MATHEMATICS
 2015 HSC Course Assessment Task 3 (Trial Examination)
 June 18, 2015

General instructions

- Working time -3 hours.
(plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 13)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:

\# BOOKLETS USED:

Class (please \boldsymbol{V})

○ 12M2A - Miss Lee
O 12M3A - Mrs Ziaziaris
○ 12M3B - Mr Berry
○ 12M3C - Mr Zuber

Marker's use only.

QUESTION	$1-10$	11	12	13	14	15	16	Total
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$

Section I

10 marks

Attempt Question 1 to 10
Allow approximately 15 minutes for this section

Mark your answers on the answer sheet provided.

Questions

Marks

1. Solving the equation $2^{2 x}-5\left(2^{x}\right)+4=0$ gives 2 solutions for x. Which pair of solutions is correct?
(A) $x=1$ or $x=0$
(C) $x=2$ or $x=0$
(B) $x=\log _{2} 2$ or $x=\log _{2} 1$
(D) $x=4$ or $x=1$
2. The equation of the graph below is given by $y=A \cos B x+3$.

Which of the following are the values of A and B ?
(A) $A=3, B=2$
(C) $A=6, B=3$
(B) $A=-3, B=2$
(D) $A=-6, B=\pi$
3. A parabola has its focus at $(0,2)$. The equation of its directrix is $x=-2$.

Which of the following is the equation of the parabola?
(A) $(x+1)^{2}=4(y-2)$
(C) $(y+1)^{2}=4(x-2)$
(B) $x^{2}=8 y$
(D) $y-2)^{2}=4(x+1)$
4. The value of $\log _{3} 5000$ is closest to:
(A) 1.5
(C) 2.2
(B) 7.8
(D) 5.7
5. Examine the graph of $f(x)$ supplied.

Which of the graphs below best represents $f^{\prime}(x)$?
(A)

(C)

(B)

(D)

6. A circle has the equation $x^{2}-8 x+y^{2}-1=0$. It has a radius of:
(A) 17
(C) 1
(B) 4
(D) $\sqrt{17}$
7. If $\sin \theta=\frac{5}{13}$ and $\cos \theta<0$, what is the exact value of $\tan \theta$?
(A) $\frac{5}{12}$
(C) $-\frac{5}{12}$
(B) $\frac{12}{5}$
(D) $-\frac{12}{5}$
8. Suppose that the point $P(a, f(x))$ lies on the curve $y=f(x)$.

If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$, which of the following statements describes the point P on the graph of $y=f(x)$?
(A) P is a maximum turning point
(C) P is a stationary point of inflexion
(B) P is a minimum turning point
(D) P is a point of inflexion
9. A regular hexagon is cut from a circle with centre O, such that each vertex of the hexagon lies on the circumference of the circle.

What percentage of the circle (to the nearest whole number) is the area of the hexagon?
(A) 85%
(C) 83%
(B) 84%
(D) 82%
10. The value of x in the diagram to the nearest whole number is:

(A) 13
(C) 25
(B) 153
(D) 10

Section II

90 marks

Attempt Questions 11 to 16

Allow approximately 2 hours and 45 minutes for this section.
Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)

Commence a NEW page.
Marks
(a) Solve $|2 x-1|<5$
(b) Fully factorise $2 x^{3}-54$
(c) Simplify fully $\frac{1-\cos ^{2} \theta}{\sin \theta \cos \theta}$
(d) State the domain of $f(x)=\sqrt{81-x^{2}}$
(e) Rationalise the denominator and simplify $\frac{1-\sqrt{2}}{3+\sqrt{2}}$
(f) The first term of an arithmetic series is 3, and the ninth term is five times the second term. Find the common difference.
(g) Differentiate the following with respect to x. Simplify where possible.
i. $\sqrt{1-2 x}$
ii. $\frac{e^{2 x}}{x^{2}}$

