MATHEMATICS
2016 HSC Course Assessment Task 3
(Trial Examination) June 21, 2016

General Instructions

- Working time -3 hours (plus 5 minutes reading time).
- Write using blue or black pen.

Diagrams may be sketched in pencil.

- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.

Section I-10 marks

- Mark your answers on the answer sheet provided.

Section II - 90 marks

- Commence each new question on a new page.
- Show all necessary working in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER: \qquad \# BOOKLETS USED: \qquad

\square Mr Berry

\square Ms Lee
\square Ms Ziaziaris

Question	$1-10$	11	12	13	14	15	16	Total
Marks	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$

Section 1: Multiple Choice- 1 mark each.

Q1. The exact value of $\operatorname{cosec} \frac{7 \pi}{6}$ is
(A) -2
(B) $-\frac{2}{\sqrt{3}}$
(C) $\frac{2}{\sqrt{3}}$
(D) 2

Q2. The value of

$$
\sum_{i=10}^{21} 2 i-30
$$

is
(A) 8
(B) 10
(C) 11
(D) 12

Q3. Which line is perpendicular to the line $3 x+4 y+7=0$?
(A) $4 x+3 y-7=0$
(B) $3 x-4 y+7=0$
(C) $8 x-6 y-7=0$
(D) $4 x-7 y+7=0$

Q4. Using the trapezoidal rule with 4 subintervals, which expression gives the approximate area under the curve $y=x \log _{e} x$ between $x=1$ and $x=3$
(A) $\frac{1}{4}\left(\log _{e} 1+6 \log _{e} 1.5+4 \log _{e} 2+10 \log _{e} 2.5+3 \log _{e} 3\right)$
(B) $\frac{1}{4}\left(\log _{e} 1+3 \log _{e} 1.5+4 \log _{e} 2+5 \log _{e} 2.5+3 \log _{e} 3\right)$
(C) $\frac{1}{2}\left(\log _{e} 1+3 \log _{e} 1.5+4 \log _{e} 2+5 \log _{e} 2.5+3 \log _{e} 3\right)$
(D) $\frac{1}{2}\left(\log _{e} 1+6 \log _{e} 1.5+4 \log _{e} 2+10 \log _{e} 2.5+3 \log _{e} 3\right)$

Q5. A student (not in NSW) is using technology in their exam to calculate a limit.
Their calculator tells them that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=0.017453 \ldots
$$

What happened?

(A) The calculator made a rounding error.
(B) The calculator is in degrees.
(C) The calculator is in radians.
(D) The calculator is in gradiens.

Q6. A population of sea monkeys is observed to fluctuate according to the equation

$$
\frac{d P}{d t}=40 \sin (0.1 t),
$$

where P is the sea monkey population and t is the time in days.
During which day does the population first start to decrease?
(A) Day 15
(B) Day 16
(C) Day 31
(D) Day 32

Q7. The solution to $3 x^{2}+7 x>6$ is
(A) $-\frac{1}{2}<x<-\frac{1}{3}$
(B) $x<-\frac{1}{2}, x>-\frac{1}{3}$
(C) $x<-3, x>\frac{2}{3}$
(D) $-3<x<\frac{2}{3}$

Q8. Using the graph of $y=f(x)$ below,

NOT TO SCALE
determine the value of a which satisfies the condition:

$$
\int_{-6}^{a} f(x) d x=8
$$

(A) 8
(B) 10
(C) 12
(D) 14

Q9. A particle is moving along the x-axis.

The graph shows its velocity v metres per second at time t seconds.

