NORTH SYDNEY BOYS' HIGH SCHOOL 2008 Trial HSC Examination

MATHEMATICS

General instructions

- Working time - 3 hours. (plus 5 minutes reading time)
- Write on the lined paper in the booklet provided.
- Each question is to commence on a new page.
- Write using blue or black pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.
- This paper must NOT be removed from the examination room by the candidate.

Class teacher (please \boldsymbol{V})Mr Ireland
\bigcirc Mr Lam
\bigcirc Mr LoweMr FletcherMr Trenwith/Mr Taylor

STUDENT NUMBER:

Marker's use only.

QUESTION	1	2	3	4	5	6	7	8	9	10	Total	$\%$
MARKS	$\overline{12}$	$\overline{120}$										

Question 1 (12 Marks)

Commence a NEW page.

Marks

(a) Evaluate $\left(\frac{1}{e^{2.5}}-1\right)^{2}$ correct to 3 significant figures.
(b) Express $\frac{\sqrt{2}}{1+\sqrt{5}}$ with a rational denominator.
(c) Differentiate $y=(4 x+1)^{3}$ with respect to x.
(d) Factorise $x^{4} y-x y^{4}$ fully.
(e) Solve the following for x :
i. $\quad 2^{2 x-3}=32$.
ii. $\quad x^{2}-x=2$.

Question 2 (12 Marks)
Commence a NEW page.
(a) The line ℓ has the equation $2 x+3 y+6=0$. It cuts the x axis at A and the y axis at B and it intersects the line k at C. Line k is perpendicular to ℓ and cuts the x axis at D.

Copy or trace the diagram on to your paper.
i. Find the coordinates of A.
ii. Find the coordinates of B.
iii. If B is the midpoint of $A C$ prove that the coordinates of C are $(3,-4)$.
iv. Show that the equation of k is given by $3 x-2 y-17=0$.
v. Write the 3 inequalities required to define the interior region of $\triangle A C D$.
(b) Find the equation of the tangent to the curve $y=x^{2} \ln x$ at the point P where $x=e$.

Question 3 (12 Marks)
Commence a NEW page.

Marks

(a) Consider the parabola $(x-2)^{2}=8(y+1)$.
i. Write down the focal length.
ii. Write down the coordinates of the focus.
iii. Find the equation of the directrix.
(b) Differentiate with respect to x :
i. $2 x^{3}-x^{-1}$.
ii. $\frac{\sin x}{e^{2 x}}$.
(c) Evaluate $\int_{1}^{e}\left(x^{2}+\frac{2}{x}\right) d x$.
(d) Find an approximation for $\int_{1}^{3} g(x) d x$ by using Simpson's Rule with the following 3 function values in the table below, correct to 2 decimal places.

x	1	1.5	2	2.5	3
$g(x)$	12	8	0	3	5

Question 4 (12 Marks)

Commence a NEW page.

(a) Michael is training for a local marathon. He has trained by completing practice runs over the marathon course. So far he has completed three practice runs with times shown below.

Week	Time (hours)
1	3
2	2.7
3	2.43

i. Show that these times form a geometric series with common ratio $r=0.9$.
ii. If this series continues, what would be his expected time in Week 5, completed to the nearest minute?
iii. How many hours and minutes will he have run in total in his practice runs in these 5 weeks?
iv. If the previous winning time for the marathon was 1 hour 15 min , how many weeks must he keep practising to be able to run the marathon in less that the previous winning time?
(b) A, B and C are markers in an orienteering course. $A C=4 \mathrm{~km}$ and $B C=5 \mathrm{~km}$. The bearing of C from B is $040^{\circ} \mathrm{T}$.

Copy or trace the diagram into your writing booklet.
i. If the bearing of B from A is $260^{\circ} \mathrm{T}$, show that $\angle C B A=40^{\circ}$, giving reasons.
ii. Find $\angle C A B$ to the nearest degree.
iii. Hence or otherwise, find the bearing of C from A.

Question 5 (12 Marks)
Commence a NEW page.

Marks

(a) If $f(x)=x^{2}-x$,
i. Evaluate and expand $f(x+h)$.

1

3
(b) In $\triangle A B C$ as shown in the diagram, $\angle A B C=125^{\circ}, \angle A D B=55^{\circ}, A D=12 \mathrm{~cm}$ and $D C=4 \mathrm{~cm}$.

NOT TO SCALE
i. Show that $\triangle A B C \| \triangle B D C$.
ii. Find x, the length of $B C$.
(c) Let α and β be the solutions of $2 x^{2}-6 x-1=0$.
i. Find $\alpha+\beta$.
ii. Find $\alpha \beta$.
iii. Hence, find $3 \alpha-\alpha^{2}$.