Question 12 (15 Marks)
Commence a NEW page.
(a) Evaluate the following integrals:
i. $\int\left(\sec ^{2} x+3 \cos x\right) d x$
ii. $\int 2^{x} d x$
(b) Evaluate $\int_{2}^{7} \frac{x}{x^{2}-1} d x$, leaving your answer in the simplest exact form.
(c) For the equation $2 x^{2}+3 x-7=0$, evaluate:
i. $\alpha+\beta$
ii. $\alpha \beta$
iii. $(\alpha-2)(\beta-2)$
(d) A function is defined by $f(x)=2 x^{3}-6 x+3$.
i. Find the coordinates of the turning points of the graph $y=f(x)$ and determine their nature.
ii. Hence sketch the graph of $y=f(x)$, showing the turning points and the y intercept.
(a) The points A and B have coordinates $(1,0)$ and $(7,4)$ respectively. The angle between the line $A B$ and the x-axis is θ.
i. Find the gradient of the line $A B$.
ii. Calculate the size of angle θ in degrees. $\mathbf{1}$
iii. Find the length of interval $A B$. $\mathbf{1}$
iv. Find the equation of the line $A B$
v. Find the coordiantes of C, the midpoint of $A B$
(b) Copy the diagram below into your examination booklet.

i. Prove $\triangle A B C \| \triangle A X Y$
ii. If $X Y=9 \mathrm{~cm}$, find the length of $B C$.
(c) For what value(s) of k does the equation below have no real roots?

$$
4 x^{2}+(k+3) x+1=0
$$

(d) Using Simpson's rule with five function values, find an estimate for the definite integral, correct to 2 decimal places:

$$
\int_{2}^{6} \log _{e}(x-1) d x
$$

(a) In the figure, O is the centre of the circle. The length of minor arc $A B=5 \mathrm{~cm}$, $\angle A C B=15^{\circ}$.

Find in terms of π :
i. the length of radius $O A$
ii. the area of the shaded sector $A O B$
iii. the area of the minor segment $B D C$
(b) The diagram shows the graphs of the functions $y=1-\cos x$ and $y=\sin x$ between $x=0$ and $x=\pi$.

The graphs intersect at $x=\frac{\pi}{2}$.
Find the area of the shaded region.

(c) For the geometric series

$$
1-3 x+9 x^{2}-\cdots
$$

i. find the values of x for which the limiting sum exists.
ii. find the value of x for which the limiting sum is $\frac{4}{5}$
(d) Shade the region which satisfies all the inequalities:

$$
\left\{\begin{array}{l}
x \geq 0 \\
y \geq x^{2} \\
y \leq \sqrt{9-x^{2}}
\end{array}\right.
$$

(a) Evaluate $\sum_{k=2}^{5} \frac{k^{2}}{k+1}$
(b) Find the equation of the locus of the point $P(x, y)$ which moves so that it is equidistant from $A(-1,2)$ and $B(5,-3)$.
(c) $\quad R$ is the region bounded by the y-axis, the x-axis, the line $x=\frac{\pi}{2}$ and the curve $y=\sqrt{1+\sin x}$. Show that the volume of the solid formed when R is rotated about the x-axis is

$$
V=\frac{1}{2} \pi(\pi+2)
$$

(d) i. Prove that the x-values of the points of intersection of the hyperbola $y=\frac{k}{x}$ and the line $k x+y+2=0$ are given by the solution of the equation $k x^{2}+2 x+k=0$.
ii. Find the values of k for which the hyperbola and the line will intersect in two distinct points.
(e) A straight road is to be built from A to B. The road must pass through Q, a vertex of the rectangular block of land 16 km by 2 km as shown in the diagram below. $A B$ makes an angle of θ with $A P$.

i. Show $A B=\frac{16}{\sin \theta}+\frac{2}{\cos \theta}$
ii. Show that $\tan \theta=2$ gives the minimum distance for $A B$
(a) A small cone is enclosed within a larger cone as shown in the diagram below. The large cone has height 15 cm and radius 5 cm . Let h represent the height of the small cone and r represent the radius.

i. Show $h=15-3 r$
ii. Find the dimensions of the small cone for which the volume of the small cone is maximum.
(b) The diagram shows the graph of the function $y=\ln \left(x^{2}\right),(x>0)$.

The points $P(1,0), Q(e, 2)$ and $R\left(t, \ln t^{2}\right)$ all lie on the curve.

The area of $\triangle P Q R$ is maximum when the tangent at R is parallel to the line through P and Q.

i. Find gradient of the line through P and Q.
ii. Find the value of t that gives the maximum area for $\triangle P Q R$.
iii. Hence find the maximum area of $\triangle P Q R$

Examination continues overleaf. . .

