MATHEMATICS

2012 HSC Course Assessment Task 3 (Trial Examination)

June 21, 2012

General instructions

- Working time -3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 9)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:

\# BOOKLETS USED:

Class (please $\boldsymbol{\checkmark}$)
○ $12 \mathrm{M} 2 \mathrm{~A}-\mathrm{Mr}$ Berry
○ $12 \mathrm{M} 3 \mathrm{C}-\mathrm{Ms}$ Ziaziaris
$\bigcirc 12 \mathrm{M} 3 \mathrm{D}-\mathrm{Mr}$ Lowe
○ 12M3E - Mr Lam

Marker's use only.

QUESTION	$1-10$	11	12	13	14	15	16	Total
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$

Section I: Objective response

Mark your answers on the multiple choice sheet provided.

1. What is the value of $|-8|-|10|$?
(A) 2
(B) 1
(C) -1
(D) -2
2. What is the sum of the exterior angles of a polygon?
(A) 90°
(B) 180°
(C) 360°
(D) none of these
3. Which conditions make the quadratic $y=a x^{2}+b x+c$ positive definite?
(A) $a<0, \Delta<0$
(B) $a<0, \Delta>0$
(C) $a>0, \Delta<0$
(D) $a>0, \Delta>0$
4. Which of the following is not a condition for congruent triangles?
(A) SSS
(B) AAA
(C) SAS
(D) AAS
5. What is 1.9926 to two significant figures?
(A) 2.0
(B) 1.9
(C) 2.09
(D) 2.01
6. Which of the following is the locus of a point that is equidistant from a fixed point and a fixed line?
(A) a parabola
(B) a hyperbola
(C) a circle
(D) an ellipse
7. Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{5}-2 x^{2}+7 x-3}{6 x^{5}-3 x+7}$.
(A) ∞
(B) 0
(C) $\frac{1}{2}$
(D) 2
8. Which of the following conditions for $\frac{d P}{d t}$ and $\frac{d^{2} P}{d t^{2}}$ describe the slowing growth of a variable P ?
(A) $\frac{d P}{d t}>0$ and $\frac{d^{2} P}{d t}>0$.
(C) $\frac{d P}{d t}>0$ and $\frac{d^{2} P}{d t}<0$.
(B) $\frac{d P}{d t}<0$ and $\frac{d^{2} P}{d t}<0$.
(D) $\frac{d P}{d t}<0$ and $\frac{d^{2} P}{d t}>0$.
9. If $a>b$, which of the following is always true?
(A) $a^{2}>b^{2}$
(B) $\frac{1}{a}>\frac{1}{b}$
(C) $-a>-b$
(D) $2^{a}>2^{b}$
10. What is the exact value of b if the area beneath the curve $y=\frac{2}{x}$ between $x=1$ and $x=b(b>1)$ is equal to 3 units 2 ?
(A) $e^{\frac{3}{2}}$
(B) e^{2}
(C) $e^{\frac{5}{2}}$
(D) e^{3}

Section II: Short answer

Question 11 (15 Marks)
Commence a NEW page.
Marks
(a) Solve the equation $x^{2}+\frac{9}{x^{2}}=10$.
(b) $\quad D(0,-2), E(4,0) \& F(2,4)$ are three points on the number plane.

i. Calculate the length of the interval $D F$.
ii. Calculate the gradient of $D F$. 1
iii. Write the equation of the line $D F$ in general form. $\mathbf{1}$
iv. Calculate the perpendicular distance from E to the line $D F$. $\mathbf{2}$
v. Calculate the area of $\triangle D E F$.
(c) $A B C D E$ is a regular pentagon. The diagonals $A C$ and $B D$ intersect at F.

Copy or trace this diagram into your writing booklet. By giving full reasons for your answer,
i. Prove that $\angle A B C=108^{\circ}$.
ii. Find the size of $\angle B A C$.
(d) Find the exact value of $3 \tan 210^{\circ}+2 \sin 300^{\circ}$.

