

MATHEMATICS

2016 HSC Course Assessment Task 3 (Trial Examination) June 21, 2016

General Instructions

- Working time –3 hours (plus 5 minutes reading time).
- Write using blue or black pen. Diagrams may be sketched in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.

Section I - 10 marks

• Mark your answers on the answer sheet provided.

Section II – 90 marks

- Commence each new question on a new page.
- Show all necessary working in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:		# BOOKLETS USED:
Class (please ✓)	Mr Hwang	Mr Berry
	Mr Zuber	Ms Lee
π		Ms Ziaziaris

Question	1-10	11	12	13	14	15	16	Total
Marks	10	15	15	15	15	15	15	100

Section 1: Multiple Choice– 1 mark each.

Q1. The exact value of
$$\operatorname{cosec} \frac{7\pi}{6}$$
 is
(A) -2
(B) $-\frac{2}{\sqrt{3}}$
(C) $\frac{2}{\sqrt{3}}$
(D) 2

Q2. The value of

$$\sum_{i=10}^{21} 2i - 30$$

is

- (A) 8(B) 10
- (C) 11
- (D) 12

Q3. Which line is perpendicular to the line 3x + 4y + 7 = 0?

- (A) 4x + 3y 7 = 0
- (B) 3x 4y + 7 = 0
- (C) 8x 6y 7 = 0
- (D) 4x 7y + 7 = 0

Question 4 on the next page

Q4. Using the trapezoidal rule with 4 subintervals, which expression gives the approximate area under the curve $y = x \log_e x$ between x = 1 and x = 3

(A)
$$\frac{1}{4}(\log_e 1 + 6\log_e 1.5 + 4\log_e 2 + 10\log_e 2.5 + 3\log_e 3)$$

(B) $\frac{1}{4}(\log_e 1 + 3\log_e 1.5 + 4\log_e 2 + 5\log_e 2.5 + 3\log_e 3)$
(C) $\frac{1}{2}(\log_e 1 + 3\log_e 1.5 + 4\log_e 2 + 5\log_e 2.5 + 3\log_e 3)$
(D) $\frac{1}{2}(\log_e 1 + 6\log_e 1.5 + 4\log_e 2 + 10\log_e 2.5 + 3\log_e 3)$

Q5. A student (not in NSW) is using technology in their exam to calculate a limit.

Their calculator tells them that

$$\lim_{x \to 0} \frac{\sin x}{x} = 0.017453 \dots$$

What happened?

- (A) The calculator made a rounding error.
- (B) The calculator is in degrees.
- (C) The calculator is in radians.
- (D) The calculator is in gradiens.

Question 6 on the next page

Q6. A population of sea monkeys is observed to fluctuate according to the equation

$$\frac{dP}{dt} = 40\sin(0.1t),$$

where P is the sea monkey population and t is the time in days.

During which day does the population first start to decrease?

- (A) Day 15
- (B) Day 16
- (C) Day 31
- (D) Day 32
- Q7. The solution to $3x^2 + 7x > 6$ is

(A)
$$-\frac{1}{2} < x < -\frac{1}{3}$$

(B) $x < -\frac{1}{2}, x > -\frac{1}{3}$
(C) $x < -3, x > \frac{2}{3}$
(D) $-3 < x < \frac{2}{3}$

Question 8 on the next page

Q8. Using the graph of y = f(x) below,

determine the value of a which satisfies the condition:

$$\int_{-6}^{a} f(x)dx = 8$$

- (A) 8(B) 10
- (C) 12
- (D) 14

Question 9 on the next page

Q9. A particle is moving along the x-axis.

The graph shows its velocity v metres per second at time t seconds.

When t = 0, the displacement x is equal to 5 metres.

What is the maximum value of the displacement *x*?

- (A) 12.5 m
- (B) 25.0 m
- (C) 30.0 m
- (D) 47.5 m

Q10. The derivative of $y = x^x$ is

- (A) $x \cdot x^{x-1}$
- (B) $(1 + \log_e x) \cdot x^x$
- (C) $2x \cdot x^x$
- (D) $(x \log_e x) \cdot x^x$

End of Section I

Section II – Short Answer 90 marks

Question 11 (15 marks) Commence on a NEW page.

