

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS

2017 HSC Course Assessment Task 4 (Trial Examination) Thursday, 3 August 2017

General instructions

- Working time 3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- NESA approved calculators may be used.
- Attempt all questions.
- A NESA Reference Sheet is provided.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

SECTION I

• Mark your answers on the answer grid provided

SECTION II

- Commence each new question on a new booklet. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

NESA STUDENT NUMBER: # BOOKLETS USED:

Class: (please ✓)

- O 12MAT3 Mr Wall
- O 12MAT4 Mr Sekaran
- O 12MAT5 Mrs Gan

O 12MAT6 – Ms Park O 12MAT7 – Mr Tan

Marker's use only

QUESTION	1-10	11	12	13	14	15	16	Total
MARKS	10	15	15	15	15	15	15	100

Section I

10 marks Attempt Question 1 to 10

Mark your answers on the answer grid provided

1. A deck of cards consists of 5 white and 5 black cards. Two cards are selected at random without 1 replacement. What is the probability of choosing the same colour?

(A) $\frac{1}{25}$ (B) $\frac{2}{9}$ (C) $\frac{4}{9}$ (D) $\frac{1}{2}$

- 2. What is 4.29564 correct to three significant figures?
 - (A) 4.29 (B) 4.295 (C) 4.296 (D) 4.30

3. Which of the following is the derivative of $y = \frac{e^{7x}}{e^{3x}}$?

- (A) $4e^{4x}$ (B) e^{4x}
- (C) $\frac{7e^{3x}e^{7x}+3e^{3x}e^{7x}}{e^{9x}}$ (D) $\frac{3e^{3x}e^{7x}-7e^{7x}e^{3x}}{e^{9x}}$

4. For what values of a does $ax^2 + 5x + a = 0$ have no solution?

- (A) a > 0 (B) $a = \frac{5}{2}$
- (C) $-\frac{5}{2} < a < \frac{5}{2}$ (D) $a > \frac{5}{2}, a < -\frac{5}{2}$

5. The graph of y = f(x) passes through the point (1,4) and $f'(x) = 3x^2 - 2$. Which of the following expressions is f(x)?

- (A) $x^2 2x$ (B) 2x 1
- (C) $x^3 2x + 3$ (D) $x^3 2x + 5$
- 6. Which of these is the perpendicular distance of the point (2, -3) to the line y = 4x 1?
 - (A) $\frac{4}{\sqrt{13}}$ (B) $\frac{10}{\sqrt{17}}$ (C) $\frac{10}{\sqrt{13}}$ (D) $\frac{4}{\sqrt{17}}$

1

1

1

1

7. The diagram below shows the graph of y = f(x). Which of the following statements is true? 1

- (A) f'(t) > 0 and f''(t) < 0(B) f'(t) > 0 and f''(t) > 0(C) f'(t) < 0 and f''(t) < 0(D) f'(t) < 0 and f''(t) > 0
- 8. How many solutions does the equation $|2 \sin 3x| = 1$ have for $0 \le x \le \pi$? (A) 4 (B) 3 (C) 6 (D) 2

9. Which expression is a term of the geometric series $4y - 8y^2 + 16y^3 - \dots$?

- (A) $-4096y^{10}$ (B) $-4096y^{11}$
- (C) $4096y^{10}$ (D) $4096y^{11}$

10. Which of the following would be the result if $y = \log_e(-x + 5)$ was reflected about the line y = x? 1

- (A) $y = -e^x 5$ (B) $y = e^x + 5$
- (C) $y = e^x 5$ (D) $y = -e^x + 5$

1

Section II

90 marks Attempt Question 11 to 16

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Commence a new booklet

(a)	Solve $2y^2 - 4y = 0$.	1
(b)	Express $\frac{\sqrt{2}}{2-3\sqrt{2}}$ with a rational denominator.	1
(c)	Solve the equation $\log_2(x - 1) - \log_2(x - 2) = 2$.	2
(d)	i. Find $\int e^{-5y} dy$. ii. Evaluate $\int_0^{\frac{\pi}{4}} (\sec^2 x - x) dx$.	1 2
(e)	Differentiate with respect to x: i. $(3x^2 + 4)^5$ ii. $\frac{\tan x}{x}$ iii. $\log_e \sqrt{x^2 - 1}$	1 2 2

(f) Find the value of m if
$$y = 2 \sin 3x + 4 \cos 2x$$
 and $\frac{d^2y}{dx^2} = m \sin 3x - 4y$.

