MATHEMATICS
2019 HSC Course Assessment Task 3
(Trial Examination)
Thursday June 27, 2019.

General Instructions

- Working time -3 hours (plus 5 minutes reading time).
- Write using blue or black pen.

Diagrams may be sketched in pencil.

- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.

Section I-10 marks

- Mark your answers on the answer sheet provided.

Section II - 90 marks

- Commence each new question on a new page.
- Show all necessary working in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER: \qquad \# BOOKLETS USED: \qquad

Mr Berry
\square Mr Hwang

Mr Lin

Question	MC	11	12	13	14	15	16	Total
Marks	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$

Section 1: Multiple Choice- 1 mark each.
Q1. What values for a and b satisfy the following equation:

$$
\frac{14}{3-\sqrt{2}}=a+\sqrt{b}
$$

(A) $\quad a=3$ and $b=2$
(B) $a=6$ and $b=-2$
(C) $a=6$ and $b=2$
(D) $\quad a=6$ and $b=8$

Q2. Which of the following is perpendicular to $2 x-4 y+1=0$?
(A) $2 x+y+5=0$
(B) $2 x+4 y-2=0$
(C) $4 x-2 y+3=0$
(D) $x-2 y-1=0$

Q3. Which of the following is equal to $\frac{d}{d x} \log _{e}(\tan x)$?
(A) $\cot x$
(B) $\sec x \cos x$
(C) $\frac{1}{\sec ^{2} x}$
(D) $\sec ^{2} x \tan x$

Q4. Which expression is a factorisation of $343-x^{6}$?
(A) $\left(7-x^{2}\right)\left(49+7 x^{2}+x^{4}\right)$
(B) $\left(7-x^{2}\right)\left(49+14 x^{2}+x^{4}\right)$
(C) $\left(7-x^{2}\right)\left(49-7 x^{2}+x^{4}\right)$
(D) $\left(7-x^{2}\right)\left(49-14 x^{2}+x^{4}\right)$

Q5. The diagram below shows the graph of the $y=f^{\prime}(x)$, the derivative of a function:

Which point on this graph indicates an inflexion point on $=f(x)$?
(A) a
(B) b
(C) c
(D) d

Q6. The solution to $8 x-1>7 x^{2}$ is
(A) $\frac{1}{7}<x<1$
(B) $x<\frac{1}{7}, x>1$
(C) $x<-1, x>-\frac{1}{7}$
(D) $-1<x<-\frac{1}{7}$

Q7.

Which if the following best describes the shaded region?
(A) $x-y-1 \leq 0$ and $x+y+1 \leq 0$ and $y \leq \sin x$
(B) $x-y-1 \leq 0$ and $x+y+1 \geq 0$ and $y \leq \sin x$
(C) $x-y-1 \geq 0$ and $x+y+1 \leq 0$ and $y \leq \sin x$
(D) $x-y-1 \geq 0$ and $x+y+1 \geq 0$ and $y \leq \sin x$

Q8. Which of the following is equivalent to $\int_{0}^{1} 2^{x} d x$
(A) $\frac{1}{\ln 2}$
(B) $\frac{2}{\ln 2}$
(C) $\ln 2$
(D) $2 \ln 2$

Q9. The graph of $y=\sin x-\cos 3 x$ is shown:

How many solutions are there for the equation $2 \sin x-2 \cos 3 x=x$
(A) 2
(B) 3
(C) 5
(D) 7

Q10. The following is a velocity-time diagram for a particle moving in one dimension, where time t is in seconds and velocity is in metres/second.

The particle is initially 2 metres to left of the origin.
When does the particle return to the origin?
(A) 2 seconds
(B) 4 seconds
(C) 5 seconds
(D) 6 seconds

End of Section I

Section II - Short Answer 90 marks

Question 11 (15 marks) Commence on a NEW page.
(a) Factorise fully $2 x^{2} y-3 x^{2}-8 y+12$
(b) State the domain and range of the function $f(x)=\sqrt{16-x^{2}}$
(c) Solve $|3 x-1|=4 x$
(d) Differentiate $y=\left(e^{2 x}+\log _{e} x\right)^{4}$
(e) Find the equation of tangent to the curve $y=2 \cos x$ at $x=\frac{\pi}{3}$.
(f) Solve $\cos 2 x=\frac{\sqrt{3}}{2}$ for $0 \leq x \leq 2 \pi$.

