

HSC Trial
EXAMINATION
2014

Student Number
Class (Please circle)
$11 \mathrm{M} 1 \quad 12 \mathrm{M} 3 \quad 12 \mathrm{M} 4 \quad 12 \mathrm{M} 5 \quad 12 \mathrm{M} 6$

Mathematics

- General Instructions
- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations

Total Marks - 100
Section I Pages 2-6
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II Pages 7-16

90 marks

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1 - 10 .
Allow about 15 minutes for this section.
Use the multiple-choice answer sheet for Questions 1 - 10 .

1. Fully simplify the algebraic fraction: $\frac{x^{3}-8}{x^{2}-4}$.
(A) $\frac{x^{2}-2 x+4}{x-2}$
(B) $x+2$
(C) $\frac{x^{2}+4 x+4}{x+2}$
(D) $\frac{x^{2}+2 x+4}{x+2}$
2. The quadratic function $3 x^{2}-5 x+2$ has roots α and β.

Which of the following statements is true?
(A) $2 \alpha \beta=-\frac{4}{3}$
(B) $\alpha^{2}+\beta^{2}=\frac{13}{9}$
(C) $2 \alpha+3 \beta=\frac{25}{3}$
(D) $\alpha^{2} \beta^{2}=\frac{2}{9}$
3. Consider the series $S=28+7+\frac{7}{4}+\ldots$.

Find the difference between S_{5} and S_{3}.
(A) $\frac{105}{64}$
(B) $\frac{231}{4}$
(C) $\frac{35}{64}$
(D) $\frac{231}{64}$
4. The point A has coordinates $(2,7)$ and B has coordinates $(-2,9)$.

What are the coordinates of the midpoint of the interval $A B$?
(A) $(0,8)$
(B) $(-2,1)$
(C) $(2,-1)$
(D) $\left(0,3 \frac{1}{2}\right)$
5. What function would describe the graph shown?

(A) $y=\frac{1}{2} \cos 3 x$
(B) $y=\frac{1}{2} \sin 3 x$
(C) $y=\frac{1}{2} \tan 3 x$
(D) $y=\frac{1}{3} \sin 2 x$
6. The diagram shows the parabola P and the tangent at the point $A(1,-2)$.

Which of the following equations might represent the normal to the parabola at the point A ?
(A) $x-3 y+5=0$
(B) $2 x-3 y+1=0$
(C) $x+3 y+5=0$
(D) $x+3 y-5=0$
7. For what domain and range is the function $y=\frac{1}{\sqrt{x-4}}$ defined?
(A) Domain: $x \geq 4$, Range: $y>0$.
(B) Domain: $x>4$, Range: $y>0$.
(C) Domain: all real x, Range: all real y.
(D) Domain: $x<-2 x>2$, Range: $y<0$.
8. Which expression is a primitive function of $(4 x-1)^{3}$?
(A) $12(4 x-1)^{2}+C$
(B) $\frac{1}{16}(4 x-1)^{3}+C$
(C) $\frac{1}{4}(4 x-1)^{4}+C$
(D) $\frac{1}{16}(4 x-1)^{4}+C$
9. What is the derivative of $\left(3 x^{2}+1\right)^{4}$?
(A) $4(6 x)^{3}$
(B) $6 x\left(3 x^{2}+1\right)^{3}$
(C) $24 x\left(3 x^{2}+1\right)^{4}$
(D) $24 x\left(3 x^{2}+1\right)^{3}$
10. The region between the functions $y=\frac{1}{\sqrt{x}}, x=1$ and $x=2$ is rotated about the x-axis. Find the volume of the solid formed.

(A) $\pi \ln 2$ cubic units
(B) $\ln 2$ cubic units
(C) $2(\sqrt{2}-1)$ cubic units
(D) $\ln \pi$ cubic units

Section II

90 marks

Attempt Questions 11-16.

Allow about $\mathbf{2}$ hours and 45 minutes for this section.

Answer each question in a separate writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a new writing booklet.
(a) Evaluate e^{3} correct to 3 significant figures.
(b) Solve these simultaneous equations:

$$
\begin{aligned}
2 x-y & =-1 \\
5 x+3 y & =25
\end{aligned}
$$

(c) Differentiate the following functions:
(i) $x^{3}-4 x^{2}+2 \quad 1$
(ii) $2 x \cos 3 x$
(d) If $f^{\prime}(x)=6 x^{2}+5 x-1$ and $f(-1)=5$, find an expression for $f(x)$.
(e) (i) Write the first three terms of the series whose general term is given by $T_{n}=\frac{2^{n}}{3^{n-1}}$.
(ii) Evaluate $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n-1}}$.
(f) Consider the quadratic equation $3 x^{2}+k x+5=0$:
(i) For what values of k does the equation have no real roots?
(ii) Describe the graph of $y=3 x^{2}+k x+5$ when k takes the values found in part (i).