Question 6 (12 Marks) Commence a NEW page.
(a) A particle is moving in a straight line. Its velocity for $t \geq 0$ is given by

$$
v=\frac{4}{t+1}-2 t
$$

i. Find when the particle changes direction.
ii. Find the exact distance travelled in the first 2 seconds.
(b) For the function $y=x^{3}-3 x^{2}-9 x+1$,
i. Find the coordinates of any stationary points and determine their nature.
ii. Find any points of inflexion.
iii. Neatly sketch the curve.
(a) A farmer has a large tank full of water. The tank leaks water from a hole. The volume of water remaining in the tank, in litres, is given by

$$
V=4000+10000 e^{-0.04 t}
$$

where t is the time in hours after the leakage commenced.
i. How many litres of water were in the tank when the leakage commenced?
ii. At what rate is the water leaking after 5 hours? Answer correct to 1 decimal place.
iii. How many litres will eventually be in the tank after a long period of time?
iv. If the farmer realises the tank is leaking when the volume of water remaining is 6000 L , how long did it take him to realise there was a hole in the tank? Answer correct to the nearest minute.
(b) The diagram shows the graphs $y=\sin x$ and $y=\cos x, 0 \leq x \leq 2 \pi$. The graphs intersect at A and B.

i. Show that A has coordinates $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ and find the coordinates of B.
ii. Find the area enclosed by the two graphs.

Question 8 (12 Marks)
(a) The diagram shows the region bounded by the curve $y=2 x^{2}-2$, the line $y=6$ and the x and y axes.

Find the volume of the solid of revolution formed when the region is rotated about the y axis.
(b) Kevin plays computer games competitively. From past experience, Kevin has a 0.8 chance of winning a game of Sawcraft and a 0.6 chance of winning CounterStrife. During a LAN party he plays two games of Sawcraft and one of CounterStrife.

What is the probability that he will win:
i. all 3 games?
ii. No games?
iii. At least 1 game?
(c) For the quadratic equation $x^{2}+(p-3) x-(2 p+1)=0$,
i. Show that the discriminant is $\Delta=p^{2}+2 p+13$.
ii. Hence or otherwise, show that the quadratic equation $x^{2}+(p-3) x-(2 p+1)=0$ will always have real, distinct roots for real valued p.

Question 9 (12 Marks)
Commence a NEW page.
Marks
(a) Consider the geometric series $1+\frac{4}{3} \sin ^{2} x+\frac{16}{9} \sin ^{4} x+\frac{64}{27} \sin ^{6} x+\cdots$.
i. When the limiting sum exists, find its value in simplest form. series exist?
(b) The diagram below represents (in metres) the dimensions of a small garden.

i. Show that $y=\left(20-x^{2}\right)^{\frac{1}{2}}$.
ii. Write an expression, in terms of x, for the perimeter P (in metres) of the garden, and find a value of x for which

$$
\frac{d P}{d x}=0
$$

iii. Establish whether this value of x gives a minimum or maximum value of P

Question 10 (12 Marks)

Commence a NEW page.
(a) A city has a growing population at a rate proportional to the current population, that is

$$
\frac{d P}{d t}=k P
$$

i. Verify that $P(t)=P_{0} e^{k t}, t>0$ is a solution of the equation.
ii. If the population on 1 January 2006, which is $t=1$, was 147200 and on 1 January 2007 (when $t=2$) was 154800 , find the initial population and the value of k. Round your answer down to the nearest whole number.
iii. Find the population on 1 January 2009.
iv. Find the time it will take for the population to double.
(b) A car dealership has a car for sale for the cash price of $\$ 20000$. It can also be purchased on terms over 3 years. The first 6 months are interest free. Subsequently, interest is charged at 12% per annum, calculated monthly. Repayments are to be made in equal monthly instalments at the end of the first month.

A customer purchases the car on these terms and agrees to monthly repayments of $\$ M$ per month. Let $\$ A_{n}$ be the amount owing at the end of the n-th month.
i. Find an expression for A_{6}.
ii. Show that $A_{8}=(20000-6 M) 1.01^{2}-M(1+1.01)$.
iii. Find an expression for A_{36}.
iv. Find the value of M.

End of paper.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

Suggested marking scheme

Question 1

(a) (2 marks)
\checkmark [1] for correct value.
$\checkmark[1]$ for 3 significant figures.

$$
\left(\frac{1}{e^{2.5}}-1\right)=0.843(3 \text { s.f. })
$$

(b) (2 marks)
$\checkmark[1]$ for multiplying by the fraction with appropriate conjugate surd.
\checkmark [1] for final answer.
$\frac{\sqrt{2}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}=-\frac{\sqrt{2}-\sqrt{10}}{4}=\frac{\sqrt{10}-\sqrt{2}}{4}$
(c) (2 marks)
\checkmark [1] for correct usage of chain rule.
\checkmark [1] for final answer.

$$
\begin{array}{rl|ll}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} & y=u^{3} & u=4 x+1 \\
& =3(4 x+1)^{2} \times 4 \\
& =12(4 x+1)^{2} & y^{\prime}=3 u^{2} & u^{\prime}=4
\end{array}
$$

(d) (2 marks)
$\checkmark \quad$ [1] for correctly factorising $x y$.
\checkmark [1] for correctly factorising cubic.

