

NOT TO SCALE

In the diagram, AC = 6 cm, BC = 7 cm and $\angle ACB = 30^{\circ}$. Use the cosine rule to find the length of AB correct to the nearest cm.

2

1

2

A country property increased in value by $12\frac{12}{2}$ % to a new value of \$36000. (g)

(f)

What was the value of the property before the increase?

(a) Differentiate the following functions:

- (i) $\sqrt{3x^2+2}$
- (ii) $(x+1) \ln x$

(iii)
$$\frac{x}{\sin 2x}$$

(b) Find:

(i)
$$\int (x - \frac{2}{x^3}) dx$$

(ii)
$$\int e^{3x+2} dx$$

(c) Find the exact value of
$$\int_{0}^{\pi/2} \cos \frac{x}{2} dx$$

3

3

Marks

Marks

The diagram shows points A(-3,-2), B(-1,4) and C(5,2) in the Cartesian plane.

Copy this diagram onto your answer sheet.

(a) Find the gradient of AC.	1
(b) Point P is the midpoint of AC. Show that the coordinates of P are (1,0). Mark point P on your diagram.	1
(c) Show that the equation of the line perpendicular to AC and passing through the point P is $2x + y - 2 = 0$.	2
(d) Show that B lies on the line $2x + y - 2 = 0$.	1
(e) Show that the length of BP is $2\sqrt{5}$ units.	1
 (f) Point P is the midpoint of the interval BD. (i) On your diagram show the position of point D. (ii) Find the coordinates of D. 	2
(g) Explain why the quadrilateral ABCD is a rhombus.	1
(h) Find the area of $\triangle BPC$.	2
(i) Hence find the area of the rhombus ABCD.	1

QUESTION 4 (Begin a new sheet)

- (a) The graph of y = f(x) passes through the point (-1, 4) and $f'(x) = 5 3x^2$. Find f(x).
- (b) The following table gives five values of the function y = f(x).

x	0	1	2	3	4
<i>f</i> (x)	1	0.5	0-41	0.37	0.33

Use the five function values and Simpson's rule to approximate $\int_{0}^{4} f(x) dx$.

(Give your answer correct to 2 decimal places.)

- (c) The equation of a parabola is $(x 3)^2 = -12(y 1)$. Find the:
 - (i) coordinates of its vertex.
 - (ii) equation of its directrix.

WXYZ is a parallelogram. XP bisects \angle WXY and ZQ bisects \angle WZY.

Copy the diagram onto your answer sheet.

- (i) Explain why $\angle WXY = \angle WZY$.
- (ii) Prove Δ WXP is congruent to Δ YZQ.
- (iii) Hence find the length of PQ given WY = 20 cm and QY = 8 cm.

5

2

2

QUESTION 5

- (a) (i) Write down the discriminant of $x^2 2kx + 6k$.
 - (ii) For what values of k is $x^2 2kx + 6k$ always positive?

(b)

NOT TO SCALE

The diagram shows a sketch of the curve $y = x^3 - 6x^2 + 9x + 4$. The curve has a local maximum point at A and a point of inflexion at B. The line *l* is a normal to the curve at point B and meets the x axis at point C.

- (i) Find the coordinates of point A.
- (ii) Show that the coordinates of point B is (2,6).
- (iii) Show that the equation of the line l is x 3y + 16 = 0.
- (iv) Find the coordinates of point C.

3

NOT TO SCALE

The diagram shows part of the hyperbola $y = \frac{4}{1+x}$ and the line y = 4 - x. The hyperbola and line intersect at the points (0,4) and (3,1). Calculate the exact area of the shaded region.

(b) (i) If x^0 is an acute angle, find the value of x if $3\cos(2x) = 1$. (Answer correct to 2dp)

(ii) Sketch the curve $y = 3\cos(2x) - 1$ for the domain $\frac{-\pi}{2} \le x \le \frac{\pi}{2}$ clearly showing the x and y axis intercepts and the range.

Marks

3

NOT TO SCALE

Beginning with a circular piece of fabric of radius 5 cm, Le sewed together circular strips of different coloured fabrics which increased in width to make a circular tablecloth. The finished width of the first strip was 10cm, the second was 15 cm, the third was 20 cm and so on.

- (i) Show that the width of the tenth strip was 55 cm.
- (ii) The radius of the table cloth was 455 cm. How many strips were sewn to the edge of the first circular piece?

QUESTION 7

(a)

2

In the diagram, PQRS is a rectangle and SR = 3 PS. R, Q and Y are collinear points. XQ = 6 cm and YQ = 8 cm.