(a) Rationalise the denominator
$$\frac{1-\sqrt{3}}{5-\sqrt{3}}$$
 2

Marks

(b) Derive the value
$$\lim_{x \to 3} \frac{x^3 - 27}{x^2 - 9}$$
 2

(c) Solve
$$|2x+1| > 6$$
 2

$$y \ge (x-1)^3$$
$$y \le \sqrt{1-x^2}$$

(e) Differentiate
$$y = 4x^3 - \sqrt{x}$$
 2

(f) Find
$$\int \left(x^3 - \frac{2}{x}\right) dx$$
 2

(g) Evaluate
$$\int_0^{\pi} \sin 2t \, dt$$
 2

End of Question 11

3

(a) The points A(-4, -1), B(6, 1), C(0,5) are defined in the Cartesian plane.

i)	Show that the line passing through points A and B is $x - 5y - 1 = 0$	1

- ii) Find the distance AB.
- iii) Find the area of the triangle $\triangle ABC$.
- (b) Differentiate:
 - i) $y = \cos(7 x^4)$ 2

ii)
$$y = \log_e \frac{2x+1}{x-1}$$

(c) Find:

i)
$$\int 3e^{-5x} dx$$
 2

ii)
$$\int x^2 (1 - \sqrt{x}) \, dx$$
 2

iii)
$$\int \frac{6x}{x^2 - 1} \, dx$$

End of Question 12

Question 13 (15 marks) Commence on a NEW page.

(a) Sketch the parabola

$$y^2 + 8x - 2y + 25 = 0$$

clearly showing the location of the vertex, the focus point and the directrix.

The diagram shows triangle ABC with sides AB = 6 cm, BC = 10 cm, and $\angle CAB = 120^{\circ}$. (b) 4

Find the exact value of tan *C*.

- (c) For what values of k does the line y = 5x + k intersect with the curve $y = x^2 + 3$? 3
- Solve the equation $4\sin^2 x + 6\csc^2 x = 11$, $0 \le x \le 2\pi$. (d) 4

End of Question 13

4

Question 14 (15 marks) Commence on a NEW page.

(a) Given the function $f(x) = 6x^3 - x^4$

i)	Find the coordinates of the points where the curve crosses the axes	1
ii)	Find the coordinates of the stationary points and determine their nature	4
iii)	Find the coordinates of the points of inflexion	2
iv)	Sketch the graph of $y = f(x)$, clearly indicating the intercepts, stationary points and points of inflexion.	3

Marks

(b) In the BBC television documentary "Inside the Factory", a production manager described the process of manufacturing bulk quantities of baker's yeast.

He stated that, "the yeast doubles every 3 hrs" and that, "it takes 2½ days to fill the 30,000 kg capacity fermentation vat".

The growth of the yeast is modelled using the equation,

$$P = P_0 e^{kt}$$

where P is the mass of the yeast in kilograms at time t in hours, and P_0 is the initial amount of yeast put into the fermenter.

i)	Find the exact value of k that produces a doubling of mass every 3 hours.	2
ii)	What is the mass of the yeast in grams put into the vat at the beginning of the fermentation?	2
iii)	At what rate is the yeast increasing when there is 12,000 kg of yeast in the tank?	1

End of Question 14

Question 15 (15 marks) Commence on a NEW page.

(a) A function is defined:

$$f(x) = \begin{cases} \tan x, & 0 < x \le \frac{\pi}{4} \\ 1, & \frac{\pi}{4} < x < \frac{3\pi}{4} \\ -\tan x, & \frac{3\pi}{4} \le x \le \pi \end{cases}$$

- i) Sketch the graph of y = f(x).
- ii) Show that

$$\int \tan x \, dx = -\log_e(\cos x) + C$$

iii) Find the area bounded by y = f(x), the x-axis, x = 0 and $x = \pi$.

iv) The curve y = f(x) is rotated about the *x*-axis. 4

Find the volume of the solid of revolution between x = 0 and $x = \pi$.

(b) The acceleration of a particle travelling along the x-axis is given by the equation

$$\ddot{x} = 6t - 18$$

where *t* is the time in seconds, and the acceleration is measured in m/s^2 .

The particle has an initial velocity of 15 m/s.

i)	Find the velocity at time t.	2
iii)	At what times does the particle change direction?	1
ii)	What is the total distance travelled in the first 2 seconds?	2

End of Question 15

Marks

1

Question 16 (15 marks) Commence on a NEW page.

(a) A triangle AED is constructed using the base of a rectangle ABCD, with intersection points X and Y as shown. ER is the altitude of the triangle AED.

The area of triangle AED is twice the area of the rectangle.

i) Explain why ER: ES = 4:3 2

3

- ii) Prove that $\triangle AED \parallel \mid \triangle XEY$.
- iii) Hence or otherwise, show that 4BX + 4YC = AD. 3

Question 16 continues on the next page

b) A sphere of radius R and a right circular cone with radius R at the base and height 2R are sitting on a horizontal plane.

A second horizontal plane, height h above the first plane, slices through the sphere and the cone, creating two circular cross sections in the sphere and the cone.

Let the radius of the cross-section in the sphere be r_s and the radius of the cross-section in the cone, r_c .