When $t=0$, the displacement x is equal to 5 metres.
What is the maximum value of the displacement x ?
(A) 12.5 m
(B) 25.0 m
(C) 30.0 m
(D) 47.5 m

Q10. The derivative of $y=x^{x}$ is
(A) $x \cdot x^{x-1}$
(B) $\left(1+\log _{e} x\right) \cdot x^{x}$
(C) $2 x \cdot x^{x}$
(D) $\left(x \log _{e} x\right) \cdot x^{x}$

End of Section I

Section II - Short Answer 90 marks

Question 11 (15 marks) Commence on a NEW page.
(a) Rationalise the denominator $\frac{1-\sqrt{3}}{5-\sqrt{3}}$
(b) Derive the value $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}$
(c) Solve $|2 x+1|>6$
(d) Sketch the region defined by the intersection of the inequalities:

$$
\begin{aligned}
& y \geq(x-1)^{3} \\
& y \leq \sqrt{1-x^{2}}
\end{aligned}
$$

(e) Differentiate $y=4 x^{3}-\sqrt{x}$
(f) Find $\int\left(x^{3}-\frac{2}{x}\right) d x$
(g) Evaluate $\int_{0}^{\pi} \sin 2 t d t$
(a) The points $A(-4,-1), B(6,1), C(0,5)$ are defined in the Cartesian plane.

i) Show that the line passing through points A and B is $x-5 y-1=0$
ii) Find the distance AB .
iii) Find the area of the triangle $\triangle A B C$.
(b) Differentiate:
i) $y=\cos \left(7-x^{4}\right)$
ii) $y=\log _{\mathrm{e}} \frac{2 x+1}{x-1}$
(c) Find:
i) $\int 3 e^{-5 x} d x$
ii) $\int x^{2}(1-\sqrt{x}) d x$
iii) $\int \frac{6 x}{x^{2}-1} d x$

Question 13 (15 marks) Commence on a NEW page.
(a) Sketch the parabola

$$
y^{2}+8 x-2 y+25=0
$$

clearly showing the location of the vertex, the focus point and the directrix.
(b) The diagram shows triangle $A B C$ with sides $A B=6 \mathrm{~cm}, B C=10 \mathrm{~cm}$, and $\angle C A B=120^{\circ}$.

Find the exact value of $\tan C$.
(c) For what values of k does the line $y=5 x+k$ intersect with the curve $y=x^{2}+3$?
(d) Solve the equation $4 \sin ^{2} x+6 \operatorname{cosec}^{2} x=11,0 \leq x \leq 2 \pi$.

End of Question 13

Question 14 (15 marks) Commence on a NEW page.
(a) Given the function $f(x)=6 x^{3}-x^{4}$
i) Find the coordinates of the points where the curve crosses the axes 1
ii) Find the coordinates of the stationary points and determine their nature 4
iii) Find the coordinates of the points of inflexion 2
iv) Sketch the graph of $y=f(x)$, clearly indicating the intercepts, stationary points and points of inflexion.
(b) In the BBC television documentary "Inside the Factory", a production manager described the process of manufacturing bulk quantities of baker's yeast.

He stated that, "the yeast doubles every 3 hrs" and that, "it takes $21 / 2$ days to fill the $30,000 \mathrm{~kg}$ capacity fermentation vat".

The growth of the yeast is modelled using the equation,

$$
P=P_{0} e^{k t}
$$

where P is the mass of the yeast in kilograms at time t in hours, and P_{0} is the initial amount of yeast put into the fermenter.
i) Find the exact value of k that produces a doubling of mass every 3 hours.
ii) What is the mass of the yeast in grams put into the vat at the beginning of the fermentation?
iii) At what rate is the yeast increasing when there is $12,000 \mathrm{~kg}$ of yeast in the tank?

End of Question 14

(a) A function is defined:

$$
f(x)=\left\{\begin{aligned}
\tan x, & 0<x \leq \frac{\pi}{4} \\
1, & \frac{\pi}{4}<x<\frac{3 \pi}{4} \\
-\tan x, & \frac{3 \pi}{4} \leq x \leq \pi
\end{aligned}\right.
$$

i) Sketch the graph of $y=f(x)$.
ii) Show that

$$
\int \tan x d x=-\log _{e}(\cos x)+C
$$

iii) Find the area bounded by $y=f(x)$, the x-axis, $x=0$ and $x=\pi$.
iv) The curve $y=f(x)$ is rotated about the x-axis.