(c) The diagram below is the graph of $y=\frac{\log _{e} x}{x^{2}} . P$ is a maximum turning point.

i. Find the coordinates of the point P.
ii. Find the values of h such that $\frac{\log _{e} x}{x^{2}}=h$ has two values.
iii. Find the values of k such that $\frac{\log _{e} x}{x^{2}}=k x$ has two solutions.

End of paper.

2 unit Trial 2015

1

$$
\begin{aligned}
& a^{2}-5 a+4=0 \\
& (a-4)(a-1)=0 \\
& a=4, a=1 \\
& 2^{x}=4,2^{x}=1 \\
& x-2, x=0
\end{aligned}
$$

2.

$$
\begin{aligned}
\frac{2 \pi}{10} & =\pi \\
\therefore b & =2 \\
a & =3 .
\end{aligned}
$$

3.

4. $\frac{\log _{e} 5000}{\log 3}$
5.
6.

$$
\begin{aligned}
x^{2}-8 x+(-4)^{2}+y^{2} & =1+16 . \\
(x-4)^{2}+y^{2} & =17 .
\end{aligned}
$$

7.

8.

$$
\begin{aligned}
A_{0} & =\pi r^{2} \\
A_{i+14} & =\frac{1}{2} \times r^{2} \sin 60^{\circ} \times 6 . \\
& =\frac{r^{2}}{2} \times \frac{\sqrt{3}}{2} \times 6 \\
& =\frac{r^{2} \sqrt{3}}{4} \times 6 \\
& =\frac{3 \sqrt{3} r^{2}}{2} \\
& \frac{3 \sqrt{3} r^{2}}{2} \div \pi r^{2} \times 100 \% \\
& =\frac{3 \sqrt{3} \not r}{2} \times \frac{1}{\pi r^{2}} \\
& =\frac{3 \sqrt{3}}{2 \pi} \times 100 \% \\
& =83 \%
\end{aligned}
$$

10.

$$
\begin{aligned}
x & =\sqrt{16^{2}+12^{2}-2(16)(12) \cos 54} \\
& =13.2 \quad(1 d \cdot p \cdot)
\end{aligned}
$$

Section II
11. a)

$$
\begin{gathered}
|2 x-1|<5 \\
-5<2 x-1<5 \\
-4<2 x<6 \\
1-2<x<3
\end{gathered}
$$

$$
\text { b) } \begin{aligned}
& 2 x^{3}-54 \\
= & 2\left(x^{3}-27\right) \\
= & 2(x-3)\left(x^{2}+3 x+9\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{1-\cos ^{2} \theta}{\sin \theta \cos \theta} \\
= & \frac{\sin ^{2} \theta}{\sin \theta \cos \theta} \\
= & \tan \theta
\end{aligned}
$$

d)

$$
\begin{aligned}
& D: \quad 81-x^{2} \geqslant 0 \\
& (9-x)(9+x) \geqslant 0 \\
& -9 \leq x \leq 9
\end{aligned}
$$

$$
\text { Q) } \begin{aligned}
& \\
& \begin{aligned}
&(1-\sqrt{2}) \\
&(3+\sqrt{2}) \frac{(3-\sqrt{2})}{(3-\sqrt{2})} \\
&= \frac{3-\sqrt{2}-3 \sqrt{2}+2}{9-2} \\
&= \frac{5-4 \sqrt{2}}{7}
\end{aligned} .
\end{aligned}
$$

f)

$$
\begin{aligned}
& a=3 \\
& a+8 d=5(a+d) \\
& 3+8 d=5(3+d) \\
& 3+8 d=15+5 d \\
& 3 d=12 \\
& d=4 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { g) (i) } \frac{d}{d x}(1-2 x)^{1 / 2} \\
& w=\frac{1}{2}(-2)(1-2 x)^{-1 / 2} 1 \\
&=-\frac{1}{\sqrt{1-2 x}}
\end{aligned}
$$

