	Marks
	 Correct integration 	1
	Correct answer	1

Answer

Question 15 (15 marks)

15(a) (1 mark)

Outcomes Assessed: H5

Targeted Performance Bands: 3-4

Criteria	Mark	
Correct answer	1	

Answer

$$\lim_{x \to 2} \left(\frac{x^2 - 4}{x - 2} \right) = \lim_{x \to 2} \left(\frac{(x - 2)(x + 2)}{(x - 2)} \right)$$
$$= \lim_{x \to 2} (x + 2)$$
$$= 4$$

15(b) (i) (I mark) Outcomes Assessed: H3 Targeted Performance Bands: 3-4

	Criteria	Mark	
ø	Correct proof	1	

Answer

$$N = Ae^{-kt}$$

$$N' = -k \left(Ae^{-kt} \right)$$

$$\frac{dN}{dt} = -kN \qquad (\text{since } N = Ae^{-kt})$$

$$CR \int \frac{dN}{N} = \int -K dt$$

15(b) (ii) (2 marks) Outcomes Assessed: H3

Targeted Performance Bands: 3-4

Criteria	Marks
• Correct A	1
· Correct working for k	1

Answer

$$A = 25,000$$

$$4000 = 25000e^{-k(80)}$$

$$0.16 = e^{-80k}$$

$$\ln(0.16) = -80k$$

$$k = \frac{\ln(0.16)}{-80}$$

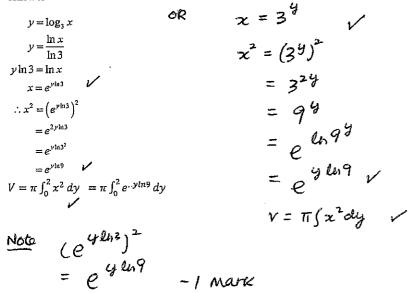
k = 0.0229

15(b) (iii) (2 marks) Outcomes Assessed: H3

Targeted Performance Bands: 3-4

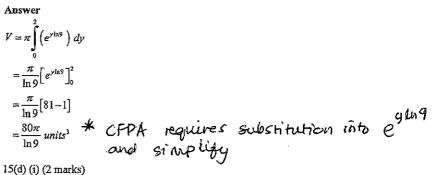
	Criteria	Marks
• Achieves $t = 241.11$ years		1
Correct answer re: 2	172	I

Answer


 $100 = 25000e^{-t/t}$ $0.004 = e^{-0.0229t}$ $\ln(0.004) = -0.0229t$ $t = \frac{\ln(0.004)}{-0.0229}$ t = 241.11 years

15(c) (i) (3 marks) Outcomes Assessed: H3

Targeted Performance Bands: 5-6


	Criteria	
	· Shangebase Achieves x	1
	• Achieves $(e^{\nu \ln 3})^2$	1
Ľ	• Correct-working $V = \pi \left(\frac{1}{2} \chi^2 dy \right)$	1

Answer

15(c) (ii) (2 marks) Outcomes Assessed: H8 Targeted Performance Bands: 4-5

	Criteria	Marks
 Correct integration 		
 Correct answer 	······	

Outcomes Assessed: H5

Targeted Performance Bands: 3-4

Criteria	Marks
· Lotrect-ust-king	1
Correct answer	1

Answer

$$\angle POQ = 60^{\circ}$$

$$\therefore \angle QOP = 120^{\circ} = \frac{2\pi}{3}$$

$$\therefore Perimeter = 3(6) + 6\left(\frac{2\pi}{3}\right)$$
$$= 1\Im + \frac{12\pi}{3}$$
$$= \left(\frac{1\Im + 4\pi}{3}\right) units$$

15(d) (ii) (2 marks)

Outcomes Assessed: H5

Targeted Performance Bands: 3-4

Criteria	
· Correct-working	1
Correct answer	1

Answer

$$Area = \left(\frac{1}{2} \times 6 \times 6 \times \sin\frac{\pi}{3}\right) + \frac{1}{2} \left(6\right)^2 \left(\frac{2\pi}{3}\right)$$
$$= \left(9\sqrt{3} + 12\pi\right) units^2$$

Question 16 (15 marks)

16(a) (2 marks)

Outcomes Assessed: H9 Targeted Performance Randes 4-5

Criteria	Marks
• Notes that $9-x^2 > 0$	1
· Correct An Swar	1

Answer

 $9 - x^2 > 0$

 $x^2 - 9 < 0$

-3 < x < 3

:. Domain = $\{x: -3 < x < 3\}$

16(b) (i) (2 marks) **Outcomes Assessed: H8**

Targeted Performance Bands: 4-5

	Criteria	Marks
	 Uses the trapezoidal rule correctly with one mistake 	1
l	Correct answer	1

Answer

x	y	weight	Result
a	e ^a	1	e ^a
3a	e ^{3a}	2	2e ^{3a}
5a	e ^{5a}	1	e ^{sa}
Total			$e^{a} + 2e^{3a} + e^{5a}$

 $A = \frac{2a}{2} \left[e^{a} + 2e^{3a} + e^{5a} \right] - 1 \text{ walk for NOT showing clear}$ $= a \left[e^{a} + 2e^{3a} + e^{5a} \right] units^{2} \quad application of Trapezoidal rule$