Question 12 (15 Marks) Commence a new booklet

(a)	A game is played in which two coloured dice are thrown once.		
The six faces of the red die are numbered 3, 5, 7, 8, 9 and 11. The six faces of the white die are numbered 1, 2, 4, 6, 10 and 12.			
	i. What is the probability of the player winning a game?		

- ii. What is the probability that the player wins once in two successive games?
- iii. What is the probability that the player wins at least once in two successive games?

(b) The table below shows the values of a function y = f(x) for five values of x.

x	1	1.5	2	2.5	3
f(x)	11.2	17.8	9.3	4.1	11.6

- Use the Trapezoidal Rule with these five function values to estimate $\int_1^3 f(x) dx$.
- (c) *ABCDE* is a regular pentagon. The points P, Q, E and A are collinear. The points Q, D and C are also collinear. Find the size of angle α , giving reasons.

1

2

1

2

(d) The diagram below shows the curves $y = \tan x$ and $y = 2 \sin x$.

i. Show that the coordinates of the point A are
$$(\frac{\pi}{3}, \sqrt{3})$$
.

ii. Show that
$$\frac{d}{dx} \left[\log_e(\cos x) \right] = -\tan x.$$
 1

- iii. Hence find the area of the shaded region in the diagram.
- (e) The shaded region bounded by the curve $y = \log_e x$, the x and y-axes and the line $y = \log_e 4$, is rotated about the y-axis. Find the exact volume of the solid of revolution formed. 3

Question 13 (15 Marks) Commence a new booklet

(a) The points *A*, *B* and *C* have coordinates (2,0), (1,8) and (8,4) respectively. The angle between the line *AC* and the *x*-axis is θ .

Copy or trace the diagram below into your writing booklet.

i.	Find the gradient of the line AC.	1
ii.	Calculate the size of the angle θ to the nearest minute.	1
iii.	Find the equation of the line AC.	1
iv.	Find the coordinates of <i>D</i> , the midpoint of <i>AC</i> .	1
v.	Show that AC is perpendicular to BD.	1

$$\frac{\sin\theta}{1-\cos\theta} + \frac{\sin\theta}{1+\cos\theta} = 2\csc\theta$$

- (c) The quadratic equation $2x^2 3x + 8 = 0$ has roots α and β .
 - i. Write down the values of $\alpha + \beta$ and $\alpha\beta$.

ii. Hence, find the value of
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
.

(d) For the parabola $x^2 - 4x - 8y = 20$:

i.	Find the coordinates of the vertex by completing the square.	2
----	--	---

ii. Draw a neat sketch of the parabola, showing the coordinates of the focus and the directrix. 2

1

Question 14 (15 Marks) Commence a new booklet

- (a) The tenth term of an arithmetic sequence is 29 and the fifteenth term is 44.
 i. Find the value of the common difference and the value of the first term.
 2
 ii. Find the sum of the first 75 terms.
 2
- (b) Find the common ratio of a geometric series with a first term of $\frac{1}{2}$ and a limiting sum of 1.5 2
- (c) Ellie and Mark worked out that they would save \$400 000 in five years by depositing all their combined monthly salary of x at the beginning of each month into a savings account and withdrawing \$5000 at the end of each month for living expenses. The savings account paid interest at the rate of 3% p.a. compounding monthly.
 - i. Show that at the end of the second month they have \$\$ [(1.0025² + 1.0025)x 5000(1.0025 + 1)] in their savings account.
 ii. Write down an expression for the balance in their account at the end of the five years.
 iii. What is their combined monthly salary?
 2
- (d) Two circles with equal radii and centres *O* and *P* intersect at *X* and *Y* as shown below. The centres of each circle lie on the circumference of the other circle.