End of Question 11

Question 12 (15 marks) Use a separate writing booklet.
(a) A town called Benora is 15 kilometres away, on a bearing of 065° from another town called Andora. A third town, Calora is 42 kilometres East of Andora.
(i) Draw a diagram showing this information.
(ii) Show that the distance from Benora to Calora is 29 kilometres, correct to the nearest kilometre.
(iii) Find the bearing of Benora from Calora, correct to the nearest degree.
(b) The points $A(-3,5), B(3,4), C(6,2)$ and $D(3,1)$ are the vertices of quadrilateral $A B C D$.

NOT TO SCALE

(i) Show that the equation of the line passing through B and C is $2 x+3 y-18=0$.
(ii) Show that $A D \| B C$.
(iii) Show that the perpendicular distance from point D to the line passing through B and C is $\frac{9 \sqrt{13}}{13}$ units.
(iv) Show that $A B C D$ is a trapezium.
(v) Given that the distance between B and C is $\sqrt{13}$ units, calculate the exact area of quadrilateral $A B C D$.

Question 12 continues on page 9

Question 12 (continued)

(c) Tim was told that sector $O A B$ has an area of $\frac{25 \pi}{6}$ square units. The arc $A B$ is $\frac{5 \pi}{3}$ units long.

Tim was asked to find the exact values of r and θ.
His working out is shown below:

$$
\begin{align*}
& l=r \theta, \quad A=\frac{1}{2} r^{2} \theta \\
& \therefore \quad \frac{1}{2} r^{2} \theta=\frac{25 \pi}{6} \tag{1}\\
& r \theta=\frac{5 \pi}{3} \tag{2}\\
& \frac{1}{2} r=\frac{5}{2} \tag{3}\\
& \therefore \quad r=5 \text { units }
\end{align*}
$$

(i) What operation did Tim perform on equations (1) and (2) to get to equation (3)?
(ii) What is the value of θ ?

End of Question 12

Question 13 (15 marks) Use a separate writing booklet.
(a) Robyn and Maria start jobs at the beginning of the same year. Robyn's salary is higher than Maria's. Both Robyn's and Maria's employers pay into their superannuation funds at the beginning of each month.

Robyn's employer deposits $\$ 550$ per month into her superannuation fund which earns interest at 0.5% per month. Maria's employer deposits $\$ 520$ per month into her superannuation fund which earns 0.6% per month.
(i) Show that the amount of interest that Robyn's superannuation earned in the first year was $\$ 218.48$.
(ii) Let A_{n} represent the amount after n months. Show that the amount in Robyn's superannuation fund after n months is given by:

$$
A_{n}=110550\left(1.005^{n}-1\right)
$$

(iii) After how many months will the amount in Maria's superannuation fund be greater than the amount in Robyn's?
(b) $T e m p 4 U$ is an employment agency which specialises in contracting temporary employees. They have analysed the number of job applications received over the last five years. They found that the demand (D), measured in hundreds, for temporary employment at time (t years) is given by the function:

$$
D(t)=4 \sin \left(\frac{\pi}{4} t\right)+7
$$

(i) Find all the times in the next 12 years where demand will be at its peak.
(ii) State the amplitude and period of $D(t)$ and sketch its graph for the first twelve years.
(c) Evaluate: $\lim _{x \rightarrow \infty} \frac{x^{4}+3 x^{2}+2}{5 x^{4}+1}$.

End of Question 13

Question 14 (15 marks) Use a separate writing booklet.
(a) Use Simpson's rule to approximate $y=\int_{1}^{5} \frac{d x}{x^{2}+1}$, using 5 function values.
(b) The diagram shows the tangent $y=m x$ to the curve $y=\sqrt{x-1}$ at the point $P(x, y)$.

(i) Find the possible value(s) of m. 3
(ii) Find the coordinates of the point $P(x, y)$.
(c) The diagram shows the graphs of the functions $y=e^{\frac{1}{2} x}$ and $y=x$. The region between these 2 functions and the bounds $x=0$ and $x=2$ has been shaded.

Calculate the exact area of the shaded region.
Question 14 continues on page 12

Question 14 (continued)

(d) For the parabola with equation $16 y=x^{2}-4 x-12$:
(i) Find the coordinates of the vertex. 2
(ii) Find the coordinates of the focus. 1
(iii) Find the equation of the directrix. 1
End of Question 14

Question 15 (15 marks) Use a separate writing booklet.
(a) (i) At which points on the curve $f(x)=\frac{x^{3}}{8}+1$ can a normal be drawn with a gradient of $-\frac{2}{3}$?
(ii) At which point on the curve $f(x)$ will the normal be vertical?
(b) The function $f(x)=x e^{-2 x}+1$ has first derivative $f^{\prime}(x)=e^{-2 x}-2 x e^{-2 x}$ and second derivative $f^{\prime \prime}(x)=4 x e^{-2 x}-4 e^{-2 x}$.
(i) Find the value of x for which $f(x)$ has a stationary point.
(ii) Find the values of x for which $f(x)$ is increasing.
(iii) Find the value of x for which $f(x)$ has a point of inflection and determine where the graph $y=f(x)$ is concave upwards.
(iv) Sketch the curve $y=f(x)$ for $-\frac{1}{2} \leq x \leq 4$.
(v) Describe the behaviour of the graph for very large positive values of x.
(c) Solve the equation $4 \cos ^{2} \theta=6 \sin \theta+6$ in the domain $0 \leq \theta \leq 2 \pi$.
(d) Show that $\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}$ for all integers $n \geq 1$.