$$
\begin{aligned}
x^{4} y-x y^{4} & =x y\left(x^{3}-y^{3}\right) \\
& =x y(x-y)\left(x^{2}+x y+y^{2}\right)
\end{aligned}
$$

(e) i. (2 marks)
$\checkmark \quad[1]$ for identifying $32=2^{5}$.
\checkmark [1] for correct solution.

$$
\begin{gathered}
2^{2 x-3}=32=2^{5} \\
2 x-3=5 \\
2 x=8 \Rightarrow x=4
\end{gathered}
$$

ii. (2 marks)
[1] for correctly factorising quadratic.
$\checkmark[1]$ for $x=-1,2$.

$$
\begin{gathered}
x^{2}-x=2 \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
x=-1,2
\end{gathered}
$$

Question 2

(a) i. (1 mark)

$$
2 x+3 y+6=0
$$

When $y=0,2 x+6=0$

$$
2 x=-6 \Rightarrow x=-3
$$

ii. (1 mark)

$$
2 x+3 y+6=0
$$

When $x=0,3 y+6=0$

$$
3 y=-6 \Rightarrow y=-2
$$

iii. (2 marks)
\checkmark [1] for using midpoint formula.
$\checkmark[1]$ for final answer $C(3,-4)$.

$$
\begin{aligned}
& (0,-2)=\left(\frac{x_{c}+(-3)}{2}, \frac{y_{c}+0}{2}\right) \\
& \begin{array}{r|r}
\frac{x_{c}-3}{2}=0 & \frac{y_{c}}{2}=-2 \\
x_{c}=3 & y_{c}=-4
\end{array} \\
& \therefore C(3,-4)
\end{aligned}
$$

iv. (2 marks)
\checkmark [1] for correct gradient of k.
\checkmark [1] for correct y intercept of k.

$$
\begin{gathered}
m_{\ell}=-\frac{2}{3} \Rightarrow m_{k}=\frac{3}{2} \text { as } \ell \perp k \\
y=\frac{3}{2} x+\left.b\right|_{\substack{x=3 \\
y=-4}} \\
-4=\frac{3}{2} \times 3+b \\
\therefore b=-4-\frac{9}{2}=-\frac{17}{2} \\
\therefore y=\frac{3}{2} x-\frac{17}{2} \Rightarrow 3 x-2 y-17=0
\end{gathered}
$$

v. (3 marks)
\checkmark [1] for each correct inequality.
$\left\{\begin{array}{l}y \geq-\frac{2}{3} x-2 \\ y \leq 0 \\ y \geq \frac{3}{2} x-\frac{17}{2}\end{array} \quad\left\{\begin{array}{l}2 x+3 y+6 \geq 0 \\ y \leq 0 \\ 3 x-2 y-17 \leq 0\end{array}\right.\right.$
(b) (3 marks)
\checkmark [1] for application of product rule.
\checkmark [1] for finding function value at $x=e$.
\checkmark [1] for final answer.

$$
\begin{gathered}
y=x^{2} \ln x \\
u=x^{2} \quad v=\ln x \\
u^{\prime}=2 x \quad v^{\prime}=\frac{1}{x} \\
\frac{d y}{d x}=u v^{\prime}+v u^{\prime}=x^{2} \cdot \frac{1}{x}+2 x \cdot \ln x \\
=x+\left.2 x \ln x\right|_{x=e} \\
=e+2 e \ln e=3 e
\end{gathered}
$$

The function value at $x=e$ is

$$
y=\left.x^{2} \ln x\right|_{x=e}=e^{2}
$$

Substituting $\left(e, e^{2}\right)$ into equation of the tangent,

$$
\begin{aligned}
& \therefore y=3 e x+\left.b\right|_{\substack{x=e \\
y=e^{2}}} \\
& \quad e^{2}=3 e^{2}+b \\
& \quad b=-2 e^{2} \\
& \therefore y=3 e x-2 e^{2}
\end{aligned}
$$

Question 3

(a) i. (1 mark)

$$
\begin{gathered}
(x-2)^{2}=4 \times 2(y+1) \\
\therefore a=2
\end{gathered}
$$

(b) i. (2 marks)
\checkmark [1] for correct differentiation of each term.

$$
\frac{d}{d x}\left(2 x^{3}-x^{-1}\right)=6 x^{2}+x^{-2}
$$

ii. (1 mark)
\checkmark [1] for correct application of product or quotient rule
\checkmark [1] for correct final answer

$$
\left.\begin{aligned}
\frac{d y}{d x} & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{e^{2 x} \cos x-2 e^{2 x} \sin x}{\left(e^{2 x}\right)^{2}} \\
& =\frac{e^{2 x}(\cos x-2 \sin x)}{e^{2 / x} \cdot e^{2 x}} \\
& =\frac{\cos x-2 \sin x}{e^{2 x}}
\end{aligned} \right\rvert\, \begin{array}{ll}
u=\sin x \quad v=e^{2 x} \\
u^{\prime}=\cos x & v^{\prime}=2 e^{2 x}
\end{array}
$$