- i. Find the exact area of the shaded region *XOYP*.
- ii. What fraction of the circle with centre *O* lies outside of the shaded region *XOYP*?

Question 15 (15 Marks) Commence a new booklet

(a)	Find the equation of the tangent on $y = \log_e(2x^2 + 1)$ at the point $(2, \log_e 9)$.	3
	Express your answer in general form.	

(b) For the function $f(x) = x^3 - 3x^2 - 9x + 18$:

i.	Find the stationary points and determine their nature.	2
ii.	Find the coordinates of the point of inflexion.	1
iii.	Sketch the graph of $y = f(x)$, showing the turning points and point of inflexion.	2
iv.	For what values of k does the equation $x^3 - 3x^2 - 9x + 18 - k = 0$ have 3 solutions?	1

(c) The change in the population of an organism is proportional to the time t, measured in years, that is

$$\frac{dP}{dt} = kt$$

- i. Given that the initial population is 400, write an expression for the size of the population P in terms of k and t.
- ii. Calculate the size of the population after 3 years given that it is 448 after 2 years.
- (d) The graph below shows the estimated population P of an organism after t months.

- i. For what value(s) of *t* is the population increasing most rapidly?
- ii. For what value(s) of *t* is the population decreasing at an increasing rate?

2

1

Question 16 (15 Marks) Commence a new booklet

(a) An isosceles triangle *ABC*, where AB = BC, is inscribed in a circle of radius 10cm. OP = x and *OP* bisects *AC*, such that $AC \perp OP$.

Copy or trace the diagram into your writing booklet.

i. Show that the area, A, of $\triangle ABC$ is given by $A = (10 + x)\sqrt{100 - x^2}$.

ii. Show that
$$\frac{dA}{dx} = \frac{100 - 10x - 2x^2}{\sqrt{100 - x^2}}$$
.

iii. Hence prove that the triangle with maximum area is equilateral.

Examination continues overleaf...

2

(b) The diagram below shows an isosceles triangle *ABC* with AC = BC and AB = 2 cm. *D* is a point on *AB* so that $\angle ACD = 2\theta$, $\angle BCD = \theta$ and BD = y cm.

Copy or trace the diagram into your writing booklet.

i.Show that
$$\angle BAC = \frac{\pi}{2} - \frac{3\theta}{2}$$
.1ii.Use the Sine rule in $\triangle ACD$ to show $CD = \frac{(2-y)\cos(\frac{3\theta}{2})}{\sin 2\theta}$.2iii.Similarly, find another expression for the length of CD in $\triangle BCD$.1iv.Given the formula $\sin 2\theta = 2 \sin \theta \cos \theta$, show that $y = \frac{2}{(1+2\cos\theta)}$.2v.Hence prove that as θ varies, $\frac{2}{3} < BD < 1$ for $0 < \theta < \frac{\pi}{3}$.2

End of paper.

2017 Mathematics Extension 1 HSC Course Assessment Task 1 Student Self Reflection

• Q5 -1. In hindsight, did I do the best I can? Why or why not? Which topics did I need more help with, and 2. 3. What other parts from the feedback session what parts specifically? can I take away to refine my solutions for future reference? Q1 - Locus • Q2 - Locus • Q3 – Series • Q4 – Euclidean Geometry

2017 Mathematics T4 (Trial) – Suggested Solutions

Maltiple choice

- (1) C
- (22) D
- (23) A
- (04) D
- (es) D
- (16) B
- 671 D
- (18) C
- 697 D
- (210) D

(U1) a)
$$2y^2 - 4y = 0$$

 $2y (y - 2) = 0$
 $y = 0, 2$
b) $\frac{fz}{2-3f_2} = \frac{f_2(2+3f_2)}{4-9\cdot 2}$
 $= \frac{2f_2 + 3\cdot 2}{-14}$

$$= \frac{f_2 + 3}{-7}$$

c)
$$\log_{2}(x-1) - \log_{2}(x-2) = 2$$

 $\log_{2}\left(\frac{x-1}{x-2}\right) = 2$
 $2^{2} = \frac{x-1}{x-2}$
 $4(x-2) = x-1$
 $4\pi - 8 = x-1$
 $3\pi = 7$
 $\chi = \frac{7}{3}$