Find the volume of the solid of revolution between $x=0$ and $x=\pi$.
(b) The acceleration of a particle travelling along the x-axis is given by the equation

$$
\ddot{x}=6 t-18
$$

where t is the time in seconds, and the acceleration is measured in $\mathrm{m} / \mathrm{s}^{2}$. The particle has an initial velocity of $15 \mathrm{~m} / \mathrm{s}$.
i) Find the velocity at time t.
iii) At what times does the particle change direction?
ii) What is the total distance travelled in the first 2 seconds?

End of Question 15

Question 16 (15 marks) Commence on a NEW page.
(a) A triangle AED is constructed using the base of a rectangle $A B C D$, with intersection points X and Y as shown. ER is the altitude of the triangle AED.

The area of triangle AED is twice the area of the rectangle.

i) Explain why $E R$: $E S=4: 3$ 2
ii) Prove that $\triangle A E D|\mid \triangle X E Y$. 3
iii) Hence or otherwise, show that $4 B X+4 Y C=A D$. 3
b) A sphere of radius R and a right circular cone with radius R at the base and height $2 R$ are sitting on a horizontal plane.

A second horizontal plane, height h above the first plane, slices through the sphere and the cone, creating two circular cross sections in the sphere and the cone.

Let the radius of the cross-section in the sphere be r_{s} and the radius of the cross-section in the cone, r_{c}.
i) Show that for cross section of the sphere, $r_{s}^{2}=2 R h-h^{2}$
ii) Show that for the cross section of the cone $r_{c}^{2}=\left(R-\frac{h}{2}\right)^{2}$
iii) Hence or otherwise find the height of the slicing plane which gives the maximum sum of cross-sectional areas.

End of paper.

Sedion 1. Multiple Choice,

Q1. $\quad \operatorname{cosec} \frac{7 \pi}{6}=\frac{1}{\sin \frac{7 \pi}{6}}$

Q2. $\sum_{i=10}^{21} 2 i-30$

$$
\begin{aligned}
& n=(21-10)+1=12 \text { terms } \\
& \text { finst }=2(10)-30=-10 \\
& \text { lost }=2(21)-30=12 \\
& S_{n}=\frac{12}{2}(-10+12) \\
& =\frac{2}{2} \times 2 \\
& \\
& =12
\end{aligned}
$$

al. A
Q2. D.
Q3. C
Q4. B.
Q5. B.
Q6. D.
Q7. C.
Q8. D.
Q9. C
Q10. β.

Q3. $3 x+4 y+7=0$
perp. lines is

$$
\begin{align*}
& 4 x-3 y+c=0 \\
& 8 x-6 y+2 c=0 \tag{c}
\end{align*}
$$

Q4. $h=\frac{3-1}{4}=1 / 4$

$$
\begin{aligned}
\text { Area } \star & \frac{1}{4}\left(1 f_{0}+2 f_{1}+2 f_{2}+2 f_{3}+2 f_{4}+f_{5}\right) \\
& \frac{1}{4}\left(1 \log _{e} 1+2 \times 1.5 \log _{2} 1.5+2 \times 2 \log _{2} 2+2 \times 25 \log 25+1 \times 3 \log 3\right)
\end{aligned}
$$

Q5. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ in radions.

$$
\begin{align*}
& x_{\text {rolino }}=\frac{\pi}{180} x \text { degreen } \\
& \lim _{x \rightarrow 0} \frac{\pi}{180}\left(\frac{\sin x}{x}\right)=0.0174
\end{align*}
$$

Qb

$$
\begin{aligned}
& \text { Qt. } \quad d P=40 \sin (\cot t) \\
& T= \\
& P \operatorname{coriod}=\frac{2 \pi}{6.1}=62.83 \\
& 40 \sin 0.1 t<0 \\
& \\
& \text { unen } t=T / 2=31.41
\end{aligned}
$$

after day $31-80 \operatorname{deg} 32$
$[$ Dasf: $0<t<1]$
Q. $3 x^{2}+7 x-6=0$

$$
\begin{gathered}
(3 x-2)\left(x+3^{2}\right)=0 \\
x=2 / 3 \quad x=-3
\end{gathered}
$$