Alternatively, apply the product rule to $y=e^{-2 x} \sin x$ to obtain

$$
y^{\prime}=e^{-2 x}(\cos x-2 \sin x)
$$

(c) (2 marks)
$\checkmark \quad$ [1] for finding the primitive.
\checkmark [1] for correct evaluation of limits.

$$
\begin{aligned}
\int_{1}^{e}\left(x^{2}+\frac{2}{x}\right) d x & =\frac{1}{3} x^{3}+\left.2 \ln x\right|_{1} ^{e} \\
& =\frac{1}{3}\left(e^{3}-1\right)+2\left(\ln e^{1}-\ln 1\right) \\
& =\frac{1}{3} e^{3}+\frac{5}{3}
\end{aligned}
$$

(d) (3 marks)
\checkmark [1] recollection of Simpson's Rule
\checkmark [1] substitution of pronumerals.
\checkmark [1] evaluation.

$$
\begin{aligned}
A & \approx \frac{h}{3}\left(y_{1}+4 \sum y_{\text {even }}+2 \sum y_{\text {odd }}+y_{\ell}\right) \\
& =\frac{\frac{1}{2}}{3}\left(12+4(8+3)^{44}+0+5\right) \\
& =\frac{1}{6}(17+44)=\frac{61}{6}
\end{aligned}
$$

Question 4

(a) i. (1 mark)

$$
\frac{T_{2}}{T_{1}}=\frac{2.7}{3.0}=0.9 \quad \frac{T_{3}}{T_{2}}=\frac{2.43}{2.70}=0.9
$$

ii. (2 marks)
\checkmark [1] for substitution of pronumerals.
\checkmark [1] for correct answer to nearest minute.

$$
\begin{gathered}
T_{n}=a r^{n-1} \\
T_{5}=3 \times 0.9^{4}=1.9683=1 \mathrm{~h} 59 \mathrm{~min}
\end{gathered}
$$

iii. (2 marks)
$\checkmark \quad$ [1] for substitution of pronumerals.
\checkmark [1] for correct answer to nearest minute.

$$
\begin{gathered}
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
S_{5}=\frac{3 \times\left(0.9^{5}-1\right)}{0.9-1} \\
=12.2853=12 \mathrm{~h} 17 \mathrm{~min}
\end{gathered}
$$

iv. (2 marks)
\checkmark [1] for correct evaluation resulting in $n \approx 9.31$.
$\checkmark[1]$ for correct answer to $\lceil n\rceil$.

$$
\begin{gathered}
T_{n}=\underset{\div 3}{1.25} \mathrm{~h}=\underset{\div 3}{3} \times 0.9^{n-1} \\
0.9^{n-1}=\frac{1.25}{3} \\
(n-1) \log 0.9=\log \frac{1.25}{3} \\
n=\frac{\log \frac{1.25}{3}}{\log 0.9}+1 \approx 9.31
\end{gathered}
$$

Michael must run for 10 weeks to improve on the previous record of 1 h 15 min .
(b) i. (2 marks)
\checkmark [1] for correct arithmetic.
\checkmark [1] for correct reasoning.
Any arithmetic/reasoning that is not acceptable will result in no marks awarded.

- $\angle W_{A} A B=10^{\circ}$ since the bearing of B from A is 260°.
- $\angle A B E_{B}=10^{\circ}$ (alt. \angle on $\|$ lines)
- $\therefore C B A=90^{\circ}-40^{\circ}-10^{\circ}=40^{\circ}$. (complementary \angle)
ii. (2 marks)
\checkmark [1] for application of sine rule.
\checkmark [1] for final answer.

$$
\begin{aligned}
& \frac{\stackrel{\times 5}{\times 5} 0^{\circ}}{4}=\frac{\sin \stackrel{\times 5}{\angle} \mathrm{C} A B}{5} \\
& \sin \angle C A B=\frac{5 \sin 40^{\circ}}{4} \approx 0.803 \\
& \angle C A B=53^{\circ} 28^{\prime}=53^{\circ}\left(\text { nearest }^{\circ}\right)
\end{aligned}
$$

iii. (1 mark)

The bearing of C from A is $53^{\circ} 28^{\prime}+$ $260^{\circ}=313^{\circ} 28^{\prime}$. Also accept 313°.

Question 5

(a) i. (1 mark)

$$
\begin{aligned}
f(x+h) & =(x+h)^{2}-(x+h) \\
& =x^{2}+2 h x+h^{2}-x-h
\end{aligned}
$$

ii. (3 marks)
\checkmark [1] for recollection of limit.
\checkmark [1] for substitution.
\checkmark [1] for final answer.

$$
\begin{aligned}
& f(x+h)-f(x) \\
& =\left(\not x^{2 x}+2 h x+h^{2}-\not x-h\right)-\left(\not x^{2}-\not x\right) \\
& =2 x h+h^{2}-h \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} \frac{K(2 x+h-1)}{\not K}=2 x-1
\end{aligned}
$$

(b) i. (3 marks)
\checkmark [1] for each reason shown in summary.