End of Question 15

Question 16 (15 marks) Use a separate writing booklet.
(a) A swinging gate is to be constructed from timber palings. It will require a support frame using 5 pieces of timber: $A B, A D, B D, B C$ and $C D$.
$A B \| C D$ and $A D \| B C . A B=C D=x$ metres. $A D=B C=y$ metres. $B D$ is $\sqrt{3}$ metres long.

(i) Find an expression for y in terms of x.
(ii) Show that the total length (L) of the timber pieces in the support frame is represented by $\boldsymbol{L}=2\left(x+\sqrt{3-x^{2}}+\frac{\sqrt{3}}{2}\right)$.
(iii) The gate will have its maximum strength when the length of its support frame is maximised. For what value of x will the gate have maximum strength?

Question 16 continues on page 15

Question 16 (continued)

(b) In the diagram below: $\mathrm{AD} \| \mathrm{BC}, \mathrm{AE}=\mathrm{AB}, \angle \mathrm{BAE}=30^{\circ}, \angle B C A=83^{\circ}, \angle A C D=34^{\circ}$, $\angle E B C=138^{\circ}$.

(i) Prove that $A B \| D C$.
(ii) Prove that $\triangle A B C \equiv \triangle A C D$.
(c) The area bounded by the function $y=\sec x+\frac{1}{\sec x}$, the y-axis and the line $x=1$ is rotated about the x-axis.

(i) Show that $\left(\sec x+\frac{1}{\sec x}\right)^{2}=\sec ^{2} x+\cos ^{2} x+2$.
(ii) Find the volume of the solid formed, given that: $\cos ^{2} x=\frac{1}{2}(\cos 2 x+1)$, correct to 1 decimal place.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

NORMANHURST BOYS HIGH SCHOOL

2014
TRIAL HSC
EXAMINATION

Mathematics

SOLUTIONS

Multiple Choice Worked Solutions		
No	Working	Answer
1	$\begin{aligned} & \frac{x^{3}-8}{x^{2}-4}=\frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)(x+2)} \\ & =\frac{x^{2}+2 x+4}{x+2} \end{aligned}$	D
2	For the function $3 x^{2}-5 x+2, a=3, b=-5, c=2$ $\begin{aligned} \alpha+b & =-\frac{b}{a}=\frac{5}{3} \\ \alpha \beta & =\frac{c}{a}=\frac{2}{3} \end{aligned}$ $\begin{aligned} \therefore \alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\ & =\frac{25}{9}-\frac{4}{3} \\ & =\frac{13}{9} \end{aligned}$	B
3	The series is geometric with $a=28$ and $r=\frac{1}{4}$. We can find the difference between S_{5} and S_{3} by calculating $S_{5}-S_{3}$ or by working out $\mathrm{T}_{4}+\mathrm{T}_{5}$. I will show the first method: $\begin{aligned} S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\ S_{5} & =\frac{28\left(1-\left(\frac{1}{4}\right)^{5}\right)}{\frac{3}{4}} \\ & =37 \frac{19}{64} \\ S_{3} & =\frac{28\left(1-\left(\frac{1}{4}\right)^{3}\right)}{\frac{3}{4}} \\ & =36 \frac{3}{4} \\ S_{5}-S_{3} & =\frac{35}{64} \end{aligned}$	C
4	$\begin{aligned} & M=\left(\frac{2+-2}{2}, \frac{7+9}{2}\right) \\ & =(0,8) \end{aligned}$	A
5	On inspection: the graph takes the shape of a sine or cosine function, passes through $(0,0)$ so can't be the cosine function offered,	B