- (i) Prove $\triangle PXS$ is similar to $\triangle QXY$.
- (ii) Hence find the length of PS.

- (i) Copy this graph onto your answer sheet.
- (ii) On the same set of axes, sketch the graph of its derivative, f'(x).

QUESTION 7 (Continued)

Marks

- (c) Consider the function $y = \sin x + \cos x$ in the domain $0 \le x \le 2\pi$.
 - (i) Find $\frac{dy}{dx}$.
 - (ii) Find the maximum and minimum values of $\sin x + \cos x$ in the given domain.
 - (iii) Show that the curve cuts the x axis at $x = \frac{3\pi}{4}$ and at $x = \frac{7\pi}{4}$.
 - (iv) Hence sketch the curve of $y = \sin x + \cos x$ in the domain $0 \le x \le 2\pi$.

3

7

In the diagram, XY is an arc of a circle with centre O and radius 12 cm. The length of the arc XY is 4π cm. Find the:

- (i) exact size of θ in radians.
- (ii) area of the sector OXY.
- (b) The region bounded by the curve y = e^x + e^{-x}, the x axis and the lines x = 0 and x = 2 is rotated about the x axis. Find the volume of the solid formed. (Leave your answer in terms of e.)
- (c) A particle moves along a straight line about a fixed point O so that its acceleration, $a \text{ ms}^{-2}$, at time t seconds is given by $a = 8 \cos (2t + \frac{\pi}{6})$. Initially the particle is moving to the right with a velocity of 2 ms⁻¹ from a position $\sqrt{3}$ metres to the left of O.
 - (i) Find expressions for the velocity and position of the particle at any time t.

(ii) Show that the particle changes directions when $t = \frac{5\pi}{12}$ seconds.

(iii) At what time does the particle return to its initial position for the first time?

QUESTION 9

(c)

(Begin a new sheet)

- (a) A super bouncy ball is dropped from a window 15m above the ground. It rebounds $\frac{4}{5}$ of its previous height with every bounce and continues to do so until it stops. What is the total distance travelled by the ball?
 - (b) The median house price, \$P, in a certain suburb is falling at an increasing rate after a recent peak.

What does this tell you about $\frac{dP}{dt}$ and $\frac{d^2P}{dt^2}$?

The diagram shows a cone of base radius r cm and height h cm inscribed in a sphere of radius 50 cm. The centre of the sphere is O and $\angle OAB = 90^{\circ}$.

Let OA = x cm.

- (i) Show that $r = \sqrt{2500 x^2}$.
- (ii) Hence show that the volume, $V \text{ cm}^3$, of the cone is given by:

$$V = \frac{\pi}{3} (2500 - x^2) (50 + x)$$

(iii) Find the radius of the largest cone which can be inscribed in the sphere.
 (Give your answer to the nearest mm.)
 12

Marks

4

2

QUESTION 10 (Begin a new sheet)

٩.

6

- (a) In a fish hatchery, the fish population, N, satisfies the equation $N = N_0 e^{kt}$ where N₀ and k are constants and t is measured in months.
 - (i) Initially there were 1 000 fish in the hatchery and at the end of 5 months there were 5000. Find the value of k correct to 3 decimal places.
 - (ii) Find the number of fish in the hatchery at the end of 8 months. (Give your answer correct to the nearest hundred.)
 - (iii) At the end of which month will the fish population exceed 50 000 for the first time?
 - (iv) At what rate is the population increasing at the end of six months? (Give your answer correct to the nearest hundred fish per month.)
- (b) Mario and Fei Lin worked out that they would save \$50 000 in five years by depositing all their combined monthly salary of \$S at the beginning of each month into a savings account and withdrawing \$1 600 at the end of each month for living expenses. The savings account paid interest at the rate of 3% p.a. compounding monthly.
 - (i) Show that at the end of the second month, the balance in their savings account, immediately after making their withdrawal of \$1 600, would be given by \$[(1.0025² + 1.0025)S 1 600 (1.0025 + 1)].
 - (ii) Hence write down an expression for the balance in their account at the end of the sixtieth month.
 - (iii) Calculate their combined monthly salary.

In the diagram, XY is an arc of a circle with centre O and radius 12 cm. The length of the arc XY is 4π cm. Find the:

- (i) exact size of θ in radians.
- (ii) area of the sector OXY.
- (b) The region bounded by the curve y = e^x + e^{-x}, the x axis and the lines x = 0 and x = 2 is rotated about the x axis. Find the volume of the solid formed. (Leave your answer in terms of e.)