In $\triangle A B C$ and $\triangle B D C$,

1. $\angle C D B=180^{\circ}-55^{\circ}=125^{\circ}=$ $\angle A B C$ (supplementary \angle)
2. $\angle B C D$ common to $\triangle A B C$ and $\triangle B D C$.
3. $\therefore \angle D B C=\angle B A C$ (angle sum of $\triangle)$ since two other pairs of angles are equal.
$\therefore \triangle A B C \| \triangle B D C(\mathrm{AAA})$
ii. (2 marks)
$\checkmark \quad$ [1] for relating corresponding sides in the same ratio.
\checkmark [1] for correctly evaluating x.
Since $\therefore \triangle A B C \| \triangle B D C$, all corresponding sides are in the same ratio, i.e.

$$
\begin{gathered}
\frac{x}{4}=\frac{16}{x} \\
x^{2}=64 \Rightarrow x=8
\end{gathered}
$$

(c) i. (1 mark)

$$
\begin{gather*}
2 x^{2}-6 x-1=0 \\
\alpha+\beta=-\frac{b}{a}=-\frac{-6}{2}=3 \tag{5.1}
\end{gather*}
$$

ii. (1 mark)

$$
\alpha \beta=\frac{c}{a}=-\frac{1}{2}
$$

iii. (1 mark)

$$
3 \alpha-\alpha^{2}=\alpha(3-\alpha)
$$

From (5.1), $\beta=3-\alpha$

$$
\therefore \alpha(3-\alpha)=\alpha \beta=-\frac{1}{2}
$$

Question 6

(a) i. (2 marks)
\checkmark [1] for recollection of particle changing direction when $v=0$.
\checkmark [1] for correct arithmetic and reasoning to obtain $t=1$.

Particle changes direction when $v=0$

$$
\begin{gathered}
\frac{4}{t+1}=2 t \\
4=2 t(t+1) \\
2 t^{2}+2 t-4=0 \\
t^{2}+t-2=0 \\
(t+2)(t-1)=0 \\
t=1 \text { since } t \geq 0
\end{gathered}
$$

ii. (3 marks)
\checkmark [1] for applying absolute value to both terms of the distance.
$\checkmark \quad[1]$ for $d=|4 \ln 2-1|+\left|4 \ln \frac{3}{2}-4\right|$.
$\checkmark[1]$ for $d=4 \ln \frac{4}{3}+3 \mathrm{~m}$.
\checkmark [Note:] If $d=\int_{0}^{2} \frac{4}{t+1}-2 t d t$ is used, a maximum of [1] mark is awarded.

$$
\begin{aligned}
d= & \left|\int_{0}^{1} \frac{4}{t+1}-2 t d t\right| \\
& \quad+\left|\int_{1}^{2} \frac{4}{t+1}-2 t d t\right| \\
= & \left|4 \ln (t+1)-t^{2}\right|_{0}^{1} \mid \\
& \quad+\left|4 \ln (t+1)-t^{2}\right|_{1}^{2} \mid \\
= & \left|4(\ln 2-\ln 1)-\left(1^{2}-\mathscr{D}^{2}\right)\right| \\
& \quad+\left|4(\ln 3-\ln 2)-\left(2^{2}-1^{2}\right)\right| \\
= & |4 \ln 2-1|+\left|4 \ln \frac{3}{2}-3\right| \\
= & (4 \ln 2-1)+\left(3-4 \ln \frac{3}{2}\right) \\
= & 4\left(\ln 2-\ln \frac{3}{2}\right)+2 \\
= & 4 \ln \frac{4}{3}+2 \mathrm{~m}
\end{aligned}
$$

(b) i. (3 marks)
\checkmark [1] correct identification of $x=-1,3$.
\checkmark [1] testing nature of stationary points.
\checkmark [1] finding coordinates \& stating nature.

$$
\begin{aligned}
& y=x^{3}-3 x^{2}-9 x+1 \\
\frac{d y}{d x}= & 3 x^{2}-6 x-9=3\left(x^{2}-2 x-3\right) \\
= & 3(x-3)(x+1)
\end{aligned}
$$

Stationary pts. at $y^{\prime}=0$.

$$
\therefore x=-1,3
$$

$$
y=x^{3}-3 x^{2}-9 x+\left.1\right|_{x=-2}=-1
$$

$$
y=x^{3}-3 x^{2}-9 x+\left.1\right|_{x=-1}=6
$$

$$
y=x^{3}-3 x^{2}-9 x+\left.1\right|_{x=0} \quad=1
$$

$$
y=x^{3}-3 x^{2}-9 x+\left.1\right|_{x=3} \quad=-26
$$

$$
y=x^{3}-3 x^{2}-9 x+\left.1\right|_{x=4} \quad=-19
$$

x	-2	-1	0	3	4	
$\frac{d y}{d x}$	+	ϕ	-	ϕ	+	
			6			
y	-1					-19

$\therefore(-1,6)$ is a local maximum and $(3,-26)$ is a local minimum.
ii. (2 marks)
\checkmark [1] obtaining $y^{\prime \prime}=6 x-6$.
\checkmark [1] showing change in concavity when $x=1$.

