

MATHEMATICS

2012 HSC Course Assessment Task 3 (Trial Examination) June 21, 2012

General instructions

- Working time 3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt **all** questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

(SECTION I)

• Mark your answers on the answer sheet provided (numbered as page 9)

(SECTION II)

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER: **# BOOKLETS USED:** Class (please \checkmark) \bigcirc 12M3C – Ms Ziaziaris \bigcirc 12M2A – Mr Berry \bigcirc 12M3D – Mr Lowe \bigcirc 12M3E – Mr Lam

QUESTION 1-10 11 12131416**Total** 15MARKS 10 151515151515100

Marker's use only.

Section I: Objective response

Ma	Mark your answers on the multiple choice sheet provided. Marks				
1.	What is the value of	f -8 - 10 ?			1
	(A) 2	(B) 1	(C) -1	(D) -2	
2.	What is the sum of	the exterior angles of	a polygon?		1
	(A) 90°	(B) 180°	(C) 360°	(D) none of these	
3.	Which conditions m	ake the quadratic y =	$=ax^2+bx+c$ positiv	e definite?	1
	(A) $a < 0, \Delta < 0$	(B) $a < 0, \Delta > 0$	(C) $a > 0, \Delta < 0$	(D) $a > 0, \Delta > 0$	
4.	Which of the followi	ing is not a condition	for congruent triang	les?	1
	(A) SSS	(B) AAA	(C) SAS	(D) AAS	
5.	What is 1.9926 to tw	wo significant figures?)		1
	(A) 2.0	(B) 1.9	(C) 2.09	(D) 2.01	
6.	Which of the followi and a fixed line?	ng is the locus of a po	pint that is equidistant	t from a fixed point	1
	(A) a parabola	(B) a hyperbola	(C) a circle	(D) an ellipse	
7.	Evaluate $\lim_{x \to \infty} \frac{3x^5 - 6x}{6x}$	$\frac{-2x^2+7x-3}{5-3x+7}$.			1
	(A) ∞	(B) 0	(C) $\frac{1}{2}$	(D) 2	
8.	Which of the followi a variable <i>P</i> ?	ing conditions for $\frac{dP}{dt}$	and $\frac{d^2P}{dt^2}$ describe the	e slowing growth of	1
	(A) $\frac{dP}{dt} > 0$ and $\frac{dP}{dt}$	$\frac{d^2P}{dt} > 0.$	(C) $\frac{dP}{dt} > 0$ and $\frac{d}{dt}$	$\frac{^{2}P}{dt} < 0.$	
	(B) $\frac{dP}{dt} < 0$ and $\frac{d}{dt}$	$\frac{d^2P}{dt} < 0.$	(D) $\frac{dP}{dt} < 0$ and $\frac{d}{dt}$	$\frac{^{2}P}{dt} > 0.$	
9.	If $a > b$, which of th	e following is always	true?		1
	(A) $a^2 > b^2$	(B) $\frac{1}{a} > \frac{1}{b}$	(C) $-a > -b$	(D) $2^a > 2^b$	
10.	What is the exact v and $x = b$ $(b > 1)$ is		beneath the curve y :	$=\frac{2}{x}$ between $x=1$	1
	(A) $e^{\frac{3}{2}}$	(B) e^2	(C) $e^{\frac{5}{2}}$	(D) e^{3}	

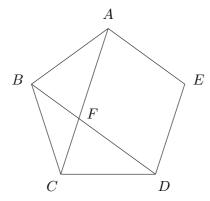
Section II: Short answer

Question 11 (15 Marks)	Commence a NEW page.	Marks

- (a) Solve the equation $x^2 + \frac{9}{x^2} = 10$.
- (b) D(0,-2), E(4,0) & F(2,4) are three points on the number plane.

$$\begin{array}{c} y \\ \bullet F(2,4) \\ \hline \\ \hline \\ E(4,0) \end{array} \xrightarrow{} x \\ \bullet D(0,-2) \end{array}$$

- i. Calculate the length of the interval DF.1ii. Calculate the gradient of DF.1iii. Write the equation of the line DF in general form.1iv. Calculate the perpendicular distance from E to the line DF.2v. Calculate the area of $\triangle DEF$.2
- (c) ABCDE is a regular pentagon. The diagonals AC and BD intersect at F.