(ii) $\frac{d}{d x}\left(\frac{\sin 2 x}{x^{2}}\right)$

$$
\begin{aligned}
&=\frac{x^{2} \cdot 2 \cos 2 x-\sin 2 x \cdot 2 x}{x^{4}} \\
&=\frac{2 x(x \cos 2 x-\sin 2 x)}{x^{4}} \\
&=\frac{2(x \cos 2 x-\sin 2 x)}{x^{3}} 1 \\
& \frac{d}{d x}\left(\frac{e^{2 x}}{x^{2}}\right) \\
&=\frac{2 e^{2 x} x^{2}-2 x e^{2 x}}{x^{4}} \\
&=\frac{2 x e^{2 x}(x-1)}{x^{4}} \\
&=\frac{2 e^{2 x}\left(x^{2-1}\right)}{x^{3}}
\end{aligned}
$$

12.a) (n)

$$
\begin{aligned}
& \int\left(\sec ^{2} x+3 \cos x\right) d x \\
= & \tan x+3 \sin x+c .2
\end{aligned}
$$

(ii)

$$
\text { i) } \begin{aligned}
& \int 2^{x} d x \\
= & \int e^{\ln 2^{x}} d x \\
= & \int e^{x \ln 2} d x \\
= & \frac{e^{x \ln 2}}{\ln 2} \\
= & \frac{2^{x}}{\ln 2}+c
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \int_{2}^{7} \frac{x}{x^{2}-1} d x \\
= & \frac{1}{2} \int_{2}^{7} \frac{2 x}{x^{2}-1} d x \\
= & \frac{1}{2}\left[\ln \left|x^{2}-1\right|\right]_{2}^{7} \\
= & \frac{1}{2}[\ln 48-\ln 3] \\
= & \frac{1}{2} \ln \left(\frac{48}{3}\right) \\
= & \frac{1}{2} \ln 16 \\
= & \ln 16^{1 / 2} \\
= & \ln 4 .
\end{aligned}
$$

c) (in

$$
\begin{aligned}
& 2 x^{2}+3 x-7=0 \\
& \alpha+\beta=\frac{-3}{2}
\end{aligned}
$$

(i) $\alpha \beta=-\frac{7}{2}$

$$
\text { (ii) } \begin{aligned}
& (\alpha-2)(\beta-2) \\
= & \alpha \beta-2 \alpha-2 \beta+4 \\
= & \alpha \beta-2(\alpha+\beta)+4 \\
= & -\frac{7}{2}-2\left(\frac{-3}{2}\right)+4 \\
= & -\frac{7}{2}+3+4 \\
= & 3 \frac{1}{2} .
\end{aligned}
$$

d) $f(x)=2 x^{3}-6 x+3$

$$
\begin{aligned}
\text { (i) } f^{\prime}(x) & =6 x^{2}-6 \\
f^{\prime \prime}(x) & =12 x
\end{aligned}
$$

Stat As: $f^{\prime}(x)=0$

$$
6 x^{2}-6=0
$$

$$
6 x^{2}=6
$$

$$
x^{2}=1
$$

$$
x=1,-1
$$

$$
y=-1,7
$$

$$
\begin{aligned}
\frac{\text { Test }(1,-1)}{f^{\prime \prime}(x)}= & 12 \\
& >0 \quad \therefore \min (1,-1)
\end{aligned}
$$

$\frac{\text { Test }(-1,7)}{f^{\prime \prime}(x)=-12}$
$<0 \quad \therefore m a x-1,7$
(ii)

$1 y$-intercept
1 turning pts

13, a) $A(1,0) \quad B(7,4)$

(i) $m=\frac{4}{6}=\frac{2}{3}$
(ii)

$$
\begin{aligned}
\tan \theta & =\frac{2}{3} \\
\theta & =33^{\circ} 41^{\prime} \quad 1
\end{aligned}
$$

(ui)

$$
\begin{aligned}
d & =\sqrt{(7-)^{2}+(4-0)^{2}} \\
& =\sqrt{36+16} \\
& =\sqrt{52} \text { units } \\
& =7.2 \text { units }\left(1 \alpha_{p}\right)
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& y-0=\frac{2}{3}(x-1) \\
& 3 y-2 x-2 \\
& 2 x-3 y-2=0
\end{aligned}
$$

(v)

$$
\begin{aligned}
C(x, y) & =\left(\frac{1+7}{2}, \frac{4+0}{2}\right) \\
& =(4,2)
\end{aligned}
$$

13. b)

