MATHEMATICS
2018 HSC Course Assessment Task 3
(Trial Examination)
Wednesday June 27, 2018.

General Instructions

- Working time -3 hours (plus 5 minutes reading time).
- Write using blue or black pen.

Diagrams may be sketched in pencil.

- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.

Section I-10 marks

- Mark your answers on the answer sheet provided.

Section II - 90 marks

- Commence each new question on a new page.
- Show all necessary working in every question. Marks may be deducted for illegible or incomplete working.

Question	MC	11	12	13	14	15	16	Total
Marks	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$

[This page left blank]

Section 1: Multiple Choice- 1 mark each.

Q1. Which line is perpendicular to the line $4 x+3 y+2=0$?
(A) $4 x+3 y-2=0$
(B) $4 x-3 y+2=0$
(C) $3 x+4 y+2=0$
(D) $3 x-4 y-2=0$

Q2. The value of $\quad \sum_{k=2}^{20} 10-3 k \quad$ is
(A) -342
(B) -414
(C) -437
(D) -500

Q3. Which function is an odd function?
(A)

(B)

(C)

(D)

Q4. Using the trapezoidal rule with 4 subintervals, which expression gives the approximate area under the curve $y=x e^{x}$ between $x=1$ and $=3$?
(A) $\frac{1}{4}\left(e+3 e^{1.5}+4 e^{2}+5 e^{2.5}+3 e^{3}\right)$
(B) $\frac{1}{4}\left(e+6 e^{1.5}+4 e^{2}+10 e^{2.5}+3 e^{3}\right)$
(C) $\frac{1}{2}\left(e+3 e^{1.5}+4 e^{2}+5 e^{2.5}+3 e^{3}\right)$
(D) $\frac{1}{2}\left(e+6 e^{1.5}+4 e^{2}+10 e^{2.5}+3 e^{3}\right)$

Q5. What is the period of $=3 \tan (4 x)$?
(A) $\frac{\pi}{8}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) $\frac{2 \pi}{3}$

Q6. The solution to $3 x^{2}+2 x>8$ is
(A) $-\frac{4}{3}<x<2$
(B) $x<-\frac{4}{3}, x>2$
(C) $x<-2, x>\frac{4}{3}$
(D) $-2<x<\frac{4}{3}$

Q7. If α and β are roots of the equation $2 x^{2}-4 x-1=0$, what is the value of $\alpha^{2}+\beta^{2}$?
(A) 3
(B) 4
(C) 5
(D) None of the above

Q8. It is known that $\ln 3 a=\ln b-2 \ln c$, where $a, b, c>0$.
Which statement is true?
(A) $a=\frac{b-c^{2}}{3}$
(B) $a=\frac{b}{3 c^{2}}$
(C) $\ln 3 a=\frac{b}{c^{2}}$
(D) $\ln 3 a=\frac{\ln b}{\ln c^{2}}$

Q9. Evaluate $\int_{0}^{6}|x-2| d x$
(A) 10
(B) 20
(C) 30
(D) None of the above.

Q10. The graph of $y=f^{\prime}(x)$ is shown.

The curve $y=f(x)$ is tangential to the x-axis.
What is the equation of the curve $=f(x)$?
(A) $y=2 x^{2}-8 x+8$
(B) $y=2 x^{2}-8 x+16$
(C) $y=x^{2}-8 x+8$
(D) $y=x^{2}-8 x+16$

End of Section I

Section II - Short Answer 90 marks

Question 11 (15 marks) Commence on a NEW page.
(a) Rationalise the denominator $\frac{1-\sqrt{5}}{6+\sqrt{5}}$
(b) Factorise fully $16-4 x^{2}$.
(c) State the domain of the function $y=\sqrt{4-x}$.
(d) Solve $|2 x-1|<4$.
(e) Differentiate $y=5 x^{6}-\sqrt{x}$.
(f) Differentiate $y=(\cos x-x)^{3}$. 2
(g) Find $\int(3 x+1)^{4} d x$.
(h) Solve $\cos \left(\frac{x}{2}\right)=\frac{\sqrt{3}}{2} \quad$ for $0 \leq x \leq 4 \pi$.

End of Question 11

(a) The points $A(-8,2), B(-4,8), C(6,-2), D(0-6)$ define a trapezium in the Cartesian plane.