Question 12 (15 Marks)
(a) Find the values of $p, p>0$ for which the roots of the equation $x^{2}-p x+p=0$ are
i. opposite in sign.
ii. real
(b) i. Sketch the parabola with equation

$$
(y-2)^{2}=2(x+2)
$$

Show the vertex of the parabola on your sketch.
ii. Find the coordinates of the focus and the equation of the directrix of the parabola.
(c) The sum to n terms of a sequence of numbers is given by $S_{n}=102 n-2 n^{2}$.
i. Find an expression for T_{n}, the n-th term of the sequence.
ii. What type of a sequence is this?
(d) Differentiate the following expressions:
i. $\frac{2}{x^{3}}$
ii. $3 \cos 4 x$
iii. $\log _{e}(2 x)$

Question 13 (15 Marks)
Commence a NEW page.
Marks
(a) For the curve $y=x^{3}(4-x)$
i. Find the stationary point(s) and determine their nature. $\mathbf{3}$
ii. Find the point(s) of inflexion. $\mathbf{2}$
iii. Draw a neat sketch of the curve showing the intercepts with the coordinate axes, any stationary points and any point(s) of inflexion.
(b) Find $f(x)$ if $f^{\prime}(x)=2 x+\frac{1}{x^{2}}$ and the curve passes through the point $(1,2)$.
(c) Find the primitive of
i. $\sqrt[3]{x}$

2
ii. $3 \sec ^{2} \frac{x}{3}$
(a) Use Simpson's Rule with five function values to evaluate $\int_{1}^{3} f(x) d x$ given the following table:

x	1	1.5	2	2.5	3
$f(x)$	0	3	5	2	1

(b) The diagram below shows the graphs of $y=-x^{2}+2 x+8$ and $y=x+6$.

i. Show that the x coordinate of A and B are $x=-1$ and $x=2$ respectively.
ii. Hence or otherwise, find the shaded area bounded by the curves and the straight line.
(c) i. State the period and amplitude of $y=3 \sin 2 x$.
ii. Draw a neat sketch of $y=3 \sin 2 x$, where $0 \leq x \leq 2 \pi$.
iii. Hence or otherwise, state the number of solutions to the equation

$$
3 \sin 2 x=\frac{2}{3}
$$

within the domain $0 \leq x \leq 2 \pi$.
(d) Find the angle subtended at the centre of the circle of sector with radius 4 cm and area $20 \mathrm{~cm}^{2}$. Give your answer correct to the nearest degree.
(a) Solve $8^{x}=16^{x+1} \times 4^{-x}$.
(b) In this diagram, $\angle B C D+\angle B E D=180^{\circ}$.

i. Prove that $\triangle A B E$ is similar to $\triangle A D C$.
ii. Given that $A E=3 \mathrm{~m}, E D=5 \mathrm{~m}$ and $B C=2 \mathrm{~m}$, calculate the length of $A B$.
(c) i. Evaluate $\frac{d}{d x}\left(\log _{e}(\sin x)\right)$.
ii. Hence or otherwise, find $\int \cot x d x$.
(d) A liquor bottle is obtained by rotating about the y axis the part of the curve $y=\frac{1}{x^{2}}-2$ between $y=-1$ and $y=2$.

Find the exact volume of the bottle.

Examination continues overleaf. . .

(a) $A B C D$ is a quadrilateral inscribed in a quarter of a circle centred at A with radius 100 m . The points B and D lie on the x and y axes and the point C moves on the circle such that $\angle C A B=\alpha$ as shown in the diagram below.

i. Solve the equation $\sin \left(x+15^{\circ}\right)=\cos 24^{\circ}$.
ii. Show that the area of the quadrilateral $A B C D$ can be expressed as

$$
A=5000(\sin \alpha+\cos \alpha)
$$

iii. Show that the maximum area of this quadrilateral is $5000 \sqrt{2} \mathrm{~m}^{2}$.
(b) i. Sketch the curve $y=4 e^{-2 x}$.
ii. Consider the series $2 e^{x}+8 e^{-x}+32 e^{-3 x}+\cdots$.
$\alpha)$ Show that this series is geometric.
β) Find the values of x for which this series has a limiting sum.
$\gamma)$ Find the limiting sum of this series in terms of x.