$$
\frac{d y}{d x}=3 x^{2}-6 x-9 \Rightarrow \frac{d^{2} y}{d x^{2}}=6 x-6
$$

Pt. of inflexion when $y^{\prime \prime}=0$ \& concavity change occurs, i.e.

$$
\begin{aligned}
& 6 x-6=0 \Rightarrow x=1 \\
& y^{\prime \prime}=6 x-\left.6\right|_{x=0}<0 \\
& y^{\prime \prime}=6 x-\left.6\right|_{x=2}>0
\end{aligned}
$$

x	0	1	2
$y^{\prime \prime}$	\frown	ϕ	\smile

iii. (2 marks)
\checkmark [1] shape of curve.
\checkmark [1] coords of stationary pts, pt. of inflexion.

Question 7

(a) i. (1 mark)

$$
V(0)=4000+10000 e^{0}=14000 \mathrm{~L}
$$

ii. (2 marks)
\checkmark [1] for obtaining $V^{\prime}(t)=-400 e^{-0.04 t}$.
\checkmark [1] for evaluating $V^{\prime}(5)=-327.5 \mathrm{~L} / \mathrm{h}$.

$$
\begin{aligned}
V(t) & =4000+10000 e^{-0.04 t} \\
V^{\prime}(t) & =-0.04 \times 10000 e^{-0.04 t} \\
& =-400 e^{-0.04 t} \\
V^{\prime}(5) & =-327.5 \mathrm{~L} / \mathrm{h}(1 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

iii. (1 mark)

$$
\lim _{t \rightarrow \infty}\left(4000+10000 e^{-0.04 t}\right)=4000 \mathrm{~L}
$$

iv. (2 marks)
\checkmark [1] for obtaining $e^{-0.04 t}=\frac{1}{5}$.
\checkmark [1] for obtaining $t_{1}=40.23=40 \mathrm{~h} 14$ min.
Let t_{1} be the time the farmer is aware of the leak.

$$
\begin{gathered}
V\left(t_{1}\right)=\underset{-4000}{6000}=\underset{-4000}{4000}+10000 e^{-0.04 t} \\
\underset{\sim}{2000000}=10000 e^{-0.04 t} \\
\div 10000 \\
e^{-0.04 t}=\frac{1}{5} \\
\quad-0.04 t=\ln \frac{1}{5} \\
t=\frac{\ln \frac{1}{5}}{-0.04}=40.23 \cdots \mathrm{~h}
\end{gathered}
$$

40 h 14 min have elapsed since the leak was discovered.
(b)
i. (3 marks)
\checkmark [1] for solution of $\sin x=\cos x$.
$\checkmark[2]$ for $A\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right), B\left(\frac{5 \pi}{4},-\frac{1}{\sqrt{2}}\right)$.

$$
\begin{aligned}
& \sin x=\cos x \\
& \tan x=1 \\
\therefore & A\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right) \quad
\end{aligned} \quad B\left(\frac{5 \pi}{4},-\frac{\pi}{4}, \frac{5 \pi}{4}\right)
$$

ii. (3 marks)
\checkmark [1] setting up integral.
\checkmark [1] for successfully finding primitive.
$\checkmark[1]$ for $A=2 \sqrt{2}$.

$$
\begin{aligned}
A & =\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}} \sin x d x-\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}} \cos x d x \\
& =\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}(\sin x-\cos x) d x \\
& =-\cos x-\left.\sin x\right|_{\frac{\pi}{4}} ^{\frac{5 \pi}{4}} \\
& =-\left(\cos \frac{5 \pi}{4}-\cos \frac{\pi}{4}\right)-\left(\sin \frac{5 \pi}{4}-\sin \frac{\pi}{4}\right) \\
& =-\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)-\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right) \\
& =\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}=2 \sqrt{2}
\end{aligned}
$$

Question 8

(a) (3 marks)
$\checkmark[1]$ for changing the subject to x^{2}.
\checkmark [1] for setting up integral.
\checkmark [1] for solution $V=15 \pi$.

$$
\begin{gathered}
y=2 x^{2}-2 \Rightarrow y+2=2 x^{2} \\
x^{2}=\frac{y+2}{2} \\
V=\pi \int x^{2} d y \\
=\pi \int_{0}^{6} \frac{y+2}{2} d y \\
=\left.\frac{\pi}{2}\left(\frac{1}{2} y^{2}+2 y\right)\right|_{0} ^{6} \\
\left.=\frac{\pi}{2}\left(\frac{1}{2} \text { (}^{2}\right)+2(\theta)\right)^{12} \\
= \\
=15 \pi \text { units }^{3}
\end{gathered}
$$