The equation of the line BC is $y=4-x$, and of line AD is $y=6-x$.
The distance AD is $8 \sqrt{2}$ units.

i) Find the perpendicular distance from the point A to the line BC .
ii) Hence calculate the area of the trapezium.
(b) Differentiate $\quad y=\log _{\mathrm{e}} \frac{3 x-1}{(x+1)^{4}}$
(c) Find:
i) $\int x(3-\sqrt{x}) d x$
ii) $\int \sin (5 x+2) d x$
iii) $\int \frac{x-5}{x^{2}-10 x} d x$

Question 12 (continued)

(d) In a triangle $A B C, A B=B C$. The point L is on $B C$ such that $A L$ bisects $\angle B A C$.

i) Copy the diagram into your workbook.
ii) If $A L=A C$, find the size of $\angle A B C$, giving reasons.

High quality setting out is required for full marks.

End of Question 12

Question 13 (15 marks) Commence on a NEW page.
(a) State the location of the vertex and the focus of the parabola

$$
8 x-y^{2}+6 y-1=0
$$

(b) Triangle $A B C$ has sides $A B=5 \mathrm{~cm}, B C=13 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$.

Find the exact value of $\tan C$ in simplest form.
(c) Sketch the region $y \leq \sqrt{25-x^{2}}$ and $y<x$.
(d) Find the values of k for which $y=5 x^{2}+(20-k) x+20$ is positive definite.
(e) The curve $y=4 \cos \left(\frac{\pi}{3} x\right)$ meets the line $y=2 x$ at the point $(1,2)$ as shown in the diagram below.

Find the exact value of the shaded area.

Question 14 (15 marks) Commence on a NEW page.
(a) Given

$$
f(x)=(x+2)(x-2)^{3}
$$

and

$$
f^{\prime}(x)=4(x-2)^{2}(x+1)=4 x^{3}-12 x^{2}+16
$$

i) Find the stationary points of $y=f(x)$ and determine their nature.
ii) Find the coordinates of any points of inflexion.
iii) Sketch the graph of $y=f(x)$, clearly indicating the intercepts, stationary points and points of inflexion.
(b) Given that $x+y, x-y, x y$ form an arithmetic sequence, write an expression for x in terms of y.
(c) Given the graph of $y=f(x)$ below,

Apply Simpson's Rule with five values to find an approximation for $\int_{0}^{4} f(x) d x$.

Question 14 continues on the next page

(d) A region is defined by the function $y=\log _{e}(x-2)$, the y-axis, and the lines $y=0$ and $y=1$.

Find the volume of the solid of revolution formed by rotating the region about the y-axis.

End of Question 14

Question 15 (15 marks) Commence on a NEW page.
(a) The velocity of a particle travelling along the x-axis is given by the equation

$$
v=3-\frac{12}{2+t}
$$

where t is the time in seconds and the velocity is in m / s.
i) When is the particle stationary? 1
ii) What happens to the velocity as $t \rightarrow \infty$?
iii) Sketch the graph of $v(t)$ for $t \geq 0$, showing any intercepts.
iv) Find the acceleration when the particle is stationary.
v) Find the distance travelled in the first 6 seconds.
(b) i) Show that $\frac{d}{d x} x^{2} e^{-x^{2}}=2 x e^{-x^{2}}-2 x^{3} e^{-x^{2}}$
ii) Hence find $\int x^{3} e^{-x^{2}} d x$ 2

Question 15 continues on the next page

(c) Three circles of radius 1 unit with centres A, B and C respectively are arranged as shown in the diagram below.

i) Find the exact value of the area of the triangle HJK.
ii) Hence or otherwise find the exact value of the shaded area.

End of Question 15

Question 16 (15 marks) Commence on a NEW page.
(a) By using the property $x=y^{\log _{y} x}$, or otherwise, show that

$$
a^{\log _{b} x}=x^{\log _{b} a}
$$

(b) The following diagram appears in the 1913 book "Carslaw's Plane Trigonometry":

This diagram has become a famous "Proof Without Words" for the sum of an infinite geometric series.

In the questions below, the aim is to prove the result for the sum of an infinite geometric series, so don't use the result in your working out.

We can see from the diagram that $O N=1+x+x^{2}+x^{3}+\cdots$.
i) Explain why $N P=O N-1$.
ii) Explain why $N P=x O N$.
iii) Using the results (i) and (ii) above, show that,

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}
$$

iv) How does this proof demonstrate that x must satisfy the restriction $x<1$?