- i) Show that for cross section of the sphere, $r_s^2 = 2Rh h^2$ 2
- ii) Show that for the cross section of the cone $r_c^2 = \left(R \frac{h}{2}\right)^2$ 2
- iii) Hence or otherwise find the height of the slicing plane which gives the maximum sum of cross-sectional areas.

End of paper.

Section 1. Multiple Choice,

Q2.
$$\sum_{i=10}^{21} 2i-30$$

 $\int_{i=10}^{n-4(21-10)+1} = 12$ terms
 $\int_{i=10}^{n-4(21-10)+1} = 12$ terms
 $\int_{i=10}^{n-4(21-10)+1} = 12$ terms
 $\int_{i=10}^{n-4(21-10)+1} = 12$ terms
 $\int_{n-4(21-10)+1}^{n-4(21-10)+1} = 12$
 $\int_{n-4(21-10)+1}^{n-4(21-10)+1} = 12$
 $\int_{n-4(21-10)+1}^{n-4(21-10)+1} = 12$
 $\int_{n-4(21-10)+1}^{n-4(21-10)+1} = 12$ terms
 $\int_{n-4(21-10)+1}^{n-4(21-10)+1} = 12$ terms

$$a1.$$
 A
 $a2.$
 $D.$
 $a3.$
 $C.$
 $a4.$
 $B.$
 $a5.$
 $D.$
 $a7.$
 $C.$
 $a9.$
 $D.$
 $a7.$
 $C.$
 $a9.$
 $D.$
 $a9.$
 $D.$

The second

Q3.
$$3\pi + 4y + 7 = 0$$

 $perp. line is$
 $4\pi - 3y + C = 0$
 $8\pi - 6y + 2C = 0$

$$(38)$$
Avea (B) is a traperium = $\frac{1}{2}(8+12) \times 4 = 10 \times 4 - 40 \pi^2$

Want (A) (B) = 8
Area B = m32 m²
Now 6 - b a
Now 7 - b - N = 32
Now

(i)
$$n-5y-1=0$$

(i) $n-5y-1=0$
Point A: $(-4)-5(-1)-1 = -4+5-1=0$: A on the line
B: $(6)-5(1)-1 = 6-5-1=0$: B on the line

(ii) Ditance AB:

$$d^{2} = (6+4)^{2} + (2)^{2}$$

= 100+4
= 104
AB = N104 units / N
= 2N26 - (optimal)

(iii) Perp height AB+oc is
$$AB: n-Sy-1=0$$

 $d = |(0)-5(5)-1|$ (using perp. distance.
 1^2+5^2 (using perp. distance.
 $= \frac{26}{N26}$
: Anon $\Delta ABC = \frac{1}{2} (2N26) \times \frac{26}{N261}$
 $= 26$ units 2 (using (ii) with pap.

$$\begin{array}{l} (Q_{1}^{(2)}(b) \\ (i) y = (m(7-n^{4})) \\ y' = -sin(7-n^{4}) \cdot (-4n^{3}) \\ = 4n^{3}sin(7-n^{4}) \\ (ii) y = \log(\frac{nnt}{n-1}) \\ = 1(m(2nt+1) - \log(n-1) \\ y' = \frac{1}{2nt+1} - \frac{1}{n-1} \\ (in) y' = \frac{(n-1)}{2nt+1} \times \frac{2(n-1) - (2nt+1)}{(n-1)^{2}} \\ (in) y' = \frac{(n-1)}{2nt+1} \times \frac{2(n-1) - (2nt+1)}{(n-1)^{2}} \\ = \frac{(n-1)}{(2nt+1)} \times \frac{-3}{(2n-1)^{2}} \\ = \frac{-3}{(2nt+1)(n-1)} \\ = \frac{-3}{(2nt+1)(n-1)} \\ (i) \int 3e^{5n} dn = -\frac{3}{5}e^{-5n} + C \\ (ii) \int 3e^{5n} dn = -\frac{3}{5}e^{-5n} + C \\ (iii) \int n^{2}(1-n) dx = \int (n^{2} - n^{2}n(n) dn \\ = \int n^{2} (n^{2} - n^{2}n) dn \\ = \frac{1}{2n^{3}} - \frac{2}{7}n^{2}n + C \\ (iii) \int \frac{6n}{n^{2}(1-n)} dn \\ = \frac{1}{3}\log(n^{2}-1) + C \end{array}$$