(C)

Q8

Avea(A) is a traperiom $=\frac{1}{2}(8+12) \times 4=10 \times 4=40 \mathrm{n}^{2}$
wout (A) (B) $=8$
\therefore Arear $B=+32 n^{2}$
Now

$$
\therefore \quad \frac{1}{2} \cdot b \cdot k=32
$$

But gradient $=1, \therefore b=h$

$$
\begin{array}{r}
\therefore \frac{1}{2} b^{2}=32 \\
b^{2}=64 \\
b=8 \\
a=6+8=14
\end{array}
$$

\therefore Answor (B)
Q. 9.

Max value x - when $V=0$ (turnsaroud)

$$
\begin{aligned}
x & =\int r d t+C \\
& =\text { areatrogle }+C \\
& =\frac{1}{2}(10)(5)+C \\
& =25+C
\end{aligned}
$$

Now $x(0)=5$

$$
\begin{align*}
\therefore x_{\text {max }} & =25+5 \tag{c}\\
& =30 \mathrm{~m} .
\end{align*}
$$

Q IO.

$$
\begin{aligned}
-y & =x^{x} \\
& =\left(e^{\ln x}\right)^{x} \\
& =e^{(x \ln x)} \\
y^{\prime} & =e^{(x \ln x)} \cdot \frac{d}{d x}(x \ln x) \\
& =e^{x \ln x} \cdot\left(1+\ln x+x \times \frac{1}{x}\right) \\
& =(1+\ln x) e^{x \ln x} \\
& =(1+\ln x) x^{x}
\end{aligned}
$$

SectinII.

$$
\text { Q11.(a) } \begin{aligned}
\frac{1-\sqrt{3}}{5-\sqrt{3}} & =\frac{1-\sqrt{3}}{5-\sqrt{3}} \times \frac{5+\sqrt{3}}{5+\sqrt{3}} \\
& =\frac{(1-\sqrt{3})(5+\sqrt{3})}{25-3} \\
& =\frac{5+\sqrt{3}-5 \sqrt{3}-3}{22} \\
& =\frac{2-4 \sqrt{3}}{22} \\
& =\frac{1-2 \sqrt{3}}{11}
\end{aligned}
$$

(b)

$$
\text { b) } \begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9} & =\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{(x-3)(x+3)} \\
& =\lim _{x-3} \frac{x^{2}+3 x+9}{x+3} \\
& =\frac{(3)+3(3)+2}{3+3} \\
& =\frac{27}{6} \\
& =\frac{9}{2} \quad \text { must }
\end{aligned}
$$

Qil.
(c)
$|2 x+1|>6$
$2 x+1>6$ or $-(2 x+1)>6$
$2 x>5$

$$
2 x+1<-6
$$

$x>5 / 2$ or

$$
2 x<-7
$$

$x<\frac{-7}{2}$
I persolution JJ
(d)

$$
\begin{aligned}
& y \geqslant(x-1)^{3} \\
& y \leqslant \sqrt{1-x^{2}}
\end{aligned}
$$

(2)

$$
\text { (2) } \begin{aligned}
y & =4 x^{3}-\sqrt{x} \\
& =4 x^{3}-x^{1 / 2} \\
y^{\prime} & =12 x^{2}-\frac{1}{2} x^{-1 / 2} \\
& =12 x^{2}-\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

12 vavies deduct 1 per
(8) $\int\left(x^{3}-\frac{2}{x}\right) d x=\frac{1}{3} x^{2}-2 \log _{e} x+C$

12 mates
Deduet one per error.
Must hove $+C$ for fullmorks
(g)

$$
\begin{aligned}
\int_{0}^{\pi} \sin 2 t d t & =\left[-\frac{1}{2} \cos 2 t\right]_{0}^{\pi} \\
& =-\frac{1}{2}(\cos 2 \pi-\cos \theta) \\
& =0
\end{aligned}
$$