$$d) \quad i) \quad \int e^{-sy} \, dy = \frac{1}{-s} e^{-sy} + c \quad \checkmark$$

$$ii) \quad \int_{0}^{\frac{\pi}{2}} 6e^{z}x - x \quad dx = \left[+aux - \frac{1}{2}x^{2} \right]_{0}^{\frac{\pi}{2}} \quad \checkmark$$

$$= \left(1 - \frac{1}{2} \left(\frac{\pi}{4} \right)^{2} \right) - \left(0 - 0 \right)$$

$$= 1 - \frac{\pi z}{32} \quad \checkmark$$

$$e) \quad i) \quad \frac{d}{dx} \quad \left(\frac{3\pi^{2} + 4}{x} \right)^{5} = 5 \left(3\pi^{2} + 4 \right)^{\frac{\pi}{2}} \cdot 6x$$

$$= 30x \quad \left(3x^{2} + 4 \right)^{\frac{\pi}{2}} + 6x$$

$$= 30x \quad \left(3x^{2} + 4 \right)^{\frac{\pi}{2}} \quad \sqrt{2}$$

$$ii) \quad \frac{d}{dx} \quad \left(\frac{4avx}{x} \right) = \frac{8ex^{2}x \cdot x - 1 \cdot 4ax}{x^{2}} \quad \checkmark$$

$$iii) \quad \frac{d}{dx} \quad \left(\log e \left(x^{2} - 1 \right)^{\frac{d}{2}} = \frac{\frac{1}{2} \left(x^{2} - 1 \right)^{-\frac{1}{2}} \cdot 2x}{(x^{2} - 1)^{-\frac{1}{2}}} \quad Atternatively,$$

$$= x \cdot (x^{2} - 1)^{-\frac{1}{2}} - \frac{1}{2} \quad \frac{d}{dx} \quad \frac{1}{2} \left[\log e \left(x^{2} - 1 \right) \right]$$

$$= \frac{1}{2} \cdot (x^{2} - 1)^{-\frac{1}{2}} \quad \sqrt{1} \quad \frac{1}{2} = \frac{1}{2} \cdot \frac{2x}{x^{2} - 1}$$

$$= \frac{1}{2} \cdot \frac{2x}{x^{2} - 1}$$

$$\begin{array}{l} 4) \quad y = 2 \sin 3\pi + 4 \cos 2\pi \\ dy \\ an = 2 \cdot 3 \cos 3\pi + 4 (-2) \sin 2\pi \\ = 6 \cos 3\pi - 8 \sin 2\pi \\ dy \\ dy \\ dx^{2} = 6 (-3) \sin 3\pi - 8 \cdot 2 \cos 2\pi \\ = -18 \sin 3\pi - 16 \cos 2\pi \\ -18 \sin 3\pi - 16 \cos 2\pi \\ = m \sin 3\pi - 8 \sin 3\pi - 8 \sin 3\pi \\ -18 \sin 3\pi - 16 \cos 2\pi \\ = m \sin 3\pi - 8 \sin 3\pi \\ -10 \sin 3\pi - 16 \cos 2\pi \\ = m \sin 3\pi \\ m = -10 \\ \end{array}$$

(17) a)

$$\frac{red}{3 5 7 8 9 1/}$$

$$\int P(win) = P(while 7 red)$$

$$= \frac{14}{36} \checkmark$$

$$\int \frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2$$

Alternatively, $LDEQ = \frac{360^{\circ}}{5}$ (extentor angle at a regular polygon) $= 72^{\circ}$

x = 72°+72° (extension angle equals sum at 2 opposite interior angles) = 144

d) i)
$$tan x = 2 sin x$$

$$\frac{sin x}{con x} = 2 sin x$$

$$0 = 2 sin x - \frac{sin x}{can x}$$

$$= sin x (2 - \frac{t}{can x})$$

$$4i x = 0$$

$$2 - \frac{t}{can x} = 0$$

$$x = 7$$

$$2 = \frac{t}{can x}$$

$$si u = p + at$$

$$u = x = \frac{t}{3} \rightarrow y = tau (\frac{\pi}{3})$$

$$= i^{3}$$

$$= -\frac{t}{3}$$
ii) $\frac{d}{dx} \left[log e (2\pi)^{2} \right] = \frac{-sin x}{can x}$