Question 16 continues on the next page
(c) At midday, Keanu is in a speedboat on a river at location K when he receives a call from Sandra at location S, riding a bus along a coastal highway towards T.

Sandra asks Keanu to meet up with her bus further along the highway at a location of his choosing - she doesn't mind where they meet, just so long as they eventually meet.

The bus is travelling at a constant speed of $V \mathrm{~km} / \mathrm{hr}$, scheduled to pass K^{\prime} at 1 PM . The distance $K K^{\prime}$ is $D \mathrm{~km}$.

Keanu leaves at midday on a bearing of angle θ and meets the bus at point B.
i) Show that the bus arrives at point B at time t hours,

$$
t=\frac{D \tan \theta}{V}+1
$$

ii) Hence show that Keanu will need to travel at a speed r, where

$$
r=\frac{D V \sec \theta}{D \tan \theta+V}
$$

iii) Show that

$$
\frac{d r}{d \theta}=\frac{D V \sec \theta(V \tan \theta-D)}{(D \tan \theta+V)^{2}}
$$

given: $\frac{d}{d \theta} \sec \theta=\sec \theta \tan \theta$
iv) Show that r is minimised when $\tan \theta=\frac{D}{V}$ (reasoning required).
v) Show that the minimum speed r is given by $\quad r=\frac{D V}{\sqrt{D^{2}+V^{2}}}$.

2018 Mathematics HSC Course Task 3

Suggested Responses

1. (D) 2. (C) 3. (C) 4. (A) 5. (B)
2. (C) 7. (C)
3. (B) 9. (A) 10. (D)

Question 11 :

(a) (2 marks)

$$
\begin{aligned}
\frac{1-\sqrt{5}}{6+\sqrt{5}} & =\frac{(1-\sqrt{5})}{6+\sqrt{5}} \times \frac{(6-\sqrt{5})}{(6-\sqrt{5})} \\
& =\frac{(1-\sqrt{5})(6-\sqrt{5})}{36-5} \\
& =\frac{6-\sqrt{5}-6 \sqrt{5}+5}{31} \\
& =\frac{11-7 \sqrt{5}}{31}
\end{aligned}
$$

(b) (2 marks)

$$
\begin{aligned}
16-4 x^{2} & =4\left(4-x^{2}\right) \\
& =4(2+x)(2-x)
\end{aligned}
$$

(c) (1 mark)

$$
x \leq 4
$$

(d) (2 marks)

$$
\begin{aligned}
-4 & \leq 2 x-1 \leq 4 \\
-3 & \leq 2 x \leq 5 \\
-\frac{3}{2} & \leq x \leq \frac{5}{2}
\end{aligned}
$$

(e) (2 marks)

$$
\begin{aligned}
y & =5 x^{6}-x^{\frac{1}{2}} \\
y^{\prime} & =30 x^{5}-\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(g) (2 marks)

$$
\begin{aligned}
& \int(3 x+1)^{4} d x \\
& =\frac{(3 x+1)^{5}}{5 \times 3}+C \\
& =\frac{(3 x+5)^{5}}{15}+C
\end{aligned}
$$

(h) (2 marks)

$$
\begin{aligned}
\cos \frac{x}{2}=\frac{\sqrt{3}}{2} & 0 \leq x \leq 4 \pi \\
& 0 \leq \frac{x}{2} \leq 2 \pi \\
\frac{x}{2} & =\frac{\pi}{6}, \frac{11 \pi}{6} \\
\frac{x}{2} & =\frac{2 \pi}{6}, \frac{22 \pi}{6} \\
& \\
x & =\frac{\pi}{3}, \frac{11 \pi}{3} \\
&
\end{aligned}
$$

Question 12 :

(a) i. $\quad(2$ marks) $\mathrm{BC}: x+y-4=0 \quad \mathrm{~A}(-8,2)$

$$
\begin{aligned}
d & =\frac{|1(-8)+1(2)-4|}{\sqrt{1^{2}+1^{2}}} \\
& =\frac{|-8+2-4|}{\sqrt{2}} \\
& =\frac{10}{\sqrt{2}}=5 \sqrt{2} \text { units }
\end{aligned}
$$

ii. (2 marks)

$$
\begin{aligned}
(B C)^{2} & =(-4-6)^{2}+(8+2)^{2} \\
B C & =2 \sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area trapezium } & =5 \sqrt{2} \times \frac{8 \sqrt{2}+10 \sqrt{2}}{2} \\
& =90 \mathrm{units}^{2}
\end{aligned}
$$