End of Question 11

(a) The points $A(-8,4), B(6,-2), C(-4,7)$ are defined in the Cartesian Plane.
i) Show that the equation of the line AB is $6 x+14 y-8=0$.
ii) Find the perpendicular distance from line AB to point C .
iii) Hence or otherwise fine the area of $\triangle A B C$.
(b) Find:
i) $\int \frac{d x}{(1+5 x)^{4}}$
ii) $\int \sqrt{x}(4-\sqrt{x}) d x$
iii) $\int_{0}^{\frac{\pi}{4}} \sin 2 x d x$
(c) Differentiate $\quad y=\log _{\mathrm{e}} \frac{5 x+1}{(x-3)^{2}}$
(d) Triangle ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$.

The triangle was constructed so that $\mathrm{AB}=\mathrm{BD}=\mathrm{DC}$.

i) Trace or copy the diagram into your workbook.
ii) Find the value of $\angle B C D$, showing reasoning.

End of Question 12

Question 13 (15 marks) Commence on a NEW page.
(a) For the parabola $12 x+y^{2}+6 y-15=0$
i) Find the coordinates of the vertex.
ii) Find the coordinates of the focus.
(b) The roots of the equation $x^{2}-2 k x+3 k=0$ differ by four.

Find the value(s) of k.
(c) A line L passes through the point $Q(4,-2)$ and the intersection of the lines

$$
2 x+5 y-1=0 \text { and } x+y-5=0
$$

Find the equation of L in general form.
(d) The diagram below shows a circle radius 1 unit, diameter AB and $\angle D O B=30^{\circ}$

i) Explain why $\angle D A O=15^{\circ}$. 1
ii) Show that $A D^{2}=2+\sqrt{3}$.
iii) Hence show that $\sin 15^{\circ}=\frac{1}{2} \sqrt{2-\sqrt{3}}$

Question 14 (15 marks) Commence on a NEW page.
(a) Given the function

$$
f(x)=x^{4}-8 x^{3}
$$

i) Find the stationary points of $y=f(x)$ and determine their nature.
ii) Sketch the graph of $y=f(x)$.
(b) The diagram below shows the graphs of $y=x^{2}-3 x$ and $y=x^{3}+x^{2}-12 x$.

The graphs intersect at $(0,0)$ and $(3,0)$.
Find the area between the two curves.

(c) By considering the sum of a suitable infinite geometric series, express $0.5 \dot{4} \dot{3}$ as a fraction in simplest form.
(d) Evaluate $\sum_{k=3}^{100}(-1)^{k}(2 k+1)$.

End of Question 14

Question 15 (15 marks) Commence on a NEW page.
(a) The area enclosed by the curve $y=\log _{e}(x+3)$, the x-axis and the y-axis is rotated about the y-axis.

Find the volume of the resulting solid of revolution, in exact form.

(b) Consider the first quadrant of a circle radius 1:

$$
y=\sqrt{1-x^{2}}, \quad 0 \leq x \leq 1
$$

Use Simpson's Rule with 5 function values in the range $0 \leq x \leq 1$ to find an estimate for the area of the quadrant and hence show that

$$
\pi \approx \frac{1}{3}(1+\sqrt{3}+\sqrt{7}+\sqrt{15})
$$

(c) Use the fact that

$$
\frac{u}{u-1}-\frac{u}{u+1}=\frac{2 u}{u^{2}-1}
$$

to find

$$
\int \frac{e^{x}}{e^{2 x}-1} d x
$$

Question 15 continues on the next page

Question 15 (continued)

(d) A particle travels along the x-axis with acceleration given by

$$
\ddot{x}=-6 t
$$

where t is the time in seconds. The particle has an initial velocity of $9 \mathrm{~m} / \mathrm{s}$.
i) Find the equation of the velocity
ii) When is the particle stationary?
iii) What is the average speed in the first 4 seconds?

End of Question 15

Question 16 (15 marks) Commence on a NEW page.
(a) The YouTube channel " 5 Minutes Physics" demonstrates how a circle can be dissected into thin strips, then transformed into a simple shape for which we can find the area.