Q12. $\quad A(-4,-1), B(6,1), C(0,5)$
(i) $x-5 y-1=0$

Point A: $(-4)-5(-1)-1=-4+5-1=0 \quad \therefore$ A on the live.
$B:(6)-5(1)-1=6-5-1=0 \quad \therefore$ Bon the line
(ii) Distance $A B$:

$$
\begin{aligned}
d^{2} & =(6+4)^{2}+(2)^{2} \\
& =100+4 \\
& =104 \\
A B & =\sqrt{104} \text { units } \\
& =2 \sqrt{26} \quad-(\text { (optimal })
\end{aligned}
$$

(ii) Perp height $A B$ to C is
$A B: x-5 y-1=0$
$C:(0,5)$

$$
\begin{aligned}
d & =\frac{|(0)-5(5)-1|}{1^{2}+5^{2}} \\
& =\frac{26}{\sqrt{26}}
\end{aligned}
$$

$$
\therefore \text { Aron } \triangle A B C=\frac{1}{2}(x \sqrt{26}) \times \frac{26}{26}
$$

$=26$ units $^{2} \quad J$ un (ii) with pert.
$Q 12(b)$
(i)

$$
\begin{aligned}
y & =\cos \left(7-x^{4}\right) \\
y^{\prime} & =-\sin \left(7-x^{4}\right) \cdot\left(-4 x^{3}\right) \\
& =4 x^{3} \sin \left(7-x^{4}\right)
\end{aligned}
$$

(ii) $y=\log \left(\frac{2 x t)}{x-1}\right)$

$$
y^{\prime}=\frac{1}{2 x+1}-\frac{1}{x-1} \quad \text { Easyway }
$$

OR

$$
\begin{aligned}
y^{\prime} & =\frac{(x-1)}{2 x+1} \times \frac{2(x-1)-(2 x+1)}{(x-1)^{2}} \\
& =\frac{(x-1)}{(2 x+1)} \times \frac{-3}{(x-1)^{2}} \\
& =\frac{-3}{(2 x+1)(x-1)} \quad 5 x
\end{aligned}
$$

(c) iv $\int 3 e^{-5 x} d x=-\frac{3}{5} e^{-5 x}+C$
(ii)

$$
\begin{aligned}
& \int x^{2}(1-\sqrt{x}) d x=\int_{\left(1 x^{2}-x^{2} \sqrt{x}\right) d x}^{\left(x^{2}\right) d x} \quad \sqrt{\text { for expardig }} \\
& =\int\left(x^{2}-x^{3 / 2}\right) d x \\
& =\frac{1}{3} x^{3}-\frac{2}{7} x^{x / 2}+c
\end{aligned}
$$

(iv) $\int \frac{6 x}{x^{2}-1} d x=3 \log _{e}\left(x^{2}-1\right)+c$

Q13
(d) $y^{2}+8 x-2 y+25=0$

$$
y^{2}-2 y=-8 x-25
$$

$$
(y-1)^{2}-1=-8 x-25
$$

$$
\begin{aligned}
& (y-1)^{2}=-8 x-24 \\
& 1^{2}=-8(x+3)
\end{aligned}
$$

$$
(y-1)^{2}=-8(x+3)
$$

\checkmark correct onenetain
\checkmark correct vertes
\checkmark wrreet fous and directry
(b)

$$
\begin{aligned}
\frac{\sin 120^{\circ}}{10} & =\frac{\sin C}{6} \\
\sin C & =\frac{6 \times \sin 120^{\circ}}{10} \\
& =\frac{3}{5} \times \frac{\sqrt{3}}{2} \\
& =\frac{3 \sqrt{3}}{10} \\
10 & =\tan \sqrt{3}=100-97 \\
\therefore \tan C & =\frac{3 \sqrt{3}}{\sqrt{73}}
\end{aligned}
$$