$$= -tau z$$
iii) find $2 = \int_{0}^{\frac{\pi}{3}} 2 sin x - tan x dx$

$$= \left[-2 con x + log e con x \right]_{0}^{\frac{\pi}{3}}$$

$$= -2 \cdot \frac{t}{2} + log e \frac{t}{2} - (-2 \cdot 1 + log e 1)$$

$$= 1 + log e \frac{t}{2} unit^{2}$$
i) $y = (og e x$

$$V = \pi \int_{0}^{log e^{\frac{\pi}{3}}} (e^{\frac{\pi}{3}})^{\frac{\pi}{3}} dy$$

$$= \frac{\pi}{2} \left[e^{2i(log e^{\frac{\pi}{3}})^{-\frac{\pi}{3}} - e^{\frac{\pi}{3}} \right]$$

$$= \frac{\pi}{2} \left[e^{2i(log e^{\frac{\pi}{3}})^{-\frac{\pi}{3}} - e^{\frac{\pi}{3}} \right]$$

$$\begin{pmatrix} 0 & |3 \rangle & 0 \end{pmatrix} \quad i \end{pmatrix} \quad M_{AC} = \frac{\mu - 0}{8 - 2} \\ = \frac{\pi}{3} \qquad \checkmark \\ i \end{pmatrix} \quad fam \theta = m \cdot \mu c \\ = \frac{\pi}{3} \\ \theta = +au^{-1} \frac{\pi}{3} \\ = 33^{\circ} 4l' \qquad \checkmark \\ i i \end{pmatrix} \quad y - \theta = \frac{\pi}{3} (2 - 2) \\ y = \frac{\pi}{3} \times -\frac{4}{3} \qquad \checkmark \\ i \end{pmatrix} \quad D = \left(\frac{8 + 2}{2}, \frac{4 + 0}{2} \right) \\ = (7, 2) \qquad \checkmark \\ i \end{pmatrix} \quad D = \left(\frac{8 + 2}{2}, \frac{4 + 0}{2} \right) \\ = (7, 2) \qquad \checkmark \\ i \end{pmatrix} \quad m_{B0} = \frac{\beta - 2}{1 - 5} \\ = -\frac{3}{2} \\ = -m_{HC} \\ \therefore \quad AC \perp BD \\ b \end{pmatrix} \quad \lambda HS = \frac{S(h \Theta)}{1 - (O \Theta)} + \frac{S(h \Theta)}{1 + (O \Theta)}$$

$$= \frac{\sin\theta \left((1 + \cos\theta) + \sin\theta \left((1 - \cos\theta) \right) \right)}{1 - \cos^2\theta}$$

$$= \frac{2\sin\theta}{\sin^2\theta}$$

$$= \frac{2}{\sin^2\theta}$$

$$= \frac{2}{\sin^2\theta}$$

$$= 2 \csc^2\theta$$

$$= 2445$$

c) i)
$$\alpha + \beta = \frac{3}{2}$$

 $\alpha \beta = 4$
ii) $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$
 $= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$
 $= \frac{(\frac{3}{2})^2 - 2(4)}{4^2}$
 $= -\frac{23}{64}$

d) i)
$$\chi^{2} - 4\chi - 8y = 20$$

 $\chi^{2} - 4\chi + 4 = 20 + 4 + 8y$
 $(\chi - 2)^{2} = 24 + 8y$
 $= 4(2)(y + 3)$
Vertex = $(2_{1} - 3)$
ii) $\chi - int$: $\gamma = 0 - 7$ $(\chi - 2)^{2} = 24$
 $\chi - 2 = \pm \sqrt{24}$
 $\chi = 2 \pm \sqrt{24}$
 $\chi = 2 \pm \sqrt{24}$
 $\chi = 2 \pm \sqrt{24}$