We will now do a similar dissection using mathematics:
Consider a circle of radius R (see diagram below).
Within that circle, consider a thin annulus, r units from the centre, with a width Δr units.

i) Draw a diagram to explain why the area of the annulus in the diagram
above, when it is unrolled, can be expressed as:

$$
A_{\text {strip }} \approx 2 \pi r \cdot \Delta r
$$

ii) Using no more than three sentences, explain the ideas that allow us to develop the expression in part (i) into the following:

$$
A_{\text {circle }}=\int_{0}^{R} 2 \pi r d r
$$

iii) Hence derive the formula for the area of the circle.

Question 16 continues on the next page
(b) In the diagram below, O is the centre of a circle radius R.

The chord AB has length $k R$ and is parallel to the diameter, with midpoint M.
We now construct a rectangle inside the minor segment $A B$.
The angle θ is constructed as shown.

i) Show that $\quad O M=R \sqrt{1-\frac{k^{2}}{4}}$
ii) Hence show that $\quad p=\sqrt{1-\frac{k^{2}}{4}}$ will always satisfy $0<p<1$.
iii) Show that the area of the rectangle is given by:

$$
A=2 R^{2} \sin \theta(\cos \theta-p) \quad \text { where } \quad p=\sqrt{1-\frac{k^{2}}{4}}
$$

iv) Show that $\frac{d A}{d \theta}=2 R^{2}\left(2 \cos ^{2} \theta-p \cos \theta-1\right)$
v) For this problem, show that $\frac{d^{2} A}{d \theta^{2}}<0$
vi) Hence show that the area of the rectangle will be maximized when

$$
\cos \theta=\frac{1}{4}\left(p+\sqrt{p^{2}+8}\right)
$$

END OF THE EXAMINATION.

Mutiple choie
1.(D) $\frac{14}{3-\sqrt{2}}=6+2 \sqrt{2}=6+\sqrt{8}$
2.(A)
3. $\left(\frac{\sin ^{2} x}{\tan x}=\sec x \operatorname{cosec} x\right.$
4. (A)
5. (B) Inflexim when concaurty clanges signGradient of to curve in tho dioglam ($f^{\prime}(x)$ is concourty $f^{\prime \prime}(x)$.
At Point B_{1} gradent (ie: conceath) cloges from treto $-k$
6. (A)

天 (B)
8-(A)
9. (c) Constmat the line $y=\frac{x}{2}$ and count intersections
10. (e) Obene we start at $x=-2 m$

From $t=0$ to $t=$ g we kep. . . wing left, $t=2$ to $t=4$ moturn aronol at $t=0$ buck of $x=-2 \mathrm{~m}$. So at $x=0$ uben $t=5$

Q4.

$$
\text { a) } \begin{aligned}
& 2 x^{2} y-3 x^{2}-8 y+12 \\
= & x^{2}(2 y-3)-4(2 y-3) \\
= & \left(x^{2}-4\right)(2 y-3) \\
= & (x+2)(x-2)(2 y-3)
\end{aligned}
$$

b) $f(x)=\sqrt{16-x^{2}}$
(v)
$0 \quad 4 \leqslant x \leqslant 4$
$R: 0 \leqslant y \leqslant 4$

(2)
(3)
C) $|3 x-1|=4 x$

(2)
d) $y=\left(e^{2 x}+\log x\right)^{4}$

$$
\begin{aligned}
& y=\left(e^{27}+\log x\right)^{\prime} \\
& y=4\left(e^{2 x}+\log x\right)^{3}\left(2 e^{2 x}+x\right)
\end{aligned}
$$

e) $y=2 \cos x \quad\left(\frac{1}{3}, 7\right)$

8

$$
\begin{aligned}
& y^{\prime}=-2 \sin x \\
& y\left(\frac{\pi}{3}\right)=-2 \sin \frac{\pi}{3} \\
& \neq-2) \frac{\sqrt{3}}{2}=-\sqrt{3} \\
& \therefore \operatorname{tangat}=(y-1)=-\sqrt{3}\left(x-\frac{\pi}{3}\right) \\
& \text { or } y=-\sqrt{3} x-\frac{\sqrt{3}}{3} \pi x+1
\end{aligned}
$$

i) $A B: y+2=\frac{4-(-2)}{-8-6}(x-6)$

$$
\begin{align*}
y+2 & =-\frac{6}{14}(x-6) \tag{D}\\
-14 y-28 & =6 x-36 \\
0 & =6 x+14 y-8
\end{align*}
$$

as required.
ii)