	has amplitude $=\frac{1}{2}$ and frequency of $\frac{2 \pi}{3}$. Therefore it is a sine function with $a=\frac{1}{2}, n=3$ which is $y=\frac{1}{2} \sin 3 x$.	
6	The normal is perpendicular to the tangent. Since the tangent has a positive slope, then the normal must have a negative slope. It must also pass through the point $(1,-2)$. Options C and D have negative gradients (this can be seen quickly by rearranging into gradient-intercept form). Then substitute $(1,-2)$ into equations C and D to see which of these lines passes through that point and therefore could be the equation of the normal. $\begin{aligned} & \text { For C: } x+3 y+5=0 \\ & 1+3(-2)+5=1-6+5 \\ & =0 \end{aligned}$ For D: $\begin{aligned} & x+3 y-5 \\ & \begin{aligned} 1+3(-2)-5 & =1-6-5 \\ & =-10 \end{aligned} \end{aligned}$ Therefore, option C is the only equation which might be the equation of the normal.	C
7	For the function $y=\frac{1}{\sqrt{x-4}}, \sqrt{x-4} \neq 0$ because the denominator cannot be zero. Therefore $x-4 \neq 0$ $x \neq 4$ Also, we cannot find a real solution for the square root of a negative number, $x-4>0$ so $\quad x>4$ Therefore the domain is $x>4$. If we examine $\lim _{x \rightarrow \infty}$ for this function, we see that it approaches zero. Therefore, the range is $y>0$. This can also be shown algebraically by rearranging the formula so that x is the subject: $x=\frac{1+4 y^{2}}{y^{2}}$.	B

8		D
9	$\begin{aligned} \frac{d}{d x}\left(\left(3 x^{2}+1\right)^{4}\right) & =4\left(3 x^{2}+1\right)^{3}(6 x) \\ & =24 x\left(3 x^{2}+1\right)^{3} \end{aligned}$	D
10	$\begin{aligned} V & =\pi \int_{a}^{b} y^{2} d x \\ V & =\pi \int_{1}^{2} \frac{1}{x} d x \\ & =\pi[\ln x]_{1}^{2} \\ & =\pi(\ln 2-\ln 1) \\ & =\pi \ln 2 \quad \text { cubic units } \end{aligned}$	A

Trial HSC Examination 2014
 Mathematics Course

Name \qquad Teacher \qquad

Section I - Multiple Choice Answer Sheet

Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} O$
B
C
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
$A-$
B
$\mathrm{C} \bigcirc$
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

Question 11		2014	
	Solution	Marks	Allocation of marks
(a)	$\text { From calculator: } \begin{aligned} e^{3} & =20.08553692 \\ & \approx 20.1 \end{aligned}$	1	1 for correct rounding
(b)	$\begin{aligned} 2 x-y & =-1 \quad \text { (1) } \\ 5 x+3 y & =25 \quad \text { (2) } \\ 6 x-3 y & =-3 \quad \text { (3) } \quad((1) \times 3) \\ 11 x & =22 \quad \text { (4) } \quad((2)+(3)) \\ \therefore \quad x & =2 \quad \text { (5) } \\ 2(2)-y & =-1 \quad \text { substituting (5) into (1) } \\ 4-y & =-1 \\ -y & =-5 \\ \therefore \quad y & =5 \end{aligned}$	1	For mostly correct. Second mark if two correct solutions with logical working. (Could use substitution method or graphical solution also)
(c)	(i) $\frac{d}{d x}\left(x^{3}-4 x^{2}+2\right)=3 x^{2}-8 x$ (ii) $\begin{array}{rl} \text { let } u=2 x & v=\cos 3 x \\ u^{\prime} & =2 \quad \\ \frac{v^{\prime}=-3 \sin 3 x}{d x}(2 x \cos 3 x) & =v u^{\prime}+u v^{\prime} \\ & =\cos 3 x \times 2+2 x \times(-3 \sin 3 x) \\ & =2 \cos 3 x-6 x \sin 3 x \end{array}$	1 1 1	1 for correct answer 1 mark if correct progress made using product rule 2 marks for correct answer
(d)	$\begin{aligned} & f(x)=\int 6 x^{2}+5 x-1 d x \\ &=2 x^{3}+\frac{5}{2} x^{2}-x+C \\ & \text { when } x=-1, f(x)=5 \\ & \therefore 2(-1)^{3}+\frac{5}{2}(-1)^{2}-(-1)+C=5 \\ &-2+\frac{5}{2}+1+C=5 \\ & \frac{3}{2}+C=5 \\ & C=\frac{7}{2} \\ & \therefore \quad f(x)=2 x^{3}+\frac{5}{2} x^{2}-x+\frac{7}{2} \end{aligned}$	1	For integration. For evaluating the constant.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question 11} \& \multicolumn{2}{|l|}{2014} \\
\hline \& Solution \& Marks \& Allocation of marks \\
\hline (e) \& \begin{tabular}{l}
(i)
\[
\begin{aligned}
\& T_{1}=2 \\
\& T_{2}=\frac{4}{3} \\
\& T_{3}=\frac{8}{9} \\
\& \therefore 2, \frac{4}{3}, \frac{8}{9}, \ldots \ldots \ldots .
\end{aligned}
\] \\
(ii)
\[
\begin{aligned}
\& a=2 \\
\& \frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=r \\
\& \frac{4}{3} \times \frac{1}{2}=\frac{8}{9} \times \frac{3}{4}=\frac{2}{3} \\
\& \therefore r=\frac{2}{3}
\end{aligned}
\]
\end{tabular} \& 1

1

1 \& | For correct 3 terms. |
| :--- |
| .for common ratio |
| For correct solution |