Copy or trace this diagram into your writing booklet. By giving full reasons for your answer,

i. Prove that $\angle ABC = 108^{\circ}$.2ii. Find the size of $\angle BAC$.1

(d) Find the exact value of $3 \tan 210^\circ + 2 \sin 300^\circ$.

NORTH SYDNEY BOYS' HIGH SCHOOL

 $\mathbf{2}$

3

Ques	tion	12 (15 Marks) Commence a NEW page.	Marks
(a)		the values of $p, p > 0$ for which the roots of the equation $x^2 - px + p = 0$	
	are i.	opposite in sign.	1
	ii.	real	2
(b)	i.	Sketch the parabola with equation	2
		$(y-2)^2 = 2(x+2)$	
		Show the vertex of the parabola on your sketch.	
	ii.	Find the coordinates of the focus and the equation of the directrix of the parabola.	e 2
(c)	The	sum to n terms of a sequence of numbers is given by $S_n = 102n - 2n^2$.	
	i.	Find an expression for T_n , the <i>n</i> -th term of the sequence.	2
	ii.	What type of a sequence is this?	1
(d)	Diffe	rentiate the following expressions:	
	i.	$\frac{2}{x^3}$	1
	ii.	$3\cos 4x$	2
	iii.	$\log_e(2x)$	2

Que	stion	13 (15 Marks)	Commence a NEW page.	Marks
(a)	For t	the curve $y = x^3(4-x)$		
	i.	Find the stationary point(s) a	and determine their nature.	3
	ii.	Find the point(s) of inflexion		2
	iii.	Draw a neat sketch of the cur axes, any stationary points as	ve showing the intercepts with the coordinat nd any point(s) of inflexion.	e 3
(b)	Find	$f(x)$ if $f'(x) = 2x + \frac{1}{x^2}$ and the	he curve passes through the point $(1, 2)$.	3
(c)	Find	the primitive of		
	i.	$\sqrt[3]{x}$		2
	ii.	$\sqrt[3]{x}$ $3\sec^2\frac{x}{3}$		2

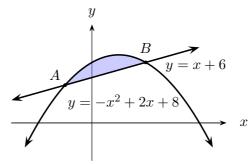
Question 14 (15 Marks)

Commence a NEW page.

(a) Use Simpson's Rule with five function values to evaluate $\int_{1}^{3} f(x) dx$ given the **2** following table:

Π	x	1	1.5	2	2.5	3	1
	f(x)	0	3	5	2	1	

(b) The diagram below shows the graphs of $y = -x^2 + 2x + 8$ and y = x + 6.



- i. Show that the x coordinate of A and B are x = -1 and x = 2 respectively. 2
- ii. Hence or otherwise, find the shaded area bounded by the curves and the **3** straight line.
- (c) i. State the period and amplitude of $y = 3\sin 2x$. 2
 - ii. Draw a neat sketch of $y = 3\sin 2x$, where $0 \le x \le 2\pi$. 3
 - iii. Hence or otherwise, state the number of solutions to the equation

$$3\sin 2x = \frac{2}{3}$$

within the domain $0 \le x \le 2\pi$.

(d) Find the angle subtended at the centre of the circle of sector with radius 4 cm **2** and area 20 cm^2 . Give your answer correct to the nearest degree.

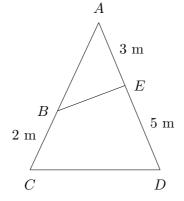
1

Marks

Commence a NEW page.