End of paper.

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1 ; \quad x \neq 0 \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x+C, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}+C, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x+C, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x+C, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x+C, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x+C, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}+C, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C, \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})12M2A - Mr Berry

- 12M3C - Ms Ziaziaris
○ 12M3D - Mr Lowe
O 12M3E-Mr Lam

Suggested Solutions

Section I

(Lowe) 1. (D) 2. (C) 3. (D) 4. (B) 5. (A)
6. (A) 7. (C) 8. (C) 9. (D) 10. (A)

Question 11 (Lowe)
(a) (3 marks)
\checkmark [1] for quartic.
$\checkmark \quad$ [1] for final solutions.

$$
\begin{gathered}
x^{2}+\frac{9}{x^{2}}+\underset{\times x^{2}}{10} \underset{\times x^{2}}{ } \\
x^{4}+9=10 x^{2} \\
x^{4}-10 x^{2}+9=0 \\
\left(x^{2}-9\right)\left(x^{2}-1\right)=0 \\
\therefore x= \pm 1, \pm 3
\end{gathered}
$$

(b) i. (1 mark)

$$
\begin{aligned}
D F & =\sqrt{(2-0)^{2}+(4-(-2))^{2}} \\
& =\sqrt{2^{2}+6^{2}}=\sqrt{40} \\
& =2 \sqrt{10}
\end{aligned}
$$

ii. (1 mark)

$$
m_{D F}=\frac{6}{2}=3
$$

iii. (1 mark)

$$
\begin{gathered}
\frac{y-4}{x-2}=3 \\
y-4=3 x-6 \\
3 x-y-2=0
\end{gathered}
$$

(c) i. (2 marks)

- Divide pentagon into five equilateral triangles.

- Apex angle of one of the triangles $\frac{360^{\circ}}{5}=72^{\circ}$.
- Angle sum of the two base angles is thus

$$
180^{\circ}-72^{\circ}=108^{\circ}
$$

ii. (1 mark)

- $\triangle B A C$ is isosceles.
- $\therefore \angle B A C=\frac{180^{\circ}-108^{\circ}}{2}=36^{\circ}$.
(d) (2 marks)

$$
3 \tan 210^{\circ}+2 \sin 300^{\circ}
$$

$$
\begin{aligned}
& =3 \times\left(\frac{1}{\sqrt{3}}\right)+2 \times\left(-\frac{\sqrt{3}}{2}\right) \\
& =\frac{3}{\sqrt{3}}-\sqrt{3}=0
\end{aligned}
$$

$$
\begin{aligned}
d_{\perp} & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|3(4)+(-1)(0)-2|}{\sqrt{3^{2}+1^{2}}} \\
& =\frac{10}{\sqrt{10}}=\sqrt{10}
\end{aligned}
$$

Question 12 (Lowe)

(a) i. (1 mark)

$$
\begin{gathered}
x^{2}-p x+p=0 \\
\alpha=-\beta \\
\therefore \alpha+\beta=0=-\frac{b}{a}=p \\
\therefore p=0
\end{gathered}
$$

But as $p>0$, therefore there are no real solutions.
ii. (2 marks)
$\checkmark \quad[1]$ for $p \leq 0$ or $p \geq 4$.
$\checkmark \quad$ [1] justify why $p \geq 4$ only.

$$
\begin{gathered}
\Delta \geq 0 \\
\therefore b^{2}-4 a c=p^{2}-4 p \geq 0 \\
p(p-4) \geq 0 \\
\therefore p \leq 0 \text { or } p \geq 4
\end{gathered}
$$

But as $p>0$, hence $p \geq 4$ only.
(b) i. (2 marks)

ii. (2 marks)

$$
\begin{gathered}
4 a=2 \\
\therefore a=\frac{1}{2} \\
S\left(-\frac{3}{2}, 2\right)
\end{gathered}
$$