\hline (f) \& | (i) Function has no real roots when the discriminant is less than zero. $\begin{aligned} \Delta & <0 \\ b^{2}-4 a c & <0 \\ k^{2}-4(3)(5) & <0 \end{aligned}$ |
| :--- |
| Let $k^{2}=60$ $\begin{aligned} k & = \pm \sqrt{60} \\ & = \pm 2 \sqrt{15} \end{aligned}$ $k^{2}<2 \sqrt{15}$ |
| in the identified region below the x -axis $\therefore-2 \sqrt{15}<k<2 \sqrt{15}$ |
| (ii) When a function has no real roots, it does not touch the x axis. Since the coefficient of x^{2} is positive, this parabola will be completely above the x-axis. | \& | 1 |
| :--- |
| 1 |
| 1 |
| 1 | \& | Letting $\Delta=0$. |
| :--- |
| Solving $\mathbf{k}^{2}=60$. |
| Testing for region. |
| For valid explanation or diagram showing that it is not touching x-axis, mentioning or showing a positive definite parabola. |

\hline
\end{tabular}

Question 12		2014	
	Solution	Marks	Allocation of marks
(a)	(i) (ii) $\begin{aligned} \angle C A B & =90-65 \\ & =25^{\circ} \\ \mathrm{BC}^{2} & =15^{2}+42^{2}-2(15)(42) \cos 25^{\circ} \\ & =847.0521883 \\ \mathrm{BC} & =\sqrt{847.0521883} \\ & \approx 29 \end{aligned}$ (iii) $\frac{\sin \angle B C A}{15}=\frac{\sin 25}{29.10416101}$ $\begin{aligned} \sin \angle B C A & =15 \times \frac{\sin 25}{29.10416101} \\ \angle B C A & =\sin ^{-1}\left(15 \times \frac{\sin 25}{29.10416101}\right) \\ & =12^{\circ} 35^{\prime} \end{aligned}$ OR $12^{\circ} 29^{\prime}$ using $\mathrm{BC}=29$ Bearing $=270^{\circ}+12^{\circ} 35^{\prime}$ $\approx 283^{\circ}$	1	For correct substitution Into cosine rule For correct verification Finding $\angle B C A$. Correct bearing.

Question 12		2014		
	Solution	Marks	Allocation of marks	
(b)	$A(-3,5), B(3,4), C(6,2) \text { and } D(3,1)$ (i) For the line passing through B and C : $\begin{aligned} m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & =\frac{2-4}{6-3} \\ & =-\frac{2}{3} \\ y-y_{1} & =-\frac{2}{3}\left(x-x_{1}\right) \\ y-4 & =-\frac{2}{3}(x-3) \\ 3 y-12 & =-2 x+6 \\ 2 x+3 y-18 & =0 \end{aligned}$ (ii) For $\mathrm{AD} \\| \mathrm{BC}$, must have same gradients. We already know gradient of $B C$ from (i). $\begin{aligned} m_{\mathrm{AD}} & =\frac{1-5}{3+3} \\ & =-\frac{4}{6} \\ & =-\frac{2}{3} \\ & =m_{\mathrm{BC}} \end{aligned}$	11	Various methods may be used. 1 mark if valid approach with small error, not leading to final solution. Second mark for reaching solution. OR 1 mark each for substitution into equation to verify	

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question 12} \& \multicolumn{2}{|l|}{2014}

\hline \& Solution \& Marks \& Allocation of marks

\hline (c) \& (i) Tim has divided equation (1) by equation (2)
$$
\text { (ii) } \begin{aligned}
r \theta & =\frac{5 \pi}{3} \\
5 \theta & =\frac{5 \pi}{3} \\
\theta & =\frac{\pi}{3}
\end{aligned}
$$ \& 1

1 \& Correct value for θ.

\hline \multicolumn{2}{|l|}{Question 13} \& \multicolumn{2}{|l|}{2014}

\hline \& Solution \& Marks \& Allocation of marks

\hline (a) \& | (i) $\begin{aligned} & A_{1}=550(1.005)^{12} \\ & A_{2}=550(1.005)^{11} \\ & A_{12}=550(1.005) \end{aligned}$ |
| :--- |
| Total after 12 months $\begin{aligned} & =550\left(1.005+1.005^{2}+\ldots+1.005^{12}\right) \\ & =550\left(\frac{1.005\left(1.005^{12}-1\right)}{0.005}\right) \\ & \approx \$ 6818.48 \\ \text { Interest } & =6818.48-(12 \times 550) \\ & =\$ 218.48 \end{aligned}$ | \& 1 \& | Constructing series. |
| :--- |
| Evaluating A_{12}. |
| Subtracting employer contributions. |