Question 15 (15 Marks)

- (a) Solve $8^x = 16^{x+1} \times 4^{-x}$.
- (b) In this diagram, $\angle BCD + \angle BED = 180^{\circ}$.



i. Prove that $\triangle ABE$ is similar to $\triangle ADC$.

3

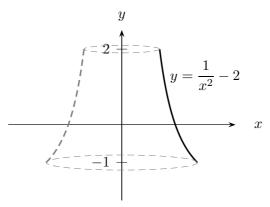
 $\mathbf{2}$

ii. Given that
$$AE = 3$$
 m, $ED = 5$ m and $BC = 2$ m, calculate the length of AB .

(c) i. Evaluate
$$\frac{d}{dx} (\log_e (\sin x))$$
. 1

ii. Hence or otherwise, find
$$\int \cot x \, dx$$
.

(d) A liquor bottle is obtained by rotating about the y axis the part of the curve 4 $y = \frac{1}{x^2} - 2$ between y = -1 and y = 2.



Find the exact volume of the bottle.

Examination continues overleaf...

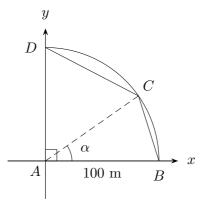
 $\mathbf{2}$

Marks

Question 16 (15 Marks)

(b)

(a) ABCD is a quadrilateral inscribed in a quarter of a circle centred at A with radius 100 m. The points B and D lie on the x and y axes and the point C moves on the circle such that $\angle CAB = \alpha$ as shown in the diagram below.



i.	Solve the equation $\sin(x+15^\circ) = \cos 24^\circ$.	1
ii.	Show that the area of the quadrilateral $ABCD$ can be expressed as	3
	$A = 5000(\sin\alpha + \cos\alpha)$	
iii.	Show that the maximum area of this quadrilateral is $5000\sqrt{2}$ m ² .	4
i.	Sketch the curve $y = 4e^{-2x}$.	2
ii.	Consider the series $2e^x + 8e^{-x} + 32e^{-3x} + \cdots$.	
	α) Show that this series is geometric.	1
	β) Find the values of x for which this series has a limiting sum.	2
	γ) Find the limiting sum of this series in terms of x.	2

End of paper.

7

Marks

STANDARD INTEGRALS

$$\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1} + C, \qquad n \neq -1; \quad x \neq 0 \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx \qquad \qquad = \ln x + C, \qquad \qquad x > 0$$

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a}e^{ax} + C, \qquad \qquad a \neq 0$$

$$\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax + C, \qquad a \neq 0$$

$$\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax + C, \qquad a \neq 0$$

$$\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax + C, \qquad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C, \qquad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx \qquad = \sin^{-1} \frac{x}{a} + C, \qquad \qquad a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \qquad = \ln\left(x + \sqrt{x^2 - a^2}\right) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$$

NOTE: $\ln x = \log_e x, x > 0$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "●"

STUDENT NUMBER:

Class (please \checkmark)

○ 12M2A – Mr Berry

- $\bigcirc~12\mathrm{M3C}$ M
s Ziaziaris
- $\bigcirc~12\mathrm{M3D}-\mathrm{Mr}$ Lowe
- $\bigcirc~12\mathrm{M3E}-\mathrm{Mr}$ Lam

1 –	\bigcirc	B	C	\bigcirc
2 -	\bigcirc	B	\bigcirc	\bigcirc
3 -	\bigcirc	B	C	\bigcirc
4 -	\bigcirc	B	C	\bigcirc
5 -	(A)	B	C	\bigcirc
6 –	(A)	B	C	\bigcirc
7 -	(A)	B	C	\bigcirc
8 -	(A)	B	C	\bigcirc
9 -	(A)	B	C	\bigcirc
10 -	\bigcirc	B	\bigcirc	\bigcirc

10

Suggested Solutions

Section I

(Lowe) **1.** (D) **2.** (C) **3.** (D) **4.** (B) **5.** (A) 6. (A) 7. (C) 8. (C) 9. (D) 10. (A)