r= = 🖌 🗸

c) i) Let
$$An = amount in savings account at end of n months
$$A_{1} = x \left(1 + \frac{0.03}{12} \right)' - 5000$$

$$= x \left(1.0025 \right) - 5000 \checkmark$$

$$A_{2} = \left[A_{1} + x \right] \left((.0025)' - 5000 \checkmark$$

$$= \left[x \left(1.0025 \right) - 5000 + x \right] \left(1.0025 \right)' - 5000$$

$$= \left[(1.0025)^{2} + (.0025) \right] x - 5000 \left(1.0025 + 1 \right)$$$$

Q14) d7 i7

 $\Delta 0 \times p , \Delta 0 \times p equilateral$ $\therefore L \times 0 p = 2 \times 0 p = 60°$ $\Rightarrow L \times 0 \times = 120°$ $= \frac{27}{3} \checkmark$

Area of
$$XOYP = 2$$
. Area of segment XYO
= 2. $\frac{1}{2}r^{2}(\theta - sin\theta)$
= $r^{2}(\frac{2\pi}{3} - sin\frac{2\pi}{3})$
= $r^{2}(\frac{2\pi}{3} - \frac{\pi}{2})$ square units \checkmark

(i) Arnea of circle with course
$$0 = \pi r^2$$

$$\therefore \quad \underline{anea \ unshaded}_{anea \ arcle} = \frac{\pi r^2 - r^2 \left(\frac{2\pi}{3} - \frac{r_2}{2}\right)}{\pi r^2} \checkmark$$

$$= \frac{\pi - \left(\frac{2\pi}{3} - \frac{r_3}{2}\right)}{\pi}$$

$$= \frac{3\pi - 2\pi}{\pi} + \frac{r_3}{2}$$

$$= \frac{\pi}{3} + \frac{r_3}{2}$$

$$= \frac{\pi}{3} + \frac{r_3}{2\pi}$$

(215)

$$\begin{array}{l} \textbf{(a)} \quad y = (oge \ (2x^{2}+1)) \\ \frac{dy}{dx} = \frac{4x}{2x^{2}+1} \\ x = 2 \rightarrow \frac{dy}{dx} = \frac{4(2)}{2(2)^{2}+1} \\ = \frac{8}{9} \\ y - (oge \ 9 = \frac{8}{9} \ (x-2)) \\ qy - 9 \ (oge \ 9 = 8 \ (x-2)) \\ o = 8x - 9y + 9 \ (og \ 9 - 16 \end{array}$$

b) i)
$$f(x) = x^3 - 3x^2 - 9x + 18$$

 $f'(x) = 3x^2 - 6x - 9$
 $f''(x) = 6x - 6$
 $3x^2 - 6x - 9 = 0$
 $x^2 - 2x - 3 = 0$
 $(x - 3)(x + 1) = 0$
 $x = -1/3$
 $x = -1 \rightarrow f''(x) = 6(-1) - 6$
 $x = 3 \rightarrow f''(x) = 6(3) - 6$
 $x = -6$
 $x = -1/3$
 $x = -1 \rightarrow f''(x) = 6(3) - 6$
 $x = -1/3$
 $x = -1 \rightarrow f''(x) = 6(3) - 6$
 $x = -1/3$
 $x = -1/3$
 $x = -1 \rightarrow f''(x) = 6(3) - 6$
 $x = -1/3$
 $x = -1/3$

1)
$$6x-6=0$$
 $\frac{x}{x=1}$ $\frac{1}{\frac{f'(x)}{cmanify}}$ $\frac{1}{-6}$ $\frac{2}{6}$
 $\frac{1}{cmanify}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$
 \therefore (1,7) a pt at inflexion $\sqrt{2}$

must show charge in concavity unin table with f"(x) values

✓ shows max, min ✓ shows ptof inflexion (vertical)

iv)
$$x^{3} - 3x^{2} - 9x + 18 - k = 0$$

 $x^{3} - 3x^{2} - 9x + 18 = k$
 $y = f(x)$ has 3 interventions with $y = k$ when $-9 - k < 23$