\hline
\end{tabular}

Question ${ }^{\text {\% }}$ 13	2014	
Solution	Marks	Allocation of marks
(ii) $\begin{aligned} A_{n} & =550 \frac{1.005\left(1.005^{n}-1\right)}{0.005} \\ & =110550\left(1.005^{n}-1\right) \end{aligned}$ (iii) For Maria: $\begin{aligned} A_{n} & =520\left(\frac{1.006\left(1.006^{n}-1\right)}{0.006}\right) \\ & =\frac{261560}{3}\left(1.006^{n}-1\right) \end{aligned}$ Let A_{R} represent A_{n} for Robyn and A_{M} represent A_{n} for Maria. We want $A_{M}>A_{R}$: $\begin{gathered} \frac{261560}{3}\left(1.006^{n}-1\right)>110550\left(1.005^{n}-1\right) \\ \frac{1.006^{n}-1}{1.005^{n}-1}>110550 \div \frac{261560}{3} \\ \frac{1.006^{n}-1}{1.005^{n}-1}>1.267969108 \end{gathered}$ By trial and error: when $n=102 \quad L \mathrm{HS}=1.267757392$ when $n=103$ LHS $=1.268504921$ \therefore Maria's fund has more money in it than Robyn's after 103 months.	1	Evaluating Maria's A_{n}. Setting up inequality. Correct answer.

Question 13		2014	
	Solution	Marks	Allocation of marks
(b)	(i) Maximum will occur when $D^{\prime}(t)=0$ and $D^{\prime \prime}(t)<0$. $\begin{aligned} D^{\prime}(t) & =4 \cdot \frac{\pi}{4} \cos \left(\frac{\pi}{4} t\right) \\ & =\pi \cos \left(\frac{\pi}{4} t\right) \\ \text { Let } D^{\prime}(t) & =0 \\ \pi \cos \left(\frac{\pi}{4} t\right) & =0 \\ \cos \left(\frac{\pi}{4} t\right) & =0 \\ \frac{\pi}{4} t & =\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}, \ldots \\ t & =2,6,10,14, \ldots \end{aligned}$ Check concavity $D^{\prime \prime}(t)=-\frac{\pi^{2}}{4} \sin \left(\frac{\pi}{4} t\right)$ when $t=2, D^{\prime \prime}(t)=-\frac{\pi^{2}}{4} \sin \left(\frac{\pi}{2}\right)$ <0 \therefore max at $t=2$ when $t=6, D^{\prime \prime}(t)=-\frac{\pi^{2}}{4} \sin \left(\frac{3 \pi}{2}\right)$ >0 \therefore min at $t=6$ Due to the nature of the sine curve, we know that the next turning point will be a maximum. Therefore maximum demand will occur at 2 years and 10 years. OR $D(t)$ is a maximum when $\sin \left(\frac{\pi}{4} t\right)=1$ $\begin{gathered} \therefore \frac{\pi}{4} t=\frac{\pi}{2}, \frac{5 \pi}{2} \\ \therefore t=2,10 \end{gathered}$	1	Correct expression for $D^{\prime}(t)$. Evaluating t. Testing for nature of turning points leading to correct values for t.

Question 需13		2014	
	Solution	Marks	Allocation of marks
	(ii) $a=4,$ $\begin{aligned} \text { period } & =\frac{2 \pi}{\frac{\pi}{4}} \\ & =8 \end{aligned}$	1	Amplitude and period. Turning points correct. Correct y-intercept, $t \geq 0$ Deduct 1 for lack of consistent scale and/or poor shape of curve.
(c)	$\begin{aligned} \lim _{x \rightarrow \infty} \frac{x^{4}+3 x^{2}+2}{5 x^{4}+1} & =\lim _{x \rightarrow \infty} \frac{1+\frac{3}{x^{2}}+\frac{2}{x^{4}}}{5+\frac{1}{x^{4}}} \\ & =\frac{1+0+0}{5+0} \\ & =\frac{1}{5} \end{aligned}$	1	Dividing by highest power of x. Correct answer.

Question 14							2014	
	Solution						Marks	Allocation of marks
(a)	x	1	2	3	4	5	1	Table of values
	$\frac{1}{x^{2}+1}$	$\frac{1}{2}$	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{17}$	$\frac{1}{26}$		
	$A=\frac{h}{3}\left(y_{0}+y_{5}+4\left(y_{1}+y_{3}\right)+2 y_{2}\right)$							
	$=\frac{1}{3}\left(\frac{1}{2}+\frac{1}{26}+4\left(\frac{1}{5}+\frac{1}{17}\right)+2\left(\frac{1}{10}\right)\right)$						1	Correct substitution.
	$=\frac{392}{663} \text { square units } \quad(=0.5913 \text { to } 4 \mathrm{dp})$						1	Correct answer.
(b)								
	$m x=\sqrt{x-1}$							
	$m^{2} x^{2}=x-1$							
	$m^{2} x^{2}-x+1=0$						1	Forms quadratic equation
	$\Delta=0$							
	$1-4 m^{2}=0$							Correct derivative with no
	$(1-2 m)(1+2 m)=0$							further work, award 0
	$m=\frac{1}{2} \quad m=-\frac{1}{2}(\text { reject since } m>0)$						1	Forms discriminant and solves for m
	$\therefore m=\frac{1}{2}$						1	Gives correct value for m
	(ii)							
	substitute $m=\frac{1}{2}$ into $m^{2} x^{2}-x+1=0$							
	$\frac{1}{4} x^{2}-x+1=0$						1	For sub. $\mathrm{m}=0.5$, or other correct method.
								(such as substituting the
	$(x-2)^{2}=0$							correct derivative from (i) into $m x=\sqrt{x+1}$
	$x=2 \quad y=1$							into $m x=\sqrt{x+1}$)
	$\therefore P(2,1)$						1	Correct coordinates.
								Correct coordinates.