Question 11 (Lowe)

- (a) (3 marks)
 - \checkmark [1] for quartic.
 - \checkmark [1] for final solutions.

$$x_{x^{2}}^{2} + \frac{9}{x^{2}} = \underset{\times x^{2}}{10}$$
$$x^{4} + 9 = 10x^{2}$$
$$x^{4} - 10x^{2} + 9 = 0$$
$$(x^{2} - 9)(x^{2} - 1) = 0$$
$$\therefore x = \pm 1, \pm 3$$

(b) i.
$$(1 \text{ mark})$$

$$DF = \sqrt{(2-0)^2 + (4-(-2))^2}$$
$$= \sqrt{2^2 + 6^2} = \sqrt{40}$$
$$= 2\sqrt{10}$$

ii. (1 mark)

$$m_{DF} = \frac{6}{2} = 3$$

iii. (1 mark)

$$\frac{y-4}{x-2} = 3$$
$$y-4 = 3x - 6$$
$$3x - y - 2 = 0$$

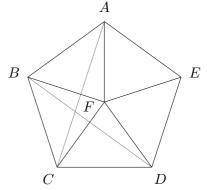
- iv. (2 marks)
 - ✓ [1] for correctly recalling perpendicular dist formula.
 - \checkmark [1] for final answer.

$$d_{\perp} = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$
$$= \frac{|3(4) + (-1)(0) - 2}{\sqrt{3^2 + 1^2}}$$
$$= \frac{10}{\sqrt{10}} = \sqrt{10}$$

- v. (2 marks)
 - \checkmark [1] for using parts (iii) & (iv)
 - \checkmark [1] for final answer.

$$A = \frac{1}{2} \times DF \times d_{\perp}$$
$$= \frac{1}{2} \times 2\sqrt{10} \times \sqrt{10}$$
$$= 10 \text{ units}^2$$

- i. (2 marks) (c)
 - Divide pentagon five intoequilateral triangles.



- Apex angle of one of the triangles $\frac{360^{\circ}}{5} = 72^{\circ}.$
- Angle sum of the two base angles is thus

$$180^{\circ} - 72^{\circ} = 108^{\circ}$$

- ii. (1 mark)

 - △BAC is isosceles.
 ∴ ∠BAC = ^{180°-108°}/₂ = 36°.
- (d) (2 marks)

$$3\tan 210^\circ + 2\sin 300^\circ$$
$$= 3 \times \left(\frac{1}{\sqrt{3}}\right) + 2 \times \left(-\frac{\sqrt{3}}{2}\right)$$
$$= \frac{3}{\sqrt{3}} - \sqrt{3} = 0$$

LAST UPDATED JUNE 26, 2012

Question 12 (Lowe)

(a) i. (1 mark)

$$x^{2} - px + p = 0$$

$$\alpha = -\beta$$

$$\therefore \alpha + \beta = 0 = -\frac{b}{a} = p$$

$$\therefore p = 0$$

But as p > 0, therefore there are no real solutions.

- ii. (2 marks)
 - $\ \, \checkmark \quad [1] \ \, \text{for} \ p \leq 0 \ \, \text{or} \ p \geq 4. \\ \ \, \checkmark \quad [1] \ \, \text{justify why} \ p \geq 4 \ \, \text{only}.$

$$\Delta \ge 0$$

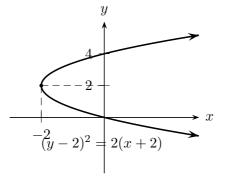
$$\therefore b^2 - 4ac = p^2 - 4p \ge 0$$

$$p(p-4) \ge 0$$

$$\therefore p \le 0 \text{ or } p \ge 4$$

But as p > 0, hence $p \ge 4$ only.

(b) i. (2 marks)



ii. (2 marks)

$$4a = 2$$

$$\therefore a = \frac{1}{2}$$

$$S\left(-\frac{3}{2}, 2\right)$$

Directrix is $x = -\frac{5}{2}$.