\int correet use sine vale
\checkmark correct value sine
find hypitense
corret vine tac
(C)

$$
y=5 x+k \quad y=x^{2}+3
$$

Intersect whene

$$
\begin{aligned}
& 5 x+k=x^{2}+3 \\
& x^{2}-5 x+(3-k)=0
\end{aligned}
$$

1 Forn equation
Require $\Delta \geqslant 0$

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =25-4(1)(3-k) \\
& =25-12+4 k \\
& =13+4 k
\end{aligned}
$$

-I lue discrimiont carrectly

$$
\therefore 13+4 k \geqslant 0
$$

$$
k \geqslant-B / 4
$$

1 Fnd value.
d)

$$
\begin{aligned}
& 4 \sin ^{2} x+6 \operatorname{cosec}^{2} x=11 \\
& 4 \sin ^{2} x+\frac{6}{\sin ^{2} x}=11
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 20 \\
& \therefore 4 \sin ^{2} x-3=0 \text { or } \cos ^{2} x-2=0 \\
& \quad N+t \text { pasisble }
\end{aligned}
$$

Let $u=\sin ^{2} x$

$$
\begin{gathered}
4 u+\frac{6}{u}=11 \\
4 u^{2}+6=11 u \\
\sqrt{4}-11 u+6=0 \\
\text { gutigi } \\
4 u^{2}-8 u-3 u+6=0 \\
\text { guduacic } \\
4 u(u-2)-3(u-2)=0 \\
(4 u-3)(u-2)
\end{gathered}
$$

$$
\begin{array}{r}
\therefore 4 \sin ^{2} x-3=0 \\
\therefore \sin ^{2} x=3 / 4 \\
\sin x= \pm \frac{\sqrt{3}}{2}
\end{array}
$$

Nit pasuble

$$
V \text { for }
$$

rojedry

$$
\begin{aligned}
& \sqrt{ }-4 u^{2}-11 u+6=0 \\
& \text { gatipi } 4 u^{2}-8 u-3 u+6=0 \\
& \text { quotacic } 4 u(u-2)-3(u-2)=
\end{aligned}
$$

$$
x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{\pi}{3}
$$

$0 \leq n \leq 2 \pi$

Q14-
(a) $f(x)=6 x^{3}-x^{4}$
(i)

$$
\begin{aligned}
& 6 x^{3}-x^{4}=0 \\
& x^{3}(6-x)=0
\end{aligned}
$$

x interapts at $(0,0),(6,0)$

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
& f^{\prime}(x)= 18 x^{2}-4 x^{3} \\
&= 2 x^{2}(9 x-2 x) \\
& \therefore f^{\prime}(x)=0+x=0, x=9 / 2 \\
&(0,0) \quad\left(9 / 2, \frac{2187}{16}\right)
\end{aligned} \\
& f^{\prime \prime}(x)=36 x-12 x^{2}
\end{aligned}
$$

$\sqrt{ } \sqrt{ }$ finel two statimeng points

x	0	$9 / 2$
$f^{\prime \prime}(x)$	0	0
$f^{\prime \prime}(x)$	0	-81

local max ot $\left(9 / 2, \frac{2187}{16}\right)$ noture.
cant tell.

x	-1	0	1
$f^{\prime}(x)$	22	0	14
1	-	$/$	

mflexim at(0 ; 0)\end{array}\right]\)
(ii)

$$
\begin{aligned}
f^{\prime \prime}(x) & =36 x-\left(2 x^{2}\right. \\
& =12 x(3-x)
\end{aligned}
$$

Possible inflexion at $x=0, x=3$

x	1	3	4
$f^{\prime \prime}(x)$	24	0	-48
	0		1
	changes warranty		

I Inflexion points at $(0,0),(3,81)$
\checkmark find points of miflexim \checkmark cheek they are inflexions!