Directrix is $x=-\frac{5}{2}$.
(c) i. (2 marks)

$$
\begin{aligned}
& S_{n}=102 n-2 n^{2} \\
T_{n}= & S_{n}-S_{n-1} \\
= & 102 n-2 n^{2} \\
& \quad-\left(102(n-1)-2(n-1)^{2}\right) \\
= & 102 n-2 n^{2} \\
& \quad-\left(102 n-102-2\left(n^{2}-2 n+1\right)\right) \\
= & -2 n^{2}+102+2 n^{2}-4 n+2 \\
= & 104-4 n
\end{aligned}
$$

ii. (1 mark)

$$
\begin{gathered}
T_{1}=104-4(1)=100 \\
T_{2}=104-4(2)=96 \\
T_{3}=104-4(3)=92 \\
T_{3}-T_{2}=T_{2}-T_{1}
\end{gathered}
$$

Arithmetic sequence.
(d) i. (1 mark)

$$
\frac{d}{d x}\left(2 x^{-3}\right)=-6 x^{-4}
$$

ii. (2 marks)

$$
\frac{d}{d x}(3 \cos 4 x)=-12 \sin 4 x
$$

iii. (2 marks)
$\frac{d}{d x}\left(\log _{e} 2 x\right)=\frac{d}{d x}\left(\log _{e} 2+\log _{e} x\right)=\frac{1}{x}$

Question 13 (Berry)

(a) i. (3 marks)

$$
\begin{gathered}
y=4 x^{3}-x^{4}=x^{3}(4-x) \\
\frac{d y}{d x}=12 x^{2}-4 x^{3}
\end{gathered}
$$

Stationary pts occur when $\frac{d y}{d x}=0$:

$$
\begin{gathered}
4 x^{2}(3-x)=0 \\
\therefore x=0,3
\end{gathered}
$$

x		0	3	
$\frac{d y}{d x}$	+	0	+	0
		-		
y				

Hence $(0,0)$ is a horizontal point of inflexion and $(3,27)$ is a local maximum.
ii. (2 marks)

Points of inflexion occur when $\frac{d^{2} y}{d x^{2}}=0$:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=24 x-12 x^{2}=12 x(2-x) \\
\therefore x=0,2
\end{gathered}
$$

(c) i. (2 marks)

$$
\begin{gathered}
f(x)=\int\left(2 x+x^{-2}\right) d x=x^{2}-x^{-1}+C \\
f(1)=1-1^{-1}+C=2 \\
\therefore C=2 \\
\therefore f(x)=x^{2}-\frac{1}{x}+2
\end{gathered}
$$

$\checkmark \quad[-1]$ if missing arbitrary constant.

$$
\int x^{\frac{1}{3}} d x=\frac{3}{4} x^{\frac{4}{3}}+C
$$

ii. (2 marks)
$\checkmark \quad[-1]$ if missing arbitrary constant.

$$
\int 3 \sec ^{2} \frac{x}{3} d x=9 \tan \frac{x}{3}+C
$$

When $x=2$,

$$
\begin{aligned}
y & =\left.x^{3}(4-x)\right|_{x=2} \\
& =2^{3}(4-2)=16
\end{aligned}
$$

Hence points of inflexion occur at $(0,0)$ and $(2,16)$ as concavity changes at these two pts.
iii. (3 marks)
$\checkmark \quad[-1]$ for each omission from requirements of the question, provided graph is correct.