(c) Show that
$$\frac{10}{4x^2 - 25} = \frac{1}{2x - 5} - \frac{1}{2x + 5}$$

Hence find
 $\int \frac{dx}{4x^2 - 25}$

3

(d) Sketch the curves $y = \cos 2x$ and $y = \sin \frac{1}{2}x$ in the domain $0 \le x \le 2\pi$. From your sketch find the approximate solution(s) of the equation $\cos 2x - \sin \frac{1}{2}x = 0$ for the domain $0 \le x \le 2\pi$. **OUESTION 9**

(Begin a new sheet)

(a) Evaluate :

 $\sum_{n=3}^{8} \left(2 \times 3^n - 2n \right).$

- (b) Solve: $\log_{27} 16 = x \log_3 2$
- (c) Mario and Fei Lin worked out that they would save \$50 000 in five years by depositing all their combined monthly salary of \$S at the beginning of each month into a savings account and withdrawing \$1 600 at the end of each month for living expenses. The savings account paid interest at the rate of 3% p.a. compounding monthly.
 - Show that at the end of the second month, the balance in their savings account, immediately after making their withdrawal of \$1 600, would be given by \$[(1.0025² + 1.0025)S 1 600 (1.0025 + 1)].
 - (ii) Hence write down an expression for the balance in their account at the end of the sixtieth month.
 - (iii) Calculate their combined monthly salary.

3

3

6

- (a) A die numbered 1 to 6 is rolled twice. The sum S of the numbers which appear uppermost on the die is calculated.
 - (i) Find the probability that S is greater than 9.
 - (ii) It is known that 5 appears on the die at least once in the two throws. Find the probability that S is greater than 9.
- (b) The median house price, \$P, in a certain suburb is falling at an increasing rate after a recent peak.

What does this tell you about $\frac{dP}{dt}$ and $\frac{d^2P}{dt^2}$?

The diagram shows a cone of base radius r cm and height h cm inscribed in a sphere of radius 50 cm. The centre of the sphere is O and $\angle OAB = 90^{\circ}$.

Let OA = x cm.

- (i) Show that $r = \sqrt{2500 x^2}$.
- (ii) Hence show that the volume, $V \text{ cm}^3$, of the cone is given by:

$$V = \frac{\pi}{3} (2500 - x^2) (50 + x)$$

(iii) Find the radius of the largest cone which can be inscribed in the sphere. (Give your answer to the nearest mm.) 4

Marks

ALC: NO.

6

SOLUTIONS NSGHS QU MATHEMATICS TRIAL HS.C EXAMIN OUESTION 2 OUESTION $\frac{4-\sqrt{3}}{4-\sqrt{3}} = 2(4-\sqrt{3})$ a)(1) $d_{x} \left[(3z+2)^{2} + \frac{3}{2} + 2 \right]^{2} + \frac{3}{2} (3z+2)^{2} + \frac{3}{2} + \frac{3}$ _2 4+√3 =3x(3x+2) $=\frac{\partial(4-\sqrt{3})}{\sqrt{2}}$ (m) $= \frac{3x}{\sqrt{3x^2+2}}$ (1) $d_{1}^{(1+1)} lm z_{f}^{2} (x+1) \cdot \frac{1}{x} + (lm x) \cdot \frac{1}{x}$ = $\frac{x+1}{x} + lm \cdot \frac{1}{x}$ 5) 6x2-x-2=0 (3x-2)(2x+1)=0x=-5-am (11) - de { z.] . Sindx - (260) 2x ad Sinds) Sind 2x c) - 2x - 72 (0) $c^2 = a^2 + b^2 - 2abcosc$ AB? = 72+62-2x7x6c030° 1 am 6)" (x-2x-2) "+ x"+ L $)dx = \pm x$ AB= 3.5005 ... $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2}$ e 4 cm d) LORS = 80° (Angle sun of Quadrilatival $\frac{x^{4}+2}{2x^{*}} + C$ (11) (C 3x+2 da = 1/2 l 3x+2 + (Im) $\angle ORT = 95^{\circ}$ (Contera Im fair) () I = [2 sin 3] L SRT = LORT-LORS Ad = 95°-80 Sin Tr - sin 0] = 15° Im dw OVESTION 3 e) 19y-11/77 9y-11>7 or 9y-11<-7 9y>18 or 9y<4 y>2 or y<4 am $-\frac{1}{2}+\frac{1}{2} = P(1,0)$ y-0=-2(x-1) 1 am 2x+y-2 = O sec²4xda = 4 tan 4x+ (m) +(4)-2=0=RHSa) L.H.S = 2(-1) = 120 = 255(Im) $(1+1)^{2}+(0-4)^{2}$ <u>e) BP</u>= 1122/ of x =\$36000 1 x =\$32000, (-1,4)(30)m u \$32000 -y: (mg) AC, BI) DIAGONALS BISECT AT L) A= 3×15×215=10 ()