$\sqrt{ }$ general shape passing throb) -intercepts
\checkmark correct local max shown
$\sqrt{\sqrt{\text { inflexions cleviry showing }}}$

$$
\text { at }(0,0),\left(9 / 2, \frac{2187}{6}\right)
$$

Q14(b)

$$
P=P_{0} e^{k t}
$$

(i) Double in 3 hons:

$$
\begin{aligned}
2 P_{0} & =P_{0} e^{3 k} \\
2 & =e^{3 k} \quad V \\
\ln 2 & =3 k \\
k & =\frac{\ln 2}{3} \quad V \quad(\ln 2)(60)
\end{aligned}
$$

(ii)

$$
30,000=p_{0} e^{\left(\frac{\ln 2}{3}\right)(60)}
$$

$$
P_{0}=\frac{30,000}{e^{20 \ln 2}}
$$

$$
=0.0286 \mathrm{~kg}
$$

\checkmark correct answer in grams.
(iii)

$$
\begin{aligned}
\frac{d P}{d t} & =k \cdot P \\
& =\frac{\ln 2}{3} \cdot 12000 \\
& \cong 2773 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
$$

15a) is ald i= you Approx inated armorer with mot shoring, exact you wore

 penalise

$$
=2 \ln \sqrt{2}+\frac{\pi}{2}=\ln 2+\frac{\pi}{2} u^{2}
$$

$$
=\pi \int_{0}^{2}\left(\sec ^{2} x-1\right) d x+\pi\left[\begin{array}{c}
4 \\
y
\end{array}\right] \pi / 4+\pi \int_{5 \pi / 4}^{3 \pi / 4}\left(\sec ^{2} x-1\right) d n 1
$$

$$
=\pi[\operatorname{Tan}-x]_{0}^{\pi / 4}+\pi\left[\frac{3 \pi}{4}-\pi / 4\right]+\pi[\operatorname{Tr} x-x]_{3 \pi / 4}^{11} 1
$$

$$
=\pi[1-\pi / 4]+\frac{\pi^{2}}{2}+\pi[(0-\pi)-(-1-3 \pi / 4)]
$$

$$
=\pi-\frac{\pi^{2}}{4}+\frac{\pi^{2}}{2}+\pi\left[-\pi+1+\frac{3 \pi}{4}\right]
$$

$$
=\pi-\frac{\pi^{2}}{4}+\frac{\pi^{2}}{2}+\pi-\frac{\pi^{2}}{4}
$$

$$
=2 \pi n^{3}
$$

$$
\begin{aligned}
& \text { in' } A=2 \int^{\pi / 4} \operatorname{Tan} x d x+\frac{\pi}{2} \times 1 \\
& =2^{0}[-\ln (\cos \lambda]]_{0}^{\pi / 4}+\frac{\pi}{2} \\
& =2\left[-h \frac{1}{\sqrt{2}}-(-\ln 1)\right)+\frac{\pi}{2} \\
& \text { 11/ } \int \operatorname{Tax} x d x=\int \frac{\sin x}{\cos x} d x=-\ln (\cos x)+c \\
& \cdots 11\left(A=2 \int^{T / 4}+\pi \times 1\right.
\end{aligned}
$$

b)

$$
\begin{aligned}
& \ddot{x}=6 t-18 \\
& \dot{x}=3 t^{2}-18 t+c \\
& t=0 \quad \dot{x}=15 \\
& c=15 \\
& \dot{x}=3 t^{2}-18 t+15
\end{aligned}
$$

$Q 15(b)$
1)

111

$$
\begin{aligned}
\dot{x}=0 \quad & t^{2}-6 t+5=0 \\
& (t-1)(t-1)=0
\end{aligned}
$$

(1, no 15)
$t=1$ ar $t=5$ chayes dreat at $t=1+t=5$

$$
\begin{aligned}
& x=t^{3}-9 t^{2}+15 t+c \\
& t=0 \quad x=c \\
& t=1 \quad x=7+c \\
& t=2 \quad x=8-36+30+c \\
& \\
& =2+c \\
& \\
& =c+2
\end{aligned}
$$

So Distue trardled $=7+5$

$$
=12
$$

B1
inteyrute but

$$
\begin{aligned}
& \text { nteyruck } \\
& \text { jont breuk up } \\
& \text { race }
\end{aligned}
$$