Question 14 (Berry)

(a) (2 marks)

$$
\begin{aligned}
\int_{1}^{3} f(x) d x & =\frac{h}{3}\left(y_{0}+4 \sum y_{\text {odd }}+2 \sum y_{\text {even }}+y_{\ell}\right) \\
& =\frac{\frac{1}{2}}{3}(0+1+4(3+2)+2(5)) \\
& =\frac{31}{6}
\end{aligned}
$$

iii. (1 mark)

4 solutions.
(b) i. (2 marks)
(d) (2 marks)

$$
\left\{\begin{array}{l}
y=-x^{2}+2 x+8 \\
y=x+6
\end{array}\right.
$$

$\checkmark \quad$ [1] for answer in radians.
$\checkmark \quad$ [1] for answer in degrees.
Solve by equating,

$$
\begin{gathered}
-x^{2}+2 x+8=x+6 \\
x^{2}-x+2=0 \\
(x-2)(x+1)=0 \\
\therefore x=-1,2
\end{gathered}
$$

$$
\begin{gathered}
A=\frac{1}{2} r^{2} \theta \\
20=\frac{1}{2} \times 4^{2} \times \theta \\
\theta=\frac{5}{4}=\frac{5}{4} \times \frac{180^{\circ}}{\pi} \approx 71^{\circ}
\end{gathered}
$$

ii. (3 marks)

$$
\begin{aligned}
A= & \left|\int_{-1}^{2}\left(x^{2}-x+2\right) d x\right| \\
= & \left|\left[-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+2 x\right]_{-1}^{2}\right| \\
= & \left\lvert\,-\frac{1}{3}\left(2^{3}-(-1)^{3}\right)\right. \\
& +\frac{1}{2}\left(2^{2}-(-1)^{2}\right) \\
& +2(2-(-1)) \mid \\
= & \left|-3+\frac{3}{2}+6\right|=\frac{9}{2}
\end{aligned}
$$

(c) i. (2 marks)

$$
T=\frac{2 \pi}{2}=\pi \quad a=3
$$

ii. (3 marks)
$\checkmark \quad$ [1] for shape.
$\checkmark \quad$ [1] for correct period.
$\checkmark \quad$ [1] for amplitude.

Question 15 (Ziaziaris)

(a) (2 marks)
$\checkmark \quad$ [1] for resolving into powers of 2.
$\checkmark \quad$ [1] for final answer.

$$
\begin{gathered}
8^{x}=16^{x+1} \times 4^{-x} \\
\left(2^{3}\right)^{x}=\left(2^{4}\right)^{x+1} \times\left(2^{2}\right)^{-x} \\
2^{3 x}=2^{4 x+4} \times 2^{-2 x} \\
2^{3 x}=2^{2 x+4} \\
3 x=2 x+4 \\
x=4
\end{gathered}
$$

(b) i. (3 marks)
$\checkmark \quad$ [1] for each correct reason.
In $\triangle A B E$ and $\triangle A D C$

- $\angle C A D$ (common)
- Let $\angle B C D=\theta$. From the information,

$$
\angle B E D=180^{\circ}-\theta
$$

Hence $\angle A E B=\theta$ (supplementary), and $\angle A C D=\angle A E B$.

- $\therefore \angle A B E=\angle A D C$
(remaining \angle)
Hence $\triangle A B E\|\| \triangle A C D$ (equiangular)
ii. (3 marks)
$\checkmark \quad$ [1] for ratio of lengths.
$\checkmark \quad$ [1] for setting up quadratic.
$\checkmark \quad$ [1] for final answer.
Let $A B=x$. As the ratio of the side lengths of corresponding sides
are equal,

$$
\begin{gathered}
\frac{A B}{A D}=\frac{A E}{A C} \\
\frac{x}{8}=\frac{3}{x+2} \\
x(x+2)=24 \\
x^{2}+2 x-24=0 \\
(x+6)(x-4)=0 \\
\therefore x=4,-6
\end{gathered}
$$

As $x>0$ (length), $\therefore x=4$ only.
(c) i. (1 mark)

$$
\frac{d}{d x}\left(\log _{e}(\sin x)\right)=\frac{\cos x}{\sin x}
$$

ii. (2 marks)

$$
\begin{aligned}
\int \cot x d x & =\int \frac{\cos x}{\sin x} d x \\
& =\log _{e}(\sin x)+C
\end{aligned}
$$