(b) (2 marks)

$$
\begin{aligned}
y & =\ln \frac{3 x-1}{(x+1)^{4}} \\
& =\ln (3 x-1)-4 \ln (x+1)
\end{aligned}
$$

$$
\begin{aligned}
y & =(\cos x-x)^{3} \\
y^{\prime} & =3(\cos x-x)^{2} \times(-\sin x-1) \\
& =-3(\sin x+1)(\cos x-x)^{2}
\end{aligned}
$$

(c) i. (2 marks)

$$
\begin{aligned}
& \int x(3-\sqrt{x}) d x \\
= & \int\left(3 x-x^{\frac{3}{2}}\right) d x \\
= & \frac{3}{2} x^{2}-\frac{2}{5} x^{\frac{5}{2}}+C
\end{aligned}
$$

ii. (2 marks)

$$
\begin{aligned}
& \int \sin (5 x+2) d x \\
= & -\frac{1}{5} \cos (5 x+2)+C
\end{aligned}
$$

iii. (2 marks)

$$
\int x^{2}-10 x d x=\frac{1}{2} \ln \left(x^{2}-10 x\right)+C(\mathrm{~b}) \quad(3 \text { marks })
$$

(d) (2 marks)

Let $\angle B A L=\angle B A C=\theta$ (given)
$\triangle A B C$ is isosceles (two equal sides)
$\therefore \angle A C B=\angle B A C=2 \theta$ (base angles of isosceles triangle)
$\triangle A L C$ is isosceles (two equal sides, given)
$\therefore \angle A C B=\angle A L C$
$\therefore \angle A L C=2 \theta$
In $\triangle A L C$,
$\angle L A C+\angle A C L+\angle C L A=180^{\circ}=5 \theta$ (angle sum of a triangle)
$\therefore \theta=\frac{180}{5}=36^{\circ}$
In $\triangle A B C$,
$\angle A B C+2 \theta+2 \theta=180^{\circ}$ (angle sum of a
triangle)
$\therefore \angle A B C=180^{\circ}-2 \times 36^{\circ}-2 \times 36^{\circ}=36^{\circ}$

Question 13 :

(a) (3 marks)

$$
\begin{aligned}
8 x-y^{2}+6 y-1 & =0 \\
y^{2}-6 y & =8 x-1 \\
y^{2}-6 y+9 & =8 x-1+9 \\
(y-3)^{2} & =8(x+1)
\end{aligned}
$$

(draw a diagram!)
vertex: $(-1,3)$
focus: (1,3)

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos C \\
\cos C & =\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
\cos C & =\frac{10^{2}+13^{2}-5^{2}}{2 \times 10 \times 13} \\
\cos C & =\frac{61}{65}
\end{aligned}
$$

(draw a diagram!)

$$
\begin{gathered}
\quad x=\sqrt{65^{2}-61^{2}}=6 \sqrt{14} \\
\tan C=\frac{x}{61} \\
\tan C=\frac{6 \sqrt{14}}{61}
\end{gathered}
$$

(c) (3 marks)

$$
y \leq \sqrt{25-x^{2}} \quad, y \leq x
$$

(d) (3 marks) $y=5 x^{2}+(20-k) x+20$ is positive definite when $\Delta<0$

$$
\begin{aligned}
(20-k)^{2}-4(5)(20) & <0 \\
400-40 k+k^{2}-400 & <0 \\
k^{2}-40 k & <0 \\
k(k-40) & <0
\end{aligned}
$$

(draw a diagram)

$$
0<k<40
$$

(e) (3 marks)

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1}\left(4 \cos \frac{\pi}{3} x-2 x\right) d x \\
& =\left[-\frac{12}{\pi} \sin \frac{\pi}{3} x-x^{2}\right]_{0}^{1} \\
& =(0-0)-\left(-\frac{12}{\pi} \sin \frac{\pi}{3}-1^{2}\right) \\
& =\frac{6 \sqrt{3}-\pi}{\pi} \text { units }^{2}
\end{aligned}
$$

Question 14 :

(a) $f(x)=(x+2)(x-2)^{3}$

$$
f^{\prime}(x)=4(x-2)^{2}(x+1)=4 x^{3}-12 x^{2}+16
$$

i. (3 marks)