Question 14		2014	
	Solution	Marks	Allocation of marks
(c)	$\begin{aligned} A & =\int_{0}^{2}\left(e^{\frac{1}{2} x}-x\right) d x \\ & =\left[2 e^{\frac{1}{2} x}-\frac{x^{2}}{2}\right]_{0}^{2} \\ & =\left(2 e^{\frac{1}{2}(2)}-\frac{2^{2}}{2}\right)-\left(2 e^{\frac{1}{2}(0)}-\frac{0^{2}}{2}\right) \\ & =2 e-2-2 \\ & =2(e-2) \text { units }^{2} \end{aligned}$	1	Setting up difference of integrals. Correct integration. Correct answer.
(d)	(i) $16 y=x^{2}-4 x-12$ $\begin{aligned} & 16 y+12=(x-2)^{2}-4 \\ & 16 y+16=(x-2)^{2} \\ & 16(y+1)=(x-2)^{2} \end{aligned}$ Vertex has coordinates $(2,-1)$. (ii) This parabola is in the form $(x-h)^{2}=4 a(y-k)$ therefore it is concave up. $\begin{aligned} 4 a & =16 \\ \therefore a & =4 \end{aligned}$ So the focus is 4 units above the vertex and has coordinates $(2,3)$ (iii) So directrix is 4 units below vertex. $\therefore y=-1-4$ $y=-5$ is the equation of the directrix	1 1	Completing square. Correct vertex. Correct focus. Equation of the directrix

Question 15		2014	
	Solution	Marks	Allocation of marks
(a)	(i) $\begin{aligned} & f(x)=\frac{x^{3}}{8}+1 \\ & f^{\prime}(x)=\frac{3 x^{2}}{8} \\ & \frac{3 x^{2}}{8}=\frac{3}{2} \\ & 6 x^{2}=24 \\ & x^{2}=4 \\ & x=2 \text { or } \\ & y=2 \quad x=-2 \\ & y=0 \end{aligned} \quad \therefore \text { Normals can be drawn at the points }(2,2) \text { and }(-2,0)$ (ii) At the point $(0,1)$ the normalis vertical.	1 1	Finds correct derivative and relates it to the gradient of the normal Finds the correct points Correct point

Question 15		2014	
	Solution	Marks	Allocation of marks
(c)	$\begin{aligned} 4 \cos ^{2} \theta & =6 \sin \theta+6 \\ 4\left(1-\sin ^{2} \theta\right) & =6 \sin \theta+6 \\ 4-4 \sin ^{2} \theta & =6 \sin \theta+6 \\ 4 \sin ^{2} \theta+6 \sin \theta+2 & =0 \\ \frac{(4 \sin \theta+4)(4 \sin \theta+2)}{4} & =0 \\ 4 \sin \theta & =-4 \quad \text { or } \quad 4 \sin \theta=-2 \\ \sin \theta & =-1 \quad \sin \theta=-\frac{1}{2} \end{aligned}$ sine is negative in the 3 rd and 4th quadrants $\begin{gathered} \therefore \quad \theta=\frac{3 \pi}{2} \quad \text { or } \theta=\pi+\frac{\pi}{6}, 2 \pi-\frac{\pi}{6} \\ =\frac{7 \pi}{6}, \frac{11 \pi}{6} \end{gathered}$	1	Using trig identity to get in terms of sine only. Factorisation producing values of $\sin \theta$ Showing 3 solutions.
(d)	$\begin{aligned} & \frac{1}{\sqrt{n}+\sqrt{n+1}} \\ = & \frac{1}{\sqrt{n}+\sqrt{n+1}} \times \frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}} \\ = & \frac{\sqrt{n}-\sqrt{n+1}}{n-(n+1)} \\ = & \frac{\sqrt{n}-\sqrt{n+1}}{-1} \\ = & \sqrt{n+1}-\sqrt{n} \end{aligned}$	1	Multiplying by conjugate. Simplifying.