$$
\begin{aligned}
\perp d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} & =\frac{|6(-4)+14(7)-8|}{\sqrt{6^{2}+14^{2}}} \\
& =\frac{66}{\sqrt{232}} \sqrt{ }=\frac{33}{\sqrt{56}}
\end{aligned}
$$

iii)

$$
\text { Area } \begin{align*}
\Delta & =\frac{1}{2} \times b \times h \\
& =\frac{1}{2} \times \sqrt{\left(6-(-8)^{2}+(-2-4)^{2}\right.} \times \frac{66}{\sqrt{232}} \\
& =\frac{1}{2} \times \sqrt{232} \times \frac{66}{\sqrt{23}}=33 u^{2} \tag{2}
\end{align*}
$$

b)
i)

$$
\begin{align*}
\int \frac{1}{(1+5 x)^{4}} d x & =\frac{1}{5} \int \frac{5}{(1+5 x)^{4}} d x \\
& =\frac{1}{5} \times-\frac{1}{3(1+5 x)^{3}}+C \tag{1}\\
& =\frac{-1}{15(1+5 x)^{3}}+C .
\end{align*}
$$

ii).

$$
\operatorname{coc} \operatorname{tin} x+30
$$

$$
\int \sqrt{x}(4 \sqrt{x}) d x=\int 4 x^{\frac{1}{2}}-x d x
$$

$$
\begin{equation*}
=4 \times \frac{2}{3} x^{\frac{3}{2}}-\frac{1}{2} x^{2}+c \tag{2}
\end{equation*}
$$

iii) $\int_{0}^{\frac{\pi}{4}} \sin 2 x d x=\left[\frac{\cos 2 x}{2}\right]_{0}^{\frac{\pi}{4}}$

$$
=\frac{8}{3} x^{\frac{3}{2}}-\frac{1}{2} x^{2}+c
$$

$$
=-\frac{\cos \frac{\pi}{2}}{2}-\frac{-\cos 0}{2}=0+\frac{1}{2}=\frac{1}{2}
$$

c)

$$
\begin{array}{rlrl}
y=\ln \left(\frac{5 x+1}{(x-3)^{2}}\right) & \text { let } u & =\frac{5 x+1}{(x-3)^{2}} \\
y=\ln u & \frac{d u}{d x} & =\frac{5(x-3)^{2}-2(x-3)(5 x+1)}{(x-3)^{3}} \\
\frac{d y}{d u}=\frac{1}{u}=\frac{(x-1)^{2}}{5 x+1} & & =\frac{5(x-3)-2(3 x+1)}{(x-3)^{3}}=\frac{-5 x-17}{(x-3)^{3}} \\
\frac{d y}{d x} & =\frac{(x-1)^{2}}{5 x+1} \times \frac{-5 x+7}{(x-1)^{5}} & & =\frac{-5 x-7}{(5 x+1)(x-1)}
\end{array}
$$

d)

ii) Let $\angle B A D=\alpha$
$\angle B D C=180-\alpha$ (straight line)
$\angle D B C=\angle B C D=\frac{180-(180-\alpha)}{2}=\frac{\alpha}{2}$ (hasa angles of isosotes $\angle C B A=\angle B A C=\alpha$ (base triangle are equal). $\angle C B A=\angle B A C=\alpha$ (base angles of isosceles triangle ore $\alpha+\alpha+\frac{\alpha}{2}=180^{\circ}$ (angle sam of a triangle equals to 160°)

$$
\begin{aligned}
\therefore & \frac{5 \alpha}{2}=180^{\circ} \\
& 5 \alpha=360^{\circ} \\
& x=\frac{360^{\circ}}{5}=72^{\circ}
\end{aligned}
$$