(c) i. (2 marks)

$$S_n = 102n - 2n^2$$
$$T_n = S_n - S_{n-1}$$
$$= 102n - 2n^2$$
$$-\left(102(n-1) - 2(n-1)^2\right)$$
$$= 102n - 2n^2$$
$$-\left(102n - 102 - 2(n^2 - 2n + 1)\right)$$
$$= -2n^2 + 102 + 2n^2 - 4n + 2$$
$$= 104 - 4n$$

ii.
$$(1 \text{ mark})$$

$$T_1 = 104 - 4(1) = 100$$
$$T_2 = 104 - 4(2) = 96$$
$$T_3 = 104 - 4(3) = 92$$
$$T_3 - T_2 = T_2 - T_1$$

Arithmetic sequence.

(d) i. (1 mark)

$$\frac{d}{dx}\left(2x^{-3}\right) = -6x^{-4}$$

ii. (2 marks)

$$\frac{d}{dx}\left(3\cos 4x\right) = -12\sin 4x$$

iii. (2 marks)

$$\frac{d}{dx}\left(\log_e 2x\right) = \frac{d}{dx}\left(\log_e 2 + \log_e x\right) = \frac{1}{x}$$

Question 13 (Berry)

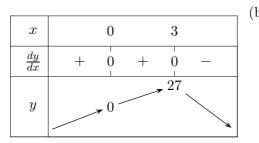
(a) i. (3 marks)

$$y = 4x^{3} - x^{4} = x^{3}(4 - x)$$
$$\frac{dy}{dx} = 12x^{2} - 4x^{3}$$

Stationary pts occur when $\frac{dy}{dx} = 0$:

$$4x^2(3-x) = 0$$

$$\therefore x = 0, 3$$



Hence (0,0) is a horizontal point of inflexion and (3,27) is a local maximum.

ii. (2 marks) Points of inflexion occur when $\frac{d^2y}{dx^2} = 0:$

$$\frac{d^2y}{dx^2} = 24x - 12x^2 = 12x(2-x)$$

 $\therefore x = 0, 2$

x		0		2	
d^2y	_	0	+	0	_
$\frac{d^2y}{dx^2}$			\smile		

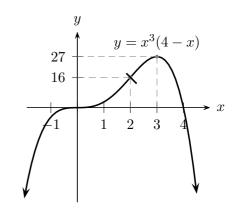
When x = 2,

$$y = x^{3}(4-x)\Big|_{x=2}$$

= 2³(4-2) = 16

Hence points of inflexion occur at (0,0) and (2,16) as concavity changes at these two pts.

- iii. (3 marks)
 - \checkmark [-1] for each omission from requirements of the question, provided graph is correct.



(b) (3 marks)

(c)

- \checkmark [1] for correct integral.
- ✓ [1] for correct value of C.
- \checkmark [1] for final answer.

$$f(x) = \int (2x + x^{-2}) dx = x^2 - x^{-1} + C$$

$$f(1) = 1 - 1^{-1} + C = 2$$

$$\therefore C = 2$$

$$\therefore f(x) = x^2 - \frac{1}{x} + 2$$

i. (2 marks) \checkmark [-1] if missing arbitrary constant.

$$\int x^{\frac{1}{3}} \, dx = \frac{3}{4}x^{\frac{4}{3}} + C$$

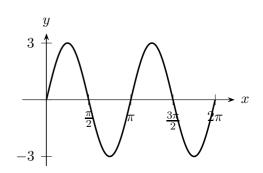
ii. (2 marks) \checkmark [-1] if missing arbitrary constant.

$$\int 3\sec^2\frac{x}{3}\,dx = 9\tan\frac{x}{3} + C$$

Question 14 (Berry)