(d) (4 marks)

$$
\begin{gathered}
y=\frac{1}{x^{2}}-2 \\
y+2=\frac{1}{x^{2}} \\
x^{2}=\frac{1}{y+2} \\
V=\pi \int_{-1}^{2} x^{2} d y=\pi \int_{-1}^{2} \frac{d y}{y+2} \\
=\pi\left[\log _{e}(y+2)\right]_{-1}^{2} \\
=\pi\left(\log _{e} 4-\log _{e} 1\right) \\
=\pi \log _{e} 4
\end{gathered}
$$

Question 16 (Lam)
(b) i. (2 marks)
(a) i. (1 mark)

$$
\begin{gathered}
\sin \left(x+15^{\circ}\right)=\cos 24^{\circ}=\sin \left(90^{\circ}-24^{\circ}\right) \\
x+15^{\circ}=66^{\circ} \\
\therefore x=51^{\circ}
\end{gathered}
$$

ii. (3 marks)

$$
\begin{aligned}
& A_{\triangle C A B}=\frac{1}{2} \times 100^{2} \sin \alpha=5000 \sin \alpha \\
& A_{\triangle C A D}=\frac{1}{2} \times 100^{2} \sin \left(\frac{\pi}{2}-\alpha\right)=5000 \cos \alpha \\
& \therefore A_{A B C D}=5000(\sin \alpha+\cos \alpha)
\end{aligned}
$$

iii. (4 marks)

$$
\begin{aligned}
& A_{A B C D}=5000(\sin \alpha+\cos \alpha) \\
& \therefore \frac{d A}{d \alpha}=5000(\cos \alpha-\sin \alpha)
\end{aligned}
$$

Stationary pts occur when $\frac{d A}{d \alpha}=0$, i.e.

$$
\begin{gathered}
5000(\cos \alpha-\sin \alpha)=0 \\
\underset{\rightarrow}{\cos \alpha} \alpha=\underset{\oplus}{\sin \alpha} \alpha \\
\tan \alpha \alpha=1 \\
\therefore \alpha=\frac{\pi}{4}
\end{gathered}
$$

α		$\frac{\pi}{4}$	
$\frac{d A}{d \alpha}$	+	0	-
A			

- $\alpha<\frac{\pi}{4}, \frac{d A}{d \alpha}<0$.
- $\alpha>\frac{\pi}{4}, \frac{d A}{d \alpha}>0$.

Maximum area occurs when

$$
\begin{aligned}
A & =\left.5000(\sin \alpha+\cos \alpha)\right|_{\alpha=\frac{\pi}{4}} \\
& =5000\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=5000\left(\frac{2}{\sqrt{2}}\right) \\
& =5000 \sqrt{2} \mathrm{~m}^{2}
\end{aligned}
$$

ii. $(\alpha) \quad(1 \mathrm{mark})$
(β) (2 marks)
$2 e^{x}+8 e^{-x}+32 e^{-3 x} \ldots$

$$
\begin{gathered}
\frac{T_{2}}{T_{1}}=\frac{8 e^{-x}}{2 e^{x}}=4 e^{-2 x} \\
\frac{T_{3}}{T_{2}}=\frac{32 e^{-3 x}}{8 e^{-x}}=4 e^{-2 x} \\
\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}
\end{gathered}
$$

$\therefore 2 e^{x}+8 e^{-x}+32 e^{-3 x} \cdots$ is a geometric series with $a=2 e^{x}$ and $r=4 e^{-2 x}$.
$\checkmark \quad[1]$ for $\left|4 e^{-2 x}\right|<1$.
\checkmark [1] for justification.
A geometric series has a limiting sum when $-1<r<1$; i.e.

$$
-1<4 e^{-2 x}<1
$$

By inspecting the graph in the previous part, $-1<4 e^{-2 x}<1$ when $x>\log _{e} 2$.
\therefore limiting sum exists when

$$
x>\log _{e} 2
$$

(γ) (2 marks)
\checkmark [1] for recalling formula
$\checkmark \quad$ [1] for final answer

$$
S=\frac{a}{1-r}=\frac{2 e^{x}}{1-4 e^{-2 x}}
$$