(i) $\ln \triangle^{\prime} s A X Y \& A C B$
14. $\angle A$ is common
15. $\frac{A Y}{A B}=\frac{7}{14}=\frac{1}{2}$

$$
\frac{A X}{A C}=\frac{6}{12}=\frac{1}{2}
$$

$$
\therefore \triangle A X Y \| \triangle A C B
$$

(two sides in proportion a included angle equal)
(ii) $B C=18 \mathrm{~cm}$
(corresponding sides of
Similar triangles in same ratio).
c) No real roots: $b^{2}-4 a c<0$

$$
\begin{gathered}
(k+3)^{2}-4(4)(1)<0 \\
k^{2}+6 k+9-16<0 \\
k^{2}+6 k-7<0 \\
(k+7)(k-1)<0 \\
+-7<k<1
\end{gathered}
$$

d) $\int_{2}^{6} \log _{e}(x-1) d x$

$$
\begin{aligned}
A & =\frac{1}{3}\{f(2)+4[f(3)+f(5)]+2[f(4)]+f(6)\} \\
& =\frac{1}{3}\{\ln 1+4(\ln 2+\ln 4)+2 \ln 3+\ln 5\} \\
& =4.04
\end{aligned}
$$

14. a) (i) $\angle B O C=15^{\circ}$ (isis. \triangle)

$$
\begin{aligned}
\therefore \angle A O B & =30^{\circ} \quad \text { (ext. angle of a triangle) } \\
& =\frac{\pi}{6} \\
l & =r \theta \\
5 & =r \times \frac{\pi}{6} \\
r & =\frac{30}{\pi} \mathrm{~cm} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \times\left(\frac{30}{\pi}\right)^{2} \times \frac{\pi}{6} \\
& =\frac{900 \pi}{12 \pi^{x}} \\
& =\frac{75}{\pi} \mathrm{~cm}^{2}
\end{aligned}
$$

(iii)

$$
\text { iii) } \begin{aligned}
& \angle C O B=150^{\circ}=150 \times \frac{\pi}{180} \\
A & =\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& =\frac{1}{2} \times\left(\frac{30}{\pi}\right)^{2}\left(\frac{5 \pi}{6}-\sin \frac{5 \pi}{6}\right) \\
& =\frac{1}{2} \times \frac{900}{\pi^{2}}\left(\frac{5 \pi}{6}-\frac{1}{2}\right) \\
& =\frac{450}{\pi^{2}} \times \frac{5 \pi}{6}-\frac{225}{\pi^{2}} \\
& =\frac{375}{\pi}-\frac{225}{\pi^{2}} \\
& =\frac{375 \pi-225}{\pi^{2}} \\
& =96.57 \mathrm{~cm}^{2}(2 d p)
\end{aligned}
$$

b) $A=\int_{0}^{\pi / 2}(1-\cos x) d x+\int_{\pi / 2}^{\pi} \sin x d x$

$$
\begin{aligned}
& =[x-\sin x]_{0}^{\pi / 2}+[-\cos x]_{\pi / 2}^{\pi} \\
& =\frac{\pi}{2}-\sin \frac{\pi}{2}+\left[-\cos \pi+\cos \frac{\pi}{2}\right] \\
& =\frac{\pi}{2}-1+1+0 \\
& =\frac{\pi}{2} u^{2}
\end{aligned}
$$

e) (i) Limiting Sum exists when

$$
\begin{aligned}
& -1<r<1 \\
& -1<-3 x<1 \\
& 1>x>-\frac{1}{3} \\
& -\frac{1}{3}<x<\frac{1}{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& S_{\infty}=\frac{a}{1-r} \\
& \frac{4}{5}=\frac{1}{1+3 x} \\
& 4+12 x=5 \\
& 12 x
\end{aligned}=1 .
$$

a)

15. (a)

$$
\begin{aligned}
& \text { (a) } \sum_{k=2}^{5} \frac{k^{2}}{k+1} \\
& k=2: \frac{2^{2}}{3}=\frac{4}{3} \\
& k=3: \frac{3^{2}}{4}=\frac{9}{4} \\
& k=4: \frac{4^{2}}{5}=\frac{16}{5} \\
& k=5: \frac{5^{2}}{6}=\frac{25}{6} \\
& \text { Sum }=\frac{219}{20}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& (x+1)^{2}+(y-2)^{2}=(x-5)^{2}+(y+3)^{2} \\
& x^{2}+2 x+y^{2}-4 y+5=x^{2}-10 x+y^{2}+6 y+34 \\
& 12 x-10 y-29=0
\end{aligned}
$$

c)