Stationary when $f^{\prime}(x)=0$
ie: $4(x-2)^{2}(x+1)=0$
$x=2$ or $x=-1$
$f(2)=0, f(-1)=27$
Stationary points at $(2,0)(-1,-27)$

x	-2	-1	0	2	3
$f^{\prime}(x)$	-64	0	16	0	16
	\backslash	-	$/$	-	$/$

\therefore horizontal point of inflexion at $(2,0)$, local minimum at $(-1,-27)$
ii. (2 marks)
$f^{\prime \prime}(x)=12 x^{2}-24 x$
Possible points of inflection at
$f^{\prime \prime}(x)=0$ ie: $12 x^{2}-24 x=0$
$x(x-2)=0$
$x=0$ or $x=2$
We have already shown $x=0$ is a point of inflexion, test for $x=2$

x	1	2	3
$f^{\prime \prime}(x)$	-12	0	36
	\cap	-	\cup

\therefore Points of inflexion at $(2,0),(0-16)$
iii. (2 marks)

(b) (2 marks) AP: $x+y, x-y, x y$ $a=x+y, d=x-y-(x+y)=-2 y$

$$
\begin{aligned}
T_{3}-T_{2} & =T_{2}-T_{1} \\
x y-(x-y) & =(x-y)-(x+y) \\
x y-x+y & =x-y-x-y \\
x y & =-2 y+x-y \\
x y-x & =-2 y-y \\
x(y-1) & =-3 y \\
x & =\frac{3 y}{1-y}
\end{aligned}
$$

(c) (3 marks) Using Simpson's rule:

x	0	1	2	3	4
$f(x)$	2	1	0	-2	-1
	$\times 1$	$\times 4$	$\times 2$	$\times 4$	$\times 1$

$\int_{0}^{4} f(x) d x \approx \frac{1}{3}(2+1 \times 4+0 \times 2+(-2) \times 4+-1)$

$$
=-1
$$

(d) (3 marks) $V=\pi \int_{0}^{1} x^{2} d y$

$$
\begin{aligned}
y & =\ln (x-2) \\
x-2 & =e^{y} \\
x & =e^{y}+2 \\
x^{2} & =\left(e^{y}+2\right)^{2} \\
& =e^{2 y}+4 e^{y}+4
\end{aligned}
$$

$$
\begin{aligned}
V= & \pi \int_{0}^{1}\left(e^{2 y}+4 e^{y}+4\right) d y \\
= & \pi\left[\frac{1}{2} e^{2 y}+4 e^{y}+4 y\right]_{0}^{1} \\
= & \left.\pi\left(\frac{1}{2} e^{2(1)}+4 e^{(} 1\right)+4(1)\right) \\
& -\pi\left(\frac{1}{2} e^{2(0)}+4 e^{(0)}+4(0)\right) \\
= & \pi\left(\frac{1}{2} e^{2}+4 e-\frac{1}{2}\right) \text { units }^{3}
\end{aligned}
$$

Question 15 :

$$
\begin{aligned}
3-\frac{12}{2+t} & =0 \\
\frac{12}{2_{t}} & =3 \\
3(2+t) & =12 \\
2+t & =4 \\
t & =2 \text { seconds }
\end{aligned}
$$

(a) i. (1 mark) Stationary when $v=0$
ii. (1 mark) As $t \rightarrow \infty, v \rightarrow 3 \mathrm{~m} / \mathrm{s}$
iii. (1 mark)

iv. (2 marks)

$$
\begin{aligned}
a & =\frac{d}{d t}\left(3-\frac{12}{2+t}\right) \\
& =\frac{d}{d t}\left(3-12(2+t)^{-1}\right) \\
& =12(2+t)^{-2} \\
& =\frac{12}{(2+t)^{2}} \\
a(2) & =\frac{12}{(2+2)^{2}} \\
& =\frac{3}{4} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
x(t) & =3 t-12 \ln (t+2)+C \\
x(0) & =3(0)-12 \ln (0)+2)+C \\
& =-12 \ln 2+C \\
x(2) & =3(2)-12 \ln (2)+2)+C \\
& =6-12 \ln 4+C \\
& =6-24 \ln 2+C
\end{aligned}
$$