(b) Tree diagram for this question:

i. (1 mark)

$$
P\left(W_{s} W_{s} W_{c}\right)=(0.8)^{2} \times(0.6)=0.384
$$

ii. (2 marks)
\checkmark [1] Find the complements of W_{s}, W_{c} :

$$
\begin{aligned}
& P\left(L_{s}\right)=1-P\left(\overline{W_{s}}\right)=0.2 \\
& P\left(L_{c}\right)=1-P\left(\overline{W_{c}}\right)=0.4
\end{aligned}
$$

\checkmark [1] correct evaluation of

$$
P\left(L_{s} L_{s} L_{c}\right)=0.016
$$

$$
P\left(L_{s} L_{s} L_{c}\right)=(0.2)^{2} \times(0.4)=0.016
$$

iii. (2 marks)
\checkmark [1] Find the complement:
$P($ win at least 1$)=1-P\left(L_{s} L_{s} L_{c}\right)$
\checkmark [1] correct evaluation.
$P($ win at least 1$)=1-P($ win none $)$

$$
\begin{aligned}
& =1-P\left(L_{s} L_{s} L_{c}\right) \\
& =1-0.016=0.984
\end{aligned}
$$

(c) i. (2 marks)

$$
\begin{aligned}
& a=1 \quad b=(p-3) \quad c=-(2 p+1) \\
& \begin{aligned}
\Delta & =b^{2}-4 a c \\
& =(p-3)^{2}-4 \times 1 \times-(2 p+1) \\
& =p^{2}-6 p+9+8 p+4 \\
& =p^{2}+2 p+13
\end{aligned}
\end{aligned}
$$

ii. (2 marks)
\checkmark [1] correctly evaluating $\Delta_{\Delta}<0$.
\checkmark [1] logical reasoning.

$$
\begin{aligned}
\Delta_{\Delta} & =2^{2}-4 \times 1 \times 13=4-42<0 \\
& \therefore \Delta=p^{2}+2 p+13>0 \forall p
\end{aligned}
$$

Since $\Delta>0$, therefore the quadratic always has real, distinct roots for real values of p.

Question 9

(a) i. (2 marks)
\checkmark [1] for correct identification $a=1$, $r=\frac{4}{3} \sin ^{2} x$.
\checkmark [1] for correct substitution of a and r to the limiting sum $S=\frac{1}{1-\frac{4}{3} \sin ^{2} x}$.

$$
\begin{gathered}
a=1 \quad r=\frac{4}{3} \sin ^{2} x \\
S=\frac{a}{1-r}=\frac{1}{1-\frac{4}{3} \sin ^{2} x} \times \frac{3}{3} \\
=\frac{3}{3-4 \sin ^{2} x}
\end{gathered}
$$

ii. (2 marks)
$\checkmark[1]$ for equating $0<\left|\frac{4}{3} \sin ^{2} x\right|<1$.
\checkmark [1] for finding $0<x<\frac{\pi}{3}$.
$|r|<1$ for limiting sum to exist.

$$
\begin{gathered}
\left|\frac{4}{3} \sin ^{2} x\right|<1 \\
0<\frac{4}{3} \sin ^{2} x<1 \\
0<\sin ^{2} x<\frac{3}{4} \\
0<\sin x<\frac{\sqrt{3}}{2} \\
0<x<\frac{\pi}{3}
\end{gathered}
$$

(b) i. (2 marks)
\checkmark [1] for using Pythagoras' Theorem
\checkmark [1] for showing required $y=\left(20-x^{2}\right)^{\frac{1}{2}}$

$$
\begin{gathered}
x^{2}+y^{2}=(2 \sqrt{5})^{2} \\
x^{2}+y^{2}=4 \times 5=20 \\
y^{2}=20-x^{2} \Rightarrow y=\left(20-x^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

ii. (4 marks)
\checkmark [1] for obtaining

$$
P=2 x+\left(20-x^{2}\right)^{\frac{1}{2}}+2 \sqrt{5}
$$

\checkmark [1] differentiating $P(x)$ correctly.
\checkmark [1] obtaining $x^{2}=16$.
\checkmark [1] concluding $x=4$ as x is a length.

$$
\begin{gathered}
P=x+\frac{1}{2} x+\left(\frac{1}{2} x+y\right)+2 \sqrt{5} \\
=2 x+\left(20-x^{2}\right)^{\frac{1}{2}}+2 \sqrt{5} \\
\frac{d P}{d x}=2+\frac{1}{\not 2} \times(-\not 2 x) \times\left(20-x^{2}\right)^{-\frac{1}{2}} \\
=2-\frac{x}{\sqrt{20-x^{2}}}=0 \\
\frac{x^{2}}{20-x^{2}}=4 \\
x^{2}=80-4 x^{2} \\
5 x^{2}=80 \Rightarrow x^{2}=16 \\
\div 5
\end{gathered}
$$

$\therefore x=4$ since x is a length $\& x>0$
iii. (2 marks)
\checkmark [1] Checking $\frac{d P}{d x}$ within a neighbourhood of $x=4$.
$\checkmark[1]$ Evaluating $P(4)=2 \sqrt{5}+10$.
$\frac{d P}{d x}$ exists when $x \geq 0$ and $x \leq \sqrt{20}$.
$\frac{d P}{d x}=2-\left.\frac{x}{\sqrt{20-x^{2}}}\right|_{x=3} \quad=1.095$
$\frac{d P}{d x}=2-\left.\frac{x}{\sqrt{20-x^{2}}}\right|_{x=\sqrt{17}}=-0.38$

x	3		4	$\sqrt{17}$
$\frac{d y}{d x}$		+	\emptyset	-
		$2 \sqrt{5}+10$		
y				

$\therefore x=4$ makes $P(4)=2 \sqrt{5}+10$ a local maximum.