(i)
$$y = 5\pi + 4k = k - y = \pi^{2} + 3$$

Independent where
 $5\pi + 4k = \pi^{2} + 3$
 $\pi^{2} - 5\pi + (3 - k) = 0$ I form equation
Require $\Delta \ge 0$
 $\Delta = b^{2} - 4ac$ I the discriminant carrectly
 $= 25 - 4(1)(3 - k)$
 $= 25 - 12 + 44z$
 $= (3 + 4k)$
 $\therefore 13 + 4k = 70$
 $4 - 5\pi^{2}\pi + 6 - 5\pi^{2}\pi = 11$
 $4 - 5\pi^{2}\pi + 6 = 11$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $3^{2}\pi + 4k = 20$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $3^{2}\pi + 4k = 20$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $3^{2}\pi + 4k = 20$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $3^{2}\pi + 4k = 20$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 4k^{2} - 8k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2} - 3k - 3m + 4 = 0$
 $4 - 3k^{2}$

$$\begin{aligned} & \underbrace{\mathcal{O}_{1}}_{(\alpha)} f(n) = 6n^{2} - n^{4} \\ & (i) \quad 6n^{2} - n^{4} = 0 \\ & n^{2}(6 - n) = 0 \\ & n \text{ indenapts at } (0,0), (6,0) \\ & (ii) \quad \int_{1}^{1}(n) = 18n^{2} - 4n^{3} \\ & = \partial n^{2}(9n - 2n) \\ & i \cdot \int_{1}^{1}(6i) = 0 \text{ at } n = 0, n = \frac{9}{2}, \\ & (0,0) \quad (1/2,9) \xrightarrow{16} \\ & f^{1}(n) = 36n - 12n^{2} \end{aligned}$$

Q14(b)
P=Poekt
(i) Double in 3hours:

$$2P_0 = P_0 e^{3k}$$

 $2 = e^{3k}$
 $|n = 2 = e^{$

$$(\ddot{u}) \frac{dP}{dt} = k \cdot P$$

= $\ln 2 \cdot l_{2} \otimes l_{0}$
 $\frac{3}{3}$
 $\approx 2773 \ kg/hr \sqrt{}$

$$\begin{aligned} \frac{1}{12} & \frac{1}{12$$

b)
$$\dot{x} = 6t - 18$$
 Q15(b)
i) $\dot{x} = 3t^{2} - 18t + c$
 $t = 0$ $\dot{x} = 15$
 $c = 15$
 $\dot{x} = 3t^{2} - 18t + 15$
 117 $\dot{x} = 0$ $t^{2} - 6t + 5 = 0$
 $(t - t)(t - 1) = 0$
 $t = 1$ α $t = 5$ chaque duech of $t = 1 + 1 = 5$
 $t = 1$ α $t = 5$ chaque duech of $t = 1 + 1 = 5$
 $t = 1$ α $t = 5$ chaque duech of $t = 1 + 1 = 5$
 $t = 1$ α $t = 5$ chaque duech of $t = 1 + 1 = 5$
 $t = 1$ α $t = 5$ chaque duech of $t = 1 + 1 = 5$
 $t = 1$ α $t = 5$ chaque duech of $t = 1 + 1 = 5$
 $t = 1$ α $t = 5$ chaque duech of $t = 1 + 1 = 5$
 $t = 1$ α $t = 5$ chaque duech of $t = 1 + 1 = 5$
 $t = 1$ α $t = 5$ chaque duech of $t = 1 + 1 = 5$
 $t = 1$ α $t = 5$ $t = 0$
 $t = 0$ $u = c$
 $t = 1$ γ $t = 0$
 $t = 1$ γ $t = 0$
 $t = 1$ γ $t = 0$
 $t = 1$ γ $t = 7 + c$
 $t = 2$ $\eta = 7 + c$
 $t = 2 + c$
 $t = 2 + c$

•

Q 16. (b) (ii) Similar triogles (equive bur)

$$2R \int 2R fh r = \frac{2R-h}{R}$$

 $R = \frac{2R-h}{2R}$
 $V_{C} = R - \frac{h}{2}$
 $V_{C}^{2} = (R - \frac{h}{2})^{2}$
(iii) Area total = MT $(r_{s}^{2} + r_{c}^{2})$
 $= MT (2Rh - h^{2} + (R - \frac{h}{2})^{2})$
 $= MT (2Rh - h^{2} + R^{2} - 4Rh + \frac{h^{2}}{4})$
 $= MT (2Rh - h^{2} + R^{2} - 4Rh + \frac{h^{2}}{4})$
 $= MT (2Rh - h^{2} + R^{2} - 4Rh + \frac{h^{2}}{4})$
 $= MT (R^{2} - \frac{3h}{4} + Rh)$
 $dH^{2} = DH$ quadroth in $h / h = 0$
 $Meximum at $R = \frac{h}{2R} = \frac{-R}{2(-3/4)}$
 $M = MT (-\frac{h}{4}R + R)$
 $dH = 0$ allor $h = \frac{4}{3}R = \frac{2}{3}R$
 $dH = -2\pi 6 < 0$ allogs in Meximum under.$