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi / 2}(1+\sin x) d x \\
& =\pi[x+\cos x]_{0}^{\pi / 2} \\
& =\pi\left[\frac{\pi}{2}-\cos \frac{\pi}{2}-0+1\right] \\
& =\pi\left[\frac{\pi}{2}+1\right] \\
V & =\frac{1}{2} \pi[\pi+2]
\end{aligned}
$$

15 d) (i) Solve simultaneously

$$
\begin{align*}
& y=\frac{k}{x} \tag{1}\\
& k x+y+z=0 \tag{2}
\end{align*}
$$

Sub (1) into (2)

$$
\begin{aligned}
& k x+\frac{k}{x}+2=0 \\
& k x^{2}+k+2 x=0
\end{aligned}
$$

(ii) 2 distinct points $\Delta>0$.

$$
\begin{aligned}
& b^{2}-4 a c>0 \\
& 4-4(k)(k)>0 \\
& 4-4 k^{2}>0 \\
& 1-k^{2}>0 \\
& (1-k)(1+k)>0 \\
& -1<k<1 \\
& -1<1
\end{aligned}
$$

e)

$$
\text { (i) } \begin{aligned}
\sin \theta & =\frac{16}{A Q} \\
A Q & =\frac{16}{\sin \theta}
\end{aligned}
$$

$$
\angle B Q N=Q \text { (corresponding angles }
$$ on parallel lines)

$$
\begin{aligned}
& \therefore \cos \theta=\frac{2}{B Q} \\
& B Q=\frac{2}{\cos \theta} \\
& A B=A Q+B Q \\
& \therefore A B=\frac{16}{\sin Q}+\frac{2}{\cos t}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A B & =16(\sin \theta)^{-1}+2(\cos \theta)^{-1} \\
(A B)^{\prime} & =-16(\sin \theta)^{-2} \cdot \cos \theta-2(\cos \theta)^{-2}-\sin \theta \\
& =\frac{-16 \cos \theta}{\sin ^{2} \theta}+\frac{2 \sin \theta}{\cos ^{2} \theta}
\end{aligned}
$$

Stat As: $(A B)^{\prime}=0$.

$$
\begin{aligned}
& -\frac{16 \cos \theta}{\sin ^{2} \theta}+\frac{2 \sin \theta}{\cos ^{2} \theta}=0 \\
& \frac{-16 \cos ^{3} \theta+2 \sin ^{3} \theta}{\sin ^{2} \theta \cos ^{2} \theta}=0 \\
& -2\left(8 \cos ^{3} \theta-\sin ^{3} \theta\right)=0 \\
& 8 \cos ^{3} \theta-\sin ^{3} \theta=0 \\
& (2 \cos \theta-\sin \theta)\left(4 \cos ^{2} \theta+2 \cos \theta \sin \theta+\sin ^{2} \theta\right)=0 \\
& 2 \cos \theta-\sin \theta=0 \\
& 2 \cos \theta=\sin \theta \\
& 2=\tan \theta
\end{aligned}
$$

Test $\tan \theta=2$

Q	1	$\tan ^{-1} 2$	2
$(A B)^{\prime}$	-6	0	19

\therefore minimum when $\tan \theta=2$.
16. a) i) $\frac{15-h}{r}=\frac{15}{5} \quad$ (corresp. sides of similar triangles

$$
\begin{aligned}
\frac{15-h}{r} & =3 \\
15-h & =3 r \\
h & =15-3 r
\end{aligned}
$$

(i)

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi r^{2}(15-3 r) \\
& =5 \pi r^{2}-\pi r^{3} \\
V^{\prime} & =10 \pi r-3 \pi r^{2} \\
V^{\prime} & =10 \pi-6 \pi r
\end{aligned}
$$

Stat Pts: $V^{\prime}=0$

$$
\begin{aligned}
& 10 \pi r-3 \pi^{2}=0 \\
& \pi r(10-3 r)=0 \\
& r=0, r=\frac{10}{3}
\end{aligned}
$$