Question 10

(a)
i. (1 mark)

Differentiating $P(t)$,

$$
P^{\prime}(t)=P_{0} k e^{k t}=k \overbrace{P_{0} e^{k t}}^{=P(t)}=k P
$$

ii. (2 marks)
\checkmark [1] for obtaining $k=\ln \frac{387}{368}$.
\checkmark [1] for obtaining $P_{0}=139973$.

$$
\begin{gather*}
P(1)=147200=P_{0} e^{k} \tag{10.1}\\
P(2)=154800=P_{0} e^{2 k} \tag{10.2}
\end{gather*}
$$

$(10.2) \div(10.1):$

$$
\begin{gather*}
\frac{154800}{147200}=e^{k} \\
k=\ln \frac{387}{368} \tag{10.3}
\end{gather*}
$$

Substitute (10.3) to (10.1)

$$
\begin{aligned}
147200 & =P_{0} \exp \left(\ln \frac{387}{368}\right)=P_{0} \times \frac{387}{368} \\
P_{0} & =\frac{147200 \times 368}{387}=139973
\end{aligned}
$$

iii. (1 mark)

$$
\begin{aligned}
P(4) & =139973 \exp \left(\ln \frac{387}{368} \times 4\right) \\
& =171197
\end{aligned}
$$

iv. (2 marks)
$\checkmark \quad$ [1] for obtaining $\ln 2=t \ln \frac{387}{368}$.
\checkmark [1] for obtaining $t \approx 14$ years.

$$
\begin{aligned}
P(t)=2 \not P_{0} & =\not P_{0} \exp \left(\ln \frac{387}{368} \times t\right) \\
\ln 2 & =t \ln \frac{387}{368} \\
t & =\frac{\ln 2}{\ln \frac{387}{368}} \\
& =13.7688 \cdots \\
& =14 \text { years }
\end{aligned}
$$

(b) i. (1 mark)

Since no interest is applied in the first 6 mths, then the amount owing will be

$$
\begin{gathered}
A_{1}=20000-M \\
A_{2}=20000-2 M
\end{gathered}
$$

$$
\vdots
$$

$$
A_{6}=20000-6 M
$$

ii. (2 marks)
\checkmark [1] for correctly finding A_{7}.
\checkmark [1] for correctly finding A_{8}.

After the 6 th month, 12% p.a. $=0.01$ p.m. interest is applied to A_{6}.

$$
\begin{aligned}
A_{7}= & A_{6} \times 1.01-M \\
& =(20000-6 M) \times 1.01-M \\
A_{8}= & A_{7} \times 1.01-M \\
= & ((20000-6 M) \times 1.01-M) \times 1.01-M \\
= & (20000-6 M) \times 1.01^{2} \\
& \quad-1.01 M-M \\
= & (20000-6 M) \times 1.01^{2}-M(1+1.01)
\end{aligned}
$$

iii. (1 mark)

$$
\begin{aligned}
A_{9}= & (20000-6 M) \times 1.01^{3} \\
& -M\left(1+1.01+1.01^{2}\right) \\
A_{36}= & (20000-6 M) \times 1.01^{30} \\
& -M(\underbrace{1+1.01+1.01^{2}+\cdots+1.01^{29}}_{30 \text { terms }})
\end{aligned}
$$

iv. (2 marks)
\checkmark [1] for finding $S_{30}=100\left(1.01^{30}-1\right)$.
$\checkmark[1]$ for finding $M=\$ 628.78$

$$
\left\lvert\, \begin{aligned}
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& S_{30}=\frac{1\left(1.01^{30}-1\right)}{1.01-1}=100\left(1.01^{30}-1\right)
\end{aligned}\right.
$$

$A_{36}=0$ as the loan is repaid and no amount is outstanding.
Letting $K=1.01^{30}$,

$$
\begin{aligned}
(20000-6 M) \times & K=100 M(K-1) \\
20000 K-6 M K & =100 M(K-1) \\
20000 K & =100 M(K-1)+6 M K \\
& =M(100 K-100+6 K) \\
& =M(106 K-100)
\end{aligned}
$$

$$
\therefore M=\frac{20000 \times 1.01^{30}}{106 \times 1.01^{30}-100}=628.78
$$

Their repayment is $\$ 628.78$ per month.