$$
\therefore \angle B C D=\frac{1}{2}=\frac{72}{2}=36^{\circ}
$$

Solutions to Question 13 - 2 Unit Advanced Task 32019			
(a)	(i) (ii)	$\begin{aligned} 12 x+y^{2}+6 y-15 & =0 \\ y^{2}+6 y & =-12 x+15 \\ y^{2}+6 y+9 & =-12 x+15+9 \\ (y+3)^{2} & =-12 x+24 \\ (y+3)^{2} & =-12(x-2) \\ (y+3)^{2} & =-4(3)(x-2) \end{aligned}$ Vertex $=(2,-3)$ Focus $=(-1,-3)$	\checkmark Putting the equation into the appropriate form \checkmark Finding the vertex \checkmark Finding the focal length \checkmark Finding the focus
(b)		Let the roots be $(p-2)$ and $(p+2)$ $\begin{align*} &(p+2)+(p-2)=-\frac{b}{a} \\ & 2 p=-\frac{-2 k}{1} \\ & 2 p=2 k \\ & p=k \ldots \text { (1) } \tag{1}\\ &(p+2)(p-2)=\frac{c}{a} \\ & p^{2}-4=\frac{3 k}{1} \\ & p^{2}-4=3 k \\ & k^{2}-4=3 k \text { from (1) } \tag{1}\\ & k^{2}-3 k-4=0 \\ &(k+1)(k-4)=0 \\ & \therefore k=-1 \text { or } k=4 \end{align*}$	\checkmark Creating an equation with the roots Finding an equation in terms of k only Solving to find both values of k

Q14(a) $\quad f(x)=x^{4}-8 x^{3}$

$$
\begin{aligned}
f^{\prime \prime}(x) & =4 x^{3}-24 x^{2} \\
& =4 x^{2}(x-6) \\
f^{\prime \prime}(x) & =12 x^{2}-48 x
\end{aligned}
$$

Statilowy polds at $f^{\prime}(x)=0$

$$
\begin{gathered}
4 x^{2}(x-6)=0 \\
x=0, x=6
\end{gathered}
$$

Testigg $(0,0): f^{\prime \prime}(0)=0 \propto$ Not a valid test?
\qquad
\qquad $\therefore(6,-432)$ is local rannimunc:
\qquad
\qquad
\qquad
\qquad

Soptinal: identify $(4,-256)$ as anothar inflexin point - but not requived]
14 b) $\left.A=\int_{0}^{3}\left(x^{2}-3 x\right)-\left(x^{3}+x^{2}-12 x\right)\right) d x$

$$
\begin{aligned}
& =\int_{0}^{3}\left(-3 x-x^{3}+12 x\right) d x \\
& =\int_{0}^{3}\left(-x^{3}+9 x\right) d x \\
& =\left[\frac{9 x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{3}=\left(\frac{9(9)}{2}-\frac{81}{4}\right)-(0-0) \\
& =\frac{81}{4} u^{2}
\end{aligned}
$$

14 (c)

$$
\begin{aligned}
0.5 \widetilde{43} & =0.5+0.043+0.00043+\cdots \cdot \\
= & \frac{1}{2}+\frac{43}{1000}+\frac{43}{1000}\left(\frac{1}{100}\right)+\frac{43}{1000}\left(\frac{1}{100)^{2}}+\cdots\right. \\
& =\frac{1 P}{2}+\frac{43}{1000}\left(\frac{43}{1-\frac{1}{100}}, r=\frac{1}{100}\right. \\
& \left(\left.5_{00}=\frac{a}{1-r} \right\rvert\, v(<1)\right. \\
& =\frac{1}{2}+\frac{43}{1000} \times \frac{100}{99} \\
& =\frac{269}{495}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\sum_{k=3}^{100}(-1)^{2}(2 k+1)= & (-1)(2(3)+1)+(-1)^{2}(2(4)+1) \\
& +(-1)(2(5)+1)+(-1)^{2}(2(6)+1) \\
& +\cdots(-1)(2(199)+1)+(-1)^{2}(2(100)+1)
\end{aligned}
$$

$n=100-3+1 \quad-\quad-7+9$
$=96$

$$
\begin{aligned}
& -1+9 \\
& -11+13 \\
= & 2+2+2+200 \\
= & \frac{96}{2} \times 2=9 \text { pain }
\end{aligned}
$$

Ouestion 15
a)

$$
\begin{array}{ll}
\text { uestion } 15 \\
y=\ln (x+3)
\end{array} \quad e^{y}=x+3, \quad x=e^{y}+3 .
$$

$$
V=\pi \int_{0}^{\sqrt{x} 3}\left(e^{y}-3\right)^{2} d y
$$

$$
=\pi \int_{0}^{\ln 3} e^{a y}-6 e^{y}+9 d y
$$

$$
=\pi\left[\frac{e^{2 y}}{2}-6 e^{y}+9 y\right]_{0}^{6 x}
$$

$$
=\pi\left[\left(\frac{1}{2} e^{43^{2}}-6 e^{2.3}+9 \ln 3\right]-\left(\frac{e_{2}^{0}}{2}-6 e^{0}+0\right)\right]
$$