() (i) $\frac{dP}{dt} = kt$ $P = \frac{kt^2}{2} + c$ p = 400 when t = 0: $400 = \frac{k(0)^2}{2} + c$ $\therefore P = \frac{k}{2}t^2 + 400$ / c = 400(i) P = 448 when t = 2: $448 = \frac{k}{2}(2)^2 + 400$ / k = 24 \therefore when t = 3 $P = \frac{24}{2}(3)^2 + 400$ = 508 / (i) when t = 0 / (ii) when 4 = 4 = 6 / (e16) a) is

$$pC^{2} = 0C^{2} - 0P^{2}$$

$$pC = \sqrt{10 - x^{2}}$$
Area of $(ABC) = \frac{1}{2} \cdot AC \cdot BP$

$$= \frac{1}{2} (2 \cdot PC) \cdot (10 + x)$$

$$= \sqrt{100 - x^{2}} (10 + x)$$

11) Max A occurs when $\frac{dA}{dn} = 0$ and $A = (10+2) \overline{100-x^2}$ concave down

$$\frac{100 - 10x - 2x^{2}}{\sqrt{100 - x^{2}}} = 0$$

$$\frac{x^{2} + 5x - 50}{(x - 5)/(x + 10)} = 0$$

$$\frac{x - 5}{x} = 5, -\frac{20}{5}$$

$$\frac{x - 5}{6}$$

$$\frac{x}{6x} = 10 - 4$$

$$\frac{x - 5}{100}$$

... max A when n=5

$$PC = 15$$

$$PC = 15$$

$$PC = 175^{2}$$

ie. DARL equilateral

$$i) \quad \frac{CD}{sih \ 2BAC} = \frac{AD}{SM \ 2\Theta}$$

$$\frac{CD}{sih \ 2BAC} = \frac{2-y}{sM \ 2\Theta}$$

$$CD = \frac{2-y}{sh \ 2\Theta} \checkmark$$

$$CD = \frac{2-y}{sih \ 2\Theta} \cdot sih \left(\frac{y}{2} - \frac{3\Phi}{2}\right)$$

$$= \frac{(2-y)}{sih \ 2\Theta} \cdot \frac{3\Phi}{2} \checkmark$$

$$\frac{lii}{sih 2DBC} = \frac{BD}{sih \Phi}$$

$$CD = \frac{g}{sih \Phi} \cdot sih \left(\frac{\pi}{2} - \frac{3\Phi}{2}\right)$$

$$= \frac{g}{g} \frac{CD}{sih \Phi} \cdot \frac{3\Phi}{2}$$

$$in) \quad (2-y) \quad (n \frac{1}{2}) = \frac{y}{sin 2\theta} = \frac{y}{sin 0} \frac{(n \frac{3\theta}{2})}{sin 0}$$

$$(2-y) \quad sin 0 = \frac{y}{sin 2\theta} \quad \checkmark$$

$$= \frac{y}{2sin 0} \quad (2 - y) \quad sin 0 = \frac{y}{2sin 0} \quad \checkmark$$

$$= \frac{y}{2sin 0} \quad (2 - y) \quad (2 - y)$$

 $V) \quad 0 < \theta < \frac{\pi}{3}$

$$\begin{array}{l} \theta = 0 \rightarrow y = \frac{2}{1+2} \\ = \frac{2}{3} \\ \theta = \frac{4}{3} \rightarrow y = \frac{2}{1+2} \\ = 1 \end{array} \right)$$

÷ ⅔ < y < 1 ⊰ < BD < 1 Alternatively, $0 < b < \frac{\pi}{3}$ $(a_{3} < cab < cab)$ $\frac{1}{2} < cab < cab)$ $\frac{1}{2} < cab < 1$ 1 < 2 cab < 2 2 < 1 + 2 cab < 3 $\frac{1}{3} < \frac{1}{1 + 2 cab} < \frac{1}{2}$ $\frac{2}{3} < \frac{2}{1 + 2 cab} < 1$ $i.e. \quad \frac{2}{3} < y < 1$