(a) (2 marks)

$$\int_{1}^{3} f(x) dx = \frac{h}{3} (y_{0} + 4 \sum y_{\text{odd}} + 2 \sum y_{\text{even}} + y_{\ell})$$
$$= \frac{\frac{1}{2}}{3} (0 + 1 + 4(3 + 2) + 2(5))$$
$$= \frac{31}{6}$$



 $\frac{1}{2}r^{2}\theta$

- iii. (1 mark)4 solutions.
- (d) (2 marks)
 - \checkmark [1] for answer in radians.
 - \checkmark [1] for answer in degrees.

$$A = \frac{1}{2}r^{2}\theta$$
$$20 = \frac{1}{2} \times 4^{2} \times \theta$$
$$\theta = \frac{5}{4} = \frac{5}{4} \times \frac{180^{\circ}}{\pi} \approx 71^{\circ}$$

(b) i. (2 marks)

$$\begin{cases} y = -x^2 + 2x + 8\\ y = x + 6 \end{cases}$$

Solve by equating,

$$-x^{2} + 2x + 8 = x + 6$$

$$x^{2} - x + 2 = 0$$

(x - 2)(x + 1) = 0
∴ x = -1, 2

(3 marks)ii.

$$A = \left| \int_{-1}^{2} \left(x^{2} - x + 2 \right) dx \right|$$

= $\left| \left[-\frac{1}{3}x^{3} + \frac{1}{2}x^{2} + 2x \right]_{-1}^{2}$
= $\left| -\frac{1}{3} \left(2^{3} - (-1)^{3} \right) + \frac{1}{2} \left(2^{2} - (-1)^{2} \right) + 2(2 - (-1)) \right|$
= $\left| -3 + \frac{3}{2} + 6 \right| = \frac{9}{2}$

(c) i. (2 marks)

$$T = \frac{2\pi}{2} = \pi \qquad a = 3$$

- ii. (3 marks)
 - \checkmark [1] for shape.
 - \checkmark [1] for correct period.
 - [1] for amplitude. \checkmark

Question 15 (Ziaziaris)

(a) (2 marks)

- ✓ [1] for resolving into powers of 2.
- \checkmark [1] for final answer.

$$8^{x} = 16^{x+1} \times 4^{-x}$$

$$(2^{3})^{x} = (2^{4})^{x+1} \times (2^{2})^{-x}$$

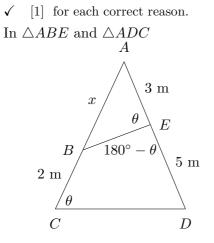
$$2^{3x} = 2^{4x+4} \times 2^{-2x}$$

$$2^{3x} = 2^{2x+4}$$

$$3x = 2x + 4$$

$$x = 4$$

(b) i. (3 marks)



∠CAD (common)
Let ∠BCD = θ. From the information,

$$\angle BED = 180^{\circ} - \theta$$

Hence $\angle AEB = \theta$ (supplementary), and $\angle ACD = \angle AEB$.

• $\therefore \angle ABE = \angle ADC$ (remaining \angle)

Hence $\triangle ABE \parallel \mid \triangle ACD$ (equiangular)

- ii. (3 marks)
 - \checkmark [1] for ratio of lengths.
 - \checkmark [1] for setting up quadratic.
 - \checkmark [1] for final answer.

Let AB = x. As the ratio of the side lengths of corresponding sides

are equal,

$$\frac{AB}{AD} = \frac{AE}{AC}$$
$$\frac{x}{8} = \frac{3}{x+2}$$
$$x(x+2) = 24$$
$$x^2 + 2x - 24 = 0$$
$$(x+6)(x-4) = 0$$
$$\therefore x = 4, -6$$

As x > 0 (length), $\therefore x = 4$ only.

i. (1 mark)

(c)

$$\frac{d}{dx}\left(\log_e\left(\sin x\right)\right) = \frac{\cos x}{\sin x}$$

ii. (2 marks)

$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx$$
$$= \log_e (\sin x) + C$$