$$
\begin{aligned}
x(6) & =3(6)-12 \ln (6)+2)+C \\
& =18-12 \ln 8+C \\
& =18-36 \ln 2+C
\end{aligned}
$$

particle moves left $t=0$ to $t=2$:
distance $=x(0)-x(2)$

$$
\begin{aligned}
& =(-12 \ln 2+C)-(6-24 \ln 2+C) \\
& =12 \ln 2-6
\end{aligned}
$$

particle moves right $t=2$ to $t=6$:
distance $=x(6)-x(2)$
$=(18-36 \ln 2+C)-(6-24 \ln 2+C)$
$=12-12 \ln 2$
Total distance $=(12 \ln 2-6)+(12-$ $12 \ln 2)=6$ metres
(b) i. (2 marks) $\frac{d}{d x}\left(x^{2} e^{-x^{2}}\right)$:

Let $u=x^{2}, u^{\prime}=2 x$
Let $v=e^{-x^{2}}, v^{\prime}=-2 x e^{-x^{2}}$

$$
\begin{aligned}
\mathrm{LHS} & =\frac{d}{d x}\left(x^{2} e^{-x^{2}}\right) \\
& =u^{\prime} v+u v^{\prime} \\
& =2 x \times e^{-x^{2}}-x^{2} \times-2 x e^{-x^{2}} \\
& =2 x e^{-x^{2}}-2 x^{3} e^{-x^{2}} \\
& =\text { RHS }
\end{aligned}
$$

ii. (2 marks) From (i),
(b)
i. (1 mark)
$A P$ has gradient 1 , so $N P=A N$.
From the diagram, $O N=1+A N$
$\therefore O N=1+N P$
$\frac{d}{d x}\left(x^{2} e^{-x^{2}}\right)=2 x^{3} e^{-x^{2}}-2 x e^{-x^{2}}$
$2 \int x^{3} e^{-x^{2}} d x=\int 2 x e^{-x^{2}} d x-\int\left(\frac{d}{d x} x^{2} e^{-x^{2}}\right) \dot{d} \dot{x} N P=O N-1$
$2 \int x^{3} e^{-x^{2}} d x=\int 2 x e^{-x^{2}} d x-x^{2} e^{-x^{2}} \quad$ ii. $\quad(1 \underset{N P}{\operatorname{mark})} O P$ has gradient x,
$2 \int x^{3} e^{-x^{2}} d x=-e^{-x^{2}}-x^{2} e^{-x^{2}}+C$ from (i)
$\therefore \frac{N P}{O N}=x$
$\therefore N P=x O N$

$$
\int x^{3} e^{-x^{2}} d x=-\frac{1}{2}\left(e^{-x^{2}}+x^{2} e^{-x^{2}}\right)+C
$$

iii. (1 mark)
(c) i. (1 mark)
$\Delta H J K$ is an equaliteral triangle, sides 2 units
area $=\frac{1}{2} \times 2 \times 2 \times \sin \pi / 3$
$=\sqrt{3} \mathrm{u}^{2}$
ii. (2 marks)

$$
\begin{aligned}
& \text { segment area }=\frac{1}{2} r^{2}(\theta-\sin \theta) \\
&=\frac{1}{2}\left(\frac{\pi}{3}-\sin \frac{\pi}{3}\right) \\
&=\frac{1}{2}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) \\
&=\frac{2 \pi-3 \sqrt{3}}{12} \\
& \begin{aligned}
\therefore \text { Area } & =\sqrt{3} \\
& +6 \times \frac{2 \pi-3 \sqrt{3}}{12} \\
& =\left(\pi-\frac{\sqrt{3}}{2}\right) u^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
O N-1 & =x O N \text { from (i), (ii) } \\
O N-x O N & =1 \\
O N(1-x) & =1 \\
O N & =\frac{1}{1-x}
\end{aligned}
$$

From the diagram,
$O N=1+x+x^{2}+x^{3}+\ldots$
$\therefore 1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}$
iv. If $x \geq 1$ then the line OB will not intersect the gradient $=1$ line AP.
or

If $x \geq 1$ then $x^{2}>x, x^{3}>x^{2}$, etc, so the sequence of triangles will not reduce in size, so the diagram will not work.