16(b) (ii) (1 mark) **Outcomes Assessed: H3** Targeted Performance Bands: 4-5

	Criteria	Mark
0	Correct working	1

Answer

$$A = a \left[e^{a} + 2e^{3a} + e^{5a} \right]$$
$$= a \left[e^{a} \left(1 + 2e^{2a} + e^{4a} \right) \right]$$
$$= a e^{a} \left(e^{2a} + 1 \right)^{2}$$

16 (c) (i) (1 mark) Outcomes Assessed: H5 Targeted Performance Bands: 3-4

۰.		
Į	Criteria	Mark
Į	Correct working	1

Answer

 $A_{\rm I} = 30,000(1.015)^{\rm I} - 900$ $A_2 = [30,000(1.015)^{1} - 900](1.015)^{1} - 900]$ $=30,000(1.015)^{2}-900(1+1.015)$

- mark y $A_{2} = 30 \cos ((.015)^{2} - 900 (1.015) - 900$ = 30000 (1.015)^{2} - 900 (1+1.015)

16(c) (ii) (3 marks) Outcomes Assessed: H5 Targeted Performance Bands: 4-6

	Criteria	
	• Achieves $A_{ii} = 30,000(1.015)^{ii} - 900(1+1.015+1.015^{2}+1.015^{n-1})$	1
	• Calculates sum of a G.P.	1
Ŀ	· Corroct. Workeing	1

Answer

$$A_{3} = \left\{ 30,000(1.015)^{2} - 900(1+1.015) \right\} (1.015)^{1} - 900$$

= 30,000(1.015)^{3} - 900(1+1.015+1.015^{2})
:. A_{n} = 30,000(1.015)^{n} - 900(1+1.015+1.015^{2} +1.015^{n-1})
= 30,000(1.015)^{n} - 900 $\left[\frac{1(1.015^{n} - 1)}{.015} \right]$
= 30,000(1.015)^{n} - 60,000[(1.015^{n} - 1)]
= 60,000 - 30,000(1.015)^{n}

16(c) (iii) (1 mark) Outcomes Assessed: H5

Criteria	Mark
• Correct .m. = 46.55	1
• Correct when = 46.55 Correct statement i.e. 47 months	1
Answer	
60,000 - 30,000 (1.015)'' = 0	
60,000 = 30,000(1.015)''	
. 2 = (1.015)''	
$\ln 2 = n \ln (1.015)$	
$n = \frac{\ln 2}{\ln 2}$	
$n = \frac{m^2}{\ln(1.015)}$	

n = 46.55 months

Felix will require 47 months (the 47th payment will be part of \$900).

16(d) (i) (1 mark) Outcomes Assessed: H5 Targeted Performance Bands: 3-4

	Criteria	Mark
 Correct working 		

Answer

 $x = t \sin t + \cos t$

 $v = \sin t \times 1 + t \times \cos t - \sin t$

 $=t\cos t$

16(d) (ii) (2 marks)

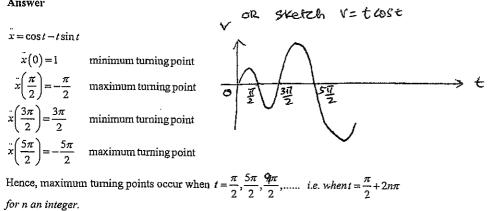
Outcomes Assessed: H5

Targeted Performance Bands: 3-4

• Notes that $v = 0$ and achieves at least one answer	Marks	Criteria
	1	• Notes that $v = 0$ and achieves at least one answer
· Correct answer is all four correct answers	2.	· Correct answer is all four correct answers

Answer

v = 0 $t \cos t = 0$ $t = 0 \qquad \cos t = 0$


 $t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$ $\therefore t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{7\pi}{2}$

16(d) (iii) (2 marks) Outcomes Assessed: H1, H5, H9 Targeted Performance Bands: 5-6

Criteria	Marks]
 Calculates which values of t provide a maximum 	1	1
Correct working	1	

Answer

×°

Section I

Question	Marks	Answer
1	.1	A
2	1	<u>D</u>
3	1	C
4	1	B
5	1	В
6	1	A
7	1	C
8	1	C
9	1	D
10	1	В

Trial HS	Trial HSC 2013 Mathematics					Student Number:		
Multiple	Multiple Choice Answer Sheet				Teacher:			
Select the alter	native A, B,	C or D that	best answer	s the quest	ion. Fill in th	e response oval completely.		
Samp	le: 2+4		-	, 3) 6	(C) 8 C ()	(D) 9 D		
 If you thin 	ik you have r		-	-	<u> </u>	t answer and fill in the new answ		
				<u>کې</u>	с ()		er.	
 If you chan answer by 	nge your min writing the v	id and have	crossed out	what you c	ousider to be	the correct answer, then indicate	the corre	
answer by	wriang me y	voru comeci	ano orawin	g an arrow	correct			
		Α	B	Ś	°	C a		
1.	A 🍩	BO	сO	D 🔿				
2.	A O	BO	сO	D 🎯				
3.	A ()	BO	C 🏵	ÐO				
	АO	в 🕲	$c \bigcirc$					
4.				DO				
4. 5.	A O	B 🍩	cO	DO DO				
	_							
5.	A O	B 🍩	сO	DO	:			
5. 6.	A ○ A @	B 🏶 B ◯	cO cO	DO DO	,			
5. 6. 7.	A () A () A ()	B �� B ○ B ○	C○ C○ C●	DO DO DO	,			