But $r>0$.
Test $r=\frac{10}{3}$

$$
\begin{aligned}
V^{\prime \prime} & =10 \pi-6 \pi r \\
& =10 \pi-6 \pi\left(\frac{10}{3}\right) \\
& <0
\end{aligned}
$$

\therefore max at $r=\frac{10}{3}$
and $h=15-3\left(\frac{10}{3}\right)$

$$
h=5
$$

16

$$
\text { (i) } \begin{aligned}
M_{P Q} & =\frac{2-0}{e-1} \\
& =\frac{2}{e-1}
\end{aligned}
$$

$$
\text { (ia) } \begin{aligned}
& R(e-1,2 \ln (e-1)) \\
& d_{P Q}=\sqrt{(e-1)^{2}+2^{2}} \\
&=\sqrt{e^{2}-2 e+1+4} \\
&=\sqrt{e^{2}-2 e+5}
\end{aligned}
$$

$$
\begin{aligned}
& y=\log _{e} x^{2}=2 \log _{i} x \\
& \frac{d y}{d x}=2 \times \frac{1}{x}=\frac{2}{x}
\end{aligned}
$$

Now $m=M_{P Q}$

$$
\begin{aligned}
\therefore \frac{2}{x}= & \frac{2}{e-1} \\
2(e-1) & =2 x \\
x & =e-1 . \\
\therefore t & =e-1 .
\end{aligned}
$$

$16(c)$

$$
\begin{aligned}
& y=\frac{\log _{e} x}{x^{2}} \\
& \frac{d y}{d x}=\frac{x^{2} \cdot \frac{1}{x}-\log _{e} x \cdot 2 x}{x^{4}} \\
&=\frac{x-2 x \ln x}{x^{4}}=1-2 \operatorname{lix} \\
& x^{3}
\end{aligned}
$$

Stat Pts:

$$
\text { Is: } \begin{aligned}
& \frac{d y}{d x}=0 \\
& \frac{x-2 x \ln x}{x^{4}}=0 \\
& x(1-2 \ln x)=0 \\
& x=0, \quad \ln x=1 \\
& \ln x=\frac{1}{2} \\
& e^{1 / 2}=x \\
& y=\frac{\ln e^{1 / 2}}{\left(e^{1 / 2}\right)^{2}} \\
& y=\frac{\frac{1}{2}}{e^{1}} \\
&=\frac{1}{2 e} \\
& \therefore P\left(e^{\frac{1}{2}}, \frac{1}{2 e}\right)
\end{aligned}
$$

(ii) As $x \rightarrow \infty \quad y \rightarrow 0$
$\frac{\log _{e} x}{x^{2}}=h$ has two values when

$$
h>0 \text { but } h<\frac{1}{2 e}
$$

$$
\text { i.e. } \quad 0<h<\frac{1}{2 e}
$$

(iii) $\quad k=\frac{\ln x}{x^{3}}$
k maximin when $k^{\prime}=0$

$$
\begin{aligned}
k^{\prime} & =\frac{\frac{1}{x} \cdot x^{3}-3 x^{2} \cdot \ln x}{x^{6}} \\
& =\frac{1-3 \ln x}{x^{4}} \\
& =x^{-4}-3 x^{-4} \ln x \\
k^{\prime \prime} & =-4 x^{-5}-\left(-12 x^{-5} \ln x+\frac{1}{x} \cdot 3 x^{-4}\right) \\
& =\frac{-4+12 \ln x-3}{x^{5}} \\
k^{\prime}=0 & k^{\prime \prime}=\frac{-4+12 \times \frac{1}{3}-3}{e^{5 / 3}} \quad k=\frac{\ln e^{1 / 3}}{\left(e^{1 / 3}\right)^{3}} \\
1-3 \ln x & =0 \quad=\frac{1}{3 e} \\
3 \ln x & =1 \\
x & =e^{1 / 3}
\end{aligned}
$$

$\frac{\ln x}{x^{2}}=k x$ has two values when

$$
\begin{aligned}
& k>0 \quad \text { but } \quad k<\frac{1}{3 e} \\
& \text { i.e. } \\
& \quad 0<k<\frac{1}{3 e}
\end{aligned}
$$