(d) (4 marks)

$$y = \frac{1}{x^2} - 2$$

$$y + 2 = \frac{1}{x^2}$$

$$x^2 = \frac{1}{y+2}$$

$$V = \pi \int_{-1}^2 x^2 \, dy = \pi \int_{-1}^2 \frac{dy}{y+2}$$

$$= \pi \left[\log_e(y+2) \right]_{-1}^2$$

$$= \pi \left(\log_e 4 - \log_e 1 \right)$$

$$= \pi \log_e 4$$

(b)

Question 16 (Lam)

(a) i. (1 mark)

$$\sin(x + 15^\circ) = \cos 24^\circ = \sin(90^\circ - 24^\circ)$$
$$x + 15^\circ = 66^\circ$$
$$\therefore x = 51^\circ$$

ii. (3 marks)

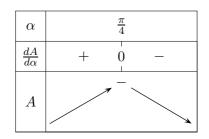
$$A_{\triangle CAB} = \frac{1}{2} \times 100^2 \sin \alpha = 5\,000 \sin \alpha \qquad \text{ii.}$$
$$A_{\triangle CAD} = \frac{1}{2} \times 100^2 \sin \left(\frac{\pi}{2} - \alpha\right) = 5\,000 \cos \alpha$$
$$\therefore A_{ABCD} = 5\,000\,(\sin \alpha + \cos \alpha)$$

iii. (4 marks)

$$A_{ABCD} = 5\,000\,(\sin\alpha + \cos\alpha)$$
$$\therefore \frac{dA}{d\alpha} = 5\,000(\cos\alpha - \sin\alpha)$$

Stationary pts occur when $\frac{dA}{d\alpha} = 0$, i.e.

$$5\ 000(\cos\alpha - \sin\alpha) = 0$$
$$\cos\alpha = \sin\alpha$$
$$\tan\alpha = 1$$
$$\therefore \alpha = \frac{\pi}{4}$$



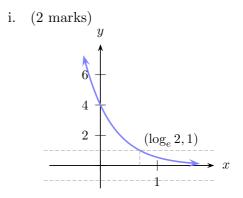
•
$$\alpha < \frac{\pi}{4}, \frac{dA}{d\alpha} < 0.$$

• $\alpha > \frac{\pi}{4}, \frac{dA}{d\alpha} > 0.$

Maximum area occurs when

$$A = 5\,000\,(\sin\alpha + \cos\alpha)\Big|_{\alpha = \frac{\pi}{4}}$$

= 5\,000\,\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) = 5\,000\,\left(\frac{2}{\sqrt{2}}\right)
= 5\,000\sqrt{2}\,m^2



(
$$\alpha$$
) (1 mark)
 $2e^{x} + 8e^{-x} + 32e^{-3x} \cdots$

$$\frac{T_2}{T_1} = \frac{8e^{-x}}{2e^x} = 4e^{-2x}$$
$$\frac{T_3}{T_2} = \frac{32e^{-3x}}{8e^{-x}} = 4e^{-2x}$$
$$\frac{T_2}{T_1} = \frac{T_3}{T_2}$$

 $\therefore 2e^x + 8e^{-x} + 32e^{-3x} \cdots$ is a geometric series with $a = 2e^x$ and $r = 4e^{-2x}$.

(β) (2 marks) \checkmark [1] for $|4e^{-2x}| < 1$.

 \checkmark [1] for justification.

A geometric series has a limiting sum when -1 < r < 1; i.e.

$$-1 < 4e^{-2x} < 1$$

By inspecting the graph in the previous part, $-1 < 4e^{-2x} < 1$ when $x > \log_e 2$.

 \therefore limiting sum exists when

 $x>\log_e 2$

- (γ) (2 marks)
 - \checkmark [1] for recalling formula
 - \checkmark [1] for final answer

$$S = \frac{a}{1-r} = \frac{2e^x}{1-4e^{-2x}}$$