$$
\begin{aligned}
& =\pi\left(\frac{1}{2}\right. \\
& =\pi\left(\frac{9}{2}-18+9 \ln 3-\left(\frac{1}{2}-6\right)\right) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =\pi 12 \\
& =\pi(9 \ln 3-8) y^{3}
\end{aligned}
$$

b).
c)

$$
\begin{aligned}
& \therefore \pi=\frac{1}{3}(1+\sqrt{2}+\sqrt{7}+\sqrt{15}) \\
& \therefore \quad e^{x}=\frac{2 e^{x}}{}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{e^{x}}{e^{x}-1}-\frac{e^{x}}{e^{x}+1}=\frac{2 e^{x}}{e^{2 x}-1}=2 \times \frac{e^{x}}{e^{x}-1} \text { (given) } \\
& \therefore \int \frac{e^{x}}{e^{2 x}-1} d x=\frac{1}{2} \int \frac{2 e^{x}}{e^{2 x}-1} d x \\
& =\frac{1}{2} \int \frac{e^{x}}{e^{x}-1}-\frac{e^{x}}{e^{x}+1} d x \quad x \neq 0 \\
& =\frac{1}{2}\left[\ln \left(e^{x}-1\right)-\ln \left(e^{x}+1\right)\right]+c \\
& =\frac{\ln \left(e^{x}-1\right)}{2}-\frac{\ln \left(e^{x}+1\right)}{2}+c \quad x \neq 0 .
\end{aligned}
$$

$$
\begin{aligned}
& A \div \frac{1}{12}\left[1+0+4\left(\frac{\sqrt{15}}{4}+\frac{\sqrt{7}}{4}\right)+2\left(\frac{\sqrt{3}}{2}\right)\right] \\
& =\frac{1}{12}(1+\sqrt{15}+\sqrt{7}+\sqrt{3}) u^{2} \text {. } \\
& A=\frac{1}{4} \pi r^{2}=\frac{1}{4} \pi u^{2} \text {. } \\
& \frac{\pi}{4} \approx \frac{1}{12}\left(1+\frac{\sqrt{3}}{3}+\sqrt{7}+\sqrt{15}\right)
\end{aligned}
$$

Question 15
d) $\ddot{x}=-6 t \quad \dot{x}(0)=9 \mathrm{~m} / \mathrm{s}$.
(i) $\dot{x}=\int \ddot{x} d t$

$$
\begin{equation*}
=-3 t^{2}+c \tag{1}
\end{equation*}
$$

$$
9=-3(0)+c \quad \therefore c=9
$$

$$
\begin{aligned}
9 & =-3(0)+c \\
& \therefore \dot{x}=-3 t^{2}+9
\end{aligned}
$$

ii) when $\dot{x}=0$.

$$
9-3 t^{2}=0
$$

$$
t=\sqrt{3} s(t>0)
$$

$$
\begin{aligned}
& \int_{0}^{\sqrt{3}} 9-3 t^{2} d t+\int_{\sqrt{3}}^{4} 9-3 t^{2} d t \\
= & d \sqrt{5} \operatorname{tanc} 6 . \\
= & \left|\left[9 t-t^{4}\right]_{0}^{\sqrt{3}}\right|+\left|\left[9 t-t^{3}\right]_{\sqrt{3}}^{4}\right| \\
= & (9 \sqrt{3}-3 \sqrt{3})+[(36-64)-6 \sqrt{3}] / \\
= & 6 \sqrt{3}+1-28-6 \sqrt{3} \mid \\
= & 12 \sqrt{3}+28
\end{aligned}
$$

$$
\text { average speed }=\frac{12 \sqrt{3}+28}{4}=3 \sqrt{3}+7 \mathrm{~m} / \mathrm{s}
$$

Q14.a)
(1)
(i) \qquad ávumperence 2ilr with:
(ii) Ace whale arce:lade the oips frm $r=0+J v=R$

$$
A=\sum_{r=0}^{r=R}(2 \pi r) \Delta r
$$

$$
\sigma A=\int_{0}^{k} 2 \pi d r
$$

(iii)
\qquad

$$
A \rightarrow \int_{0}^{R} 2 \pi d r
$$

(b) \qquad

$$
=\left[\pi r^{2}\right]_{0}^{R}
$$

$$
=\pi R^{2}=0
$$

$$
y \pi R^{2}\left(u^{2}\right)
$$

Q|6(6) *DRAW DIAGRRMS*
(i)