NB: the distances will not become negative if $x \geq 1$ - it is possible to draw this condition, however the lines OB and AP do not intersect.
(c) i. (1 mark)

Question 16 :

(a) (2 marks)

$$
\begin{aligned}
\mathrm{LHS} & =a^{\log _{b} x} \\
& =\left(x^{\log _{x} a}\right)^{\log _{b} x} \\
& =x^{\log _{x} a \times \log _{b} x} \\
& =x^{\frac{\ln a}{\ln x} \times \frac{\ln x}{\ln b}} \\
& =x^{\frac{\ln a}{\ln b}} \\
& =x^{\log _{b} x} \\
& =\text { RHS }
\end{aligned}
$$

in the time S reaches B

$$
\begin{aligned}
r & =(D \sec \theta) \div\left(\frac{D \tan \theta}{V}+1\right) \\
& =(D \sec \theta) \div\left(\frac{D \tan \theta+V}{V}\right) \\
& =\frac{D V \sec \theta}{D \tan \theta+V}
\end{aligned}
$$

iii. (2 marks)

$$
\begin{aligned}
\frac{d r}{d \theta}= & \frac{u^{\prime} v-u v^{\prime}}{v^{2}} \\
u v^{\prime}-u v^{\prime}= & (D V \sec \theta \tan \theta)(D \tan \theta+V) \\
& -\left(D \sec ^{2} \theta\right)(D V \sec \theta) \\
= & D V \sec \theta\left(D \tan ^{2} \theta\right. \\
= & \left.\quad+V \tan \theta-D \sec ^{2} \theta\right) \\
= & D V \sec \theta\left(D \tan ^{2} \theta+V \tan \theta\right. \\
& \left.\quad-D\left(1+\tan ^{2} \theta\right)\right) \\
= & D V \sec \theta(V \tan \theta-D) \\
\frac{d r}{d \theta}= & \frac{D V \sec \theta(V \tan \theta-D)}{(D \tan \theta+V)^{2}}
\end{aligned}
$$

iv. (2 marks)

Stationary points when $\frac{d r}{d \theta}=0$.
$\sec \theta>0$ for the domain $0 \leq \theta<\frac{\pi}{2}$.
$(V \tan \theta-D)=0$ when $\tan \theta=\frac{D}{V}$.
Let θ_{m} be the value for which $\tan \theta_{m}=\frac{D}{V}$

To show that r is a minimum for θ_{m}, we must test using the first or second derivative (!).

Consider $\alpha<\theta_{m}$.
Since $\tan \theta$ is an increasing function
for $0 \leq \theta<\frac{\pi}{2}$,
$\tan \alpha<\tan \theta_{m}<\frac{D}{V}$
$\therefore(V \tan \alpha-D)<\left(V \frac{D}{V}-D\right)<0$
Consider $\beta>\theta_{m}$.
Since $\tan \theta$ is an increasing function
for $0 \leq \theta<\frac{\pi}{2}$,
$\tan \beta>\tan \theta_{m}>\frac{D}{V}$
$\therefore(V \tan \beta-D)>\left(V \frac{D}{V}-D\right)>0$

θ	α	θ_{m}	β
$\sec \theta-D$	$(+)$	$(+)$	$(+)$
$V \tan \theta-D$	$(-)$	0	$(+)$
$(D \tan \theta+V)^{2}$	$(+)$	$(+)$	$(+)$
$\frac{d r}{d \theta}$	$(+)(-) /(+)$	0	$(+)(+) /($
	\backslash	-	$/$

Therefore r is a minimum when $\tan \theta=\frac{D}{V}$.
v. (2 marks)

If $\tan \theta=\frac{D}{V}$, draw diagram
then $\sec \theta=\frac{\sqrt{D^{2}+V^{2}}}{V},(\theta$ acute $)$.

$$
\begin{aligned}
& r=\frac{D V \sec \theta}{D \tan \theta+V} \\
& r=\frac{D V \frac{\sqrt{D^{2}+V^{2}}}{V}}{D\left(\frac{D}{V}\right)+V} \\
& r=\frac{D\left(\sqrt{D^{2}+V^{2}}\right)}{\frac{D^{2}}{V}+V} \\
& r=\frac{D\left(\sqrt{D^{2}+V^{2}}\right)}{\frac{D^{2}+V^{2}}{V}} \\
& r=\frac{D V\left(\sqrt{D^{2}+V^{2}}\right)}{D^{2}+V^{2}} \\
& r=\frac{D V}{\sqrt{D^{2}+V^{2}}}
\end{aligned}
$$