Q16.
(a)

$$
\begin{aligned}
& \text { Area } \triangle A \in D=2 \times \text { Area } A B C D \\
& \frac{1}{2}(A D)(E R)=2 \times A O \times S R
\end{aligned}
$$

$A E R=4 S R$

$$
\begin{aligned}
& A D E R=4(E R-E S) \\
& E R=4 E R-4 E S \\
& E R=4 E S \\
& 4 E B \\
& \frac{4}{3}=\frac{E R}{E S} \\
& \therefore E R: E S=4: 3
\end{aligned}
$$

$\sqrt{ } 1$
Sufficient to show $E R=4 S R$ then concluse

$$
\frac{E R}{E S} \cdot \frac{4}{3}
$$

(b) In $\triangle A G D: \triangle X E Y$,

$$
\angle A E D=\angle X E Y \quad \text { (tommon) }
$$

$L E A D=L E X Y\left(\begin{array}{l}B C \| A D \text { - opp sides vectangle } \\ \text { atternate agles in paralled Lies }\end{array}\right.$ $B\left(\begin{array}{ll}\text { AD are equal) }\end{array}\right.$
$\therefore \triangle A E D \| \triangle X C Y$ (equiagular)
$216(a)$
(ia)

Sinee $\triangle A E D\|\| \angle C Y$,
matcling sides are in prsportion,
usig

$$
\therefore \frac{x Y}{A D}=\frac{3}{4} \quad\left(\text { from } \frac{E 5}{E R}=\frac{3}{4}\right)
$$

$$
\begin{aligned}
& \text { +rigie } \\
& \text { ratio }
\end{aligned}
$$

$$
\begin{aligned}
\begin{array}{l}
\text { AD-BX-CY } \\
A D
\end{array} & =\frac{3}{4} \quad(B C=A D \text { opposite seles vectogle. } \\
4(A D-B X-C Y) & =3 A D \\
4 A D-3 A D & =4 B X+4 Y C \\
A D & =4 B X+44 C \text { as requirel }
\end{aligned}
$$

Q16(b)
(i)

Maing Puthogom

$$
\begin{gathered}
R^{2}=(R-h)^{2}+r_{s}^{2} \\
r_{S}^{2}=R^{2}-\left(R^{2}-2 R h+h^{2}\right) \\
r_{s}^{2}=2 R h-h^{2} \text { as requid }
\end{gathered}
$$

Q16.(b) (ii) similar tringles (equionglar)

$$
\begin{aligned}
r_{c} & =\frac{2 R-h}{2 R} \\
r_{c} & =R-\frac{h}{2} \\
r_{c}^{2} & =\left(R-\frac{h}{2}\right)^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
A_{\text {reat }}+\text { Ad } & =\pi\left(r_{S}^{2}+r_{u}^{2}\right) \\
& =\pi\left(2 R h-h^{2}+\left(R-\frac{h}{2}\right)^{2}\right) \\
& =\pi\left(2 R h-h^{2}+R^{2}-R h+\frac{h^{2}}{4}\right) \\
& =\pi\left(R^{2}-\frac{3 h^{2}}{4}+R h\right) \\
& =\underbrace{}_{\text {quadratic inch }}=h^{2}<0 \\
& =A 2
\end{aligned}
$$

Maximion at $x=\frac{-b}{2 a} \Rightarrow h=\frac{-R}{2(-3 / 4)}$
$\sqrt{ }$-juotify maximum by

$$
h=\frac{2}{3} R
$$

or: $\frac{d A}{d h}=\left(-\frac{6}{4} h+R\right)$
$\frac{d A}{d h}=O$ oher $h=\frac{4}{6} R=\frac{2}{3} R$

$$
\begin{aligned}
& =0 \text { wher } h=\frac{4}{6} k=\frac{h^{2}}{3} \\
& \frac{d^{2} A}{d h^{2}}=-2 \pi \frac{6}{4}<0 \text { alusys maximmotue. }
\end{aligned}
$$