By deffintim, $M_{B}=\frac{k}{2} R$
By P'ythognas $R^{2}=\left(\frac{k R}{2}\right)^{2}-O m^{2}$

$$
\begin{aligned}
& \therefore O M=\sqrt{{R^{2}-\left(\frac{k}{2}\right)^{2}}_{2}^{2} \quad(O M>0)} \\
& \quad=R \sqrt{1-\frac{k^{2}}{4}}
\end{aligned}
$$

(i) By defintion $O M=P R$
from diogram $\quad 0<0 M<R$

$$
\therefore 0<p R<R
$$

or you cond use adgebra (more work, (ess insight')

$$
\begin{aligned}
& 0 \leqslant k<2 \quad \text { (flom driggon) } \\
& 0 \leqslant k^{2} \leqslant 4 \\
& 0 \leqslant \frac{k^{2}}{4} \leqslant 1 \\
& \therefore 0 \leqslant 1-\frac{k^{2}}{4} \leqslant 1 \\
& \therefore \quad 0 \leqslant \sqrt{1-k^{2}} 4
\end{aligned}
$$

(iv)
(iii) DRAW DIAGRAM (or refertot)

$$
H O=R \cos \theta
$$

(V)

$$
H M=H O-O M
$$

$$
\begin{equation*}
\therefore A M=R \cos \theta-P R \tag{lon}
\end{equation*}
$$

- width $P Q=2(R \sin \theta)$

$$
\begin{aligned}
\therefore A_{\text {rem }} & =(2 R \sin \theta)(R \cos \theta-p R) \\
& =2 R^{2} \sin \theta(\cos \theta-p) \quad \text { as required. }
\end{aligned}
$$

$$
\text { v) } \begin{aligned}
\frac{d A}{d \theta} & =2 R^{2}(\cos \theta(\cos \theta-p)+\sin \theta(-\sin \theta)) \\
& =2 R^{2}\left(\cos ^{2} \theta-p \cos \theta-\sin ^{2} \theta\right) \\
& =2 R^{2}\left(\cos ^{2} \theta-p \cos \theta-\left(1-\cos ^{2} \theta\right)\right) \\
& =2 R^{2}\left(2 \cos ^{2} \theta-p \cos \theta-1\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} A}{d \theta^{2}} & =2 R^{2}(-4 \sin \theta \cos \theta+p \sin \theta) \\
& =2 R^{2} \sin \theta(p-4 \cos \theta)
\end{aligned}
$$

Consider $2 R^{2} \sin \theta(p-4 \cos \theta)$

$$
\sin \theta>0 \text { for } 0<\theta<\frac{\pi}{2}
$$

** From the area of the retaught: $\quad \cos \theta-p>0$

$$
\begin{aligned}
& : p-\cos \theta<0 \\
& \therefore-4-\cos <0 \\
& \therefore \frac{d^{2} d}{d \theta^{2}}=\lambda R^{2} B(t)(-)<0 \text { for } \theta<\theta<\frac{\pi}{2}
\end{aligned}
$$

After rate veasong:

so area font do this:

(v) Solve the equation $\frac{d t}{d x}=0$

$$
\begin{aligned}
& \text { Solve the equation at } \\
& \qquad 2 R^{2}\left(2 \cos ^{2} \theta-p \sin \theta-1\right)=0 \\
& \qquad \cos \theta=\frac{+p \pm \sqrt{p^{2}+8}}{4} \quad \text { (quadratic ing }
\end{aligned}
$$

co θ mut be positive $\left(0 \leqslant \theta \leqslant \frac{\pi}{2}\right)$
But $p-\sqrt{p^{2}+8}$ is negative: (must show whys)
(a)

$$
\text { a) } 0 \leqslant p-1 \quad-\sqrt{1^{2}+8}<0 \quad \frac{p^{2}<p^{2}+8}{\sqrt{p^{2}}<\sqrt{p^{2}+8}} \begin{aligned}
& p<\sqrt{p^{2}+8}
\end{aligned}
$$

only postitre verst B :

$$
\cos \theta=\frac{1}{4}\left(p+\sqrt{p^{2}+8}\right)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