Question 16		2014	
	Solution	Marks	Allocation of marks
(a)	$\text { (i) } \begin{aligned} y & =\sqrt{(\sqrt{3})^{2}-x^{2}} \\ & =\sqrt{3-x^{2}} \end{aligned}$ (ii) $\begin{aligned} L & =2 y+2 x+\sqrt{3} \\ & =2 \sqrt{3-x^{2}}+2 x+\sqrt{3} \\ & =2\left(x+\sqrt{3-x^{2}}+\frac{\sqrt{3}}{2}\right) \end{aligned}$	1	
(a)	(iii) $\begin{aligned} L & =2 x+2\left(3-x^{2}\right)^{\frac{1}{2}}+\sqrt{3} \\ L^{\prime} & =2+2\left(\frac{1}{2}\right)(-2 x)\left(3-x^{2}\right)^{-\frac{1}{2}} \\ & =2-\frac{2 x}{\sqrt{3-x^{2}}} \end{aligned}$ Turning points occur when $L^{\prime}=0$ $\begin{aligned} 0 & =2-\frac{2 x}{\sqrt{3-x^{2}}} \\ \frac{2 x}{\sqrt{3-x^{2}}} & =2 \\ \frac{x}{\sqrt{3-x^{2}}} & =1 \\ x & =\sqrt{3-x^{2}} \\ x^{2} & =3-x^{2} \\ 2 x^{2} & =3 \\ x^{2} & =\frac{3}{2} \\ x & = \pm \sqrt{\frac{3}{2}} \text { units } \end{aligned}$ we can ignore the negative answer since we are dealing with a length \therefore there is a turning point at $x=\sqrt{\frac{3}{2}}$	1	Differentiation. Solution for x.

	stion 16	2014	
	Solution	Marks	Allocation of marks
(a)	(continued) We need to check if our turning point is a maximum as required. $L^{\prime}=2-2 x\left(3-x^{2}\right)^{-\frac{1}{2}}$ let $u=-2 x$ $\begin{gathered} =2-2 x(3-x) \\ v=\left(3-x^{2}\right)^{-\frac{1}{2}} \end{gathered}$ $\begin{aligned} & \begin{array}{l} u^{\prime}=-2 \quad v^{\prime}=\left(-\frac{1}{2}\right)(-2 x)\left(3-x^{2}\right)^{-\frac{3}{2}} \\ =x\left(3-x^{2}\right)^{-\frac{3}{2}} \\ L^{\prime \prime}=\frac{d}{d x}(2)+\frac{d}{d x}\left(-2 x\left(3-x^{2}\right)^{-\frac{1}{2}}\right)^{\prime} \\ =0+v u^{\prime}+u v_{1}^{\prime} \\ \\ =-2\left(3-x^{2}\right)^{-\frac{1}{2}}-2 x^{2}\left(3-x^{2}\right)^{-\frac{3}{2}} \\ =-\frac{2}{\sqrt{3-x^{2}}}-\frac{2 x^{2}}{\sqrt{\left(3-x^{2}\right)^{3}}} \\ =\frac{-2\left(\sqrt{\left.3-x^{2}\right)^{2}}-2 x^{2}\right.}{\sqrt{\left(3-x^{2}\right)^{3}}} \\ =-\frac{6}{\sqrt{\left(3-x^{2}\right)^{3}}} \end{array} \\ & \text { when } x=\sqrt{\frac{3}{2}}^{L^{\prime \prime} \approx-3.27} \end{aligned}$ $\therefore \quad$ the turning point at $x=\sqrt{\frac{\beta}{2}}$ is a maximum	1	Correct test for maximum using L" OR L' If using L', values of L' should be shown either side of the turning point

Question 16	2014		
(b)	Solution	(i)	

Question 16		2014	
	Solution	Marks	Allocation of marks
(c)	$\text { (i) } \begin{aligned} \left(\sec x+\frac{1}{\sec x}\right)^{2} & =\sec ^{2} x+\frac{2 \sec x}{\sec x}+\frac{1}{\sec ^{2} x} \\ & =\sec ^{2} x+2+\cos ^{2} x \end{aligned}$ (ii) $\begin{aligned} V & =\pi \int y^{2} d x \\ & =\pi \int_{0}^{1}\left(\sec ^{2} x+\cos ^{2} x+2\right) d x \\ V & =\pi\left[\int_{0}^{1} \sec ^{2} x d x+\frac{1}{2} \int_{0}^{1}(\cos 2 x+1) d x+\int_{0}^{1} 2\right] d x \\ & =\pi\left[\tan x+\frac{1}{2}\left(\frac{1}{2} \sin 2 x+x\right)+2 x\right]_{0}^{1} \\ & =\pi\left[\tan x+\frac{\sin 2 x}{4}+\frac{x}{2}+2 x\right]_{0}^{1} \\ & =\pi\left[\left(\tan 1+\frac{\sin 2}{4}+\frac{1}{2}+2\right)-\left(\tan 0+\frac{\sin 0}{4}+0+0\right)\right] \\ & =\pi\left(\tan 1+\frac{\sin 2}{4}+\frac{5}{2}\right) \end{aligned}$ ≈ 13.5 cubic units	迷	For correct substitution into Volume formula Integration. Answer.