05 Q(1) D= b2- 4ac = (-2b)²-4x1x6b = 4b²-24b (()(Im) a) f'(x)= 5-3x² (1) AXO $f(x) = 5x - x^3 + C I$ 4k - 24620 4 = -5 + 1 + Cs-6k20 .:< =8 h(2-6)<0 $f(x) = 3x - x^3 + 8$ O<RXO $5) \int f(x) d\alpha = \frac{1}{3} \int (0.33+1) + 4(05+0.57) + 2(0.44) \int \frac{1}{3} \int \frac{1}{$ b) $y = x^{3} - 6x^{2} + 9x + 4$ $1 = 3x^2 - 12x + 9$ $(\alpha - 3)^{2} = -12(y - 1)$ ·√(3,1) (0 y=4 $3x^{2} - 12x + 9z0$ $x^{2} - 4x + 3 = 0$ 5(3,7) USING a = 3 (x-1)(x-3) = 0 d) (1) opposite angles of parallelogram are ______ = 1,3___ (1,8) (3,4)2iqual do Test (1,8) $2 W + 4X = 180^{\circ} (0 NTOR 100)$ dry = 62-12 (Mest) LW+LZ=180° (11 . LX - LZ ie LWXY=L at 1= 1, dy = -6<0=) (1) WX = ZX (opp sides of (11) 6x-1200 is y"=0 x = 2 : y = 6 1. Tert either side 1 LXWP=LZYQ (alternet WXP=LZYQ (sach is ignal WXP=LZYQ f"(1.5) = -3 < D7 _ CHAN f"(2.5) = 3>0] CONCAU : AWXP AYZO (AASTE (HI) at B(2,6 (111) WP=YQ (consposide Now= = dry = 3 (22-4x2+3) = -3 The ... Nonnel has great \$ confruent the $\frac{v_{D_{+}} p_{0} + \rho_{Y_{+}}}{x + P_{0} + x} = 20$ Equation is y=6=3(x-2) 1 8 + 10 + 8 1-18-2-2 x - 3y+16=0 (1) IV) Put y=0 mfl x+16=0. 2 = - 16 4 - 16,0

07 10 $\rho \not\cong$ R) $(4-x)-(\frac{4}{1+x})dx$ \dot{a}) A = [x (Und PXS, DOXY 4x-x-4hu/1+x/ 3w) LSPX = LYOX = 90° (Give 1 Vert opposition - [(2-9-4hr4)-(0-4hr/)] LPXS = LOXY - DPXS 11 OXY Equic 75-4hr.4 (Ration of compo $\frac{8}{3x} = \frac{6}{3x-6}$ (11) (15-4 lan 4) Devene u 6x = 242-48 5) 07/Yes OSY AS N x= & ie PS== 0-3 No n7/7 0.7 Y 07 Y V3 N 07 Y 03 N 07 Y sy of (*) ų NIQU (1) $P(YY) = (0.7)^3 = 0.343$ (1) P(X21) = 1- P(X=0) = 1- P(NNN) (24) c) (1) 4 = 12+00376 = / - (0.3) cosx - su oc (Im ay The = 0.973 Put an 20 1 This is auchine HIZ series c)sin x = los x Thmos u tank = ! (1) a=10, d=5 T10 = a+9d Xam = - Din x - 60076 = 10+9×5 = 55 =- (Am > + cos n) I (TESTS) at x = 12, y !!= - J2 < 0=> MAXTURNEDT (i) $5_{m} = 450$ at x = 57, y"= Va 70=5 MTN TURN A $\frac{m}{2}\left(2a+(n-1)d\right)=450$ (11) y=0 12 Dm36+ cosx = Ø <u>n. (20+(n-1)5) = 450</u> tanx=- $\frac{m}{a}(15+5n) = 450$ $\chi = 3T_{1,3}^{T_{1,3}}$ ٢. (3+n) = 9D n"+3n-180 = D (n+15)(n-R) = 0n = 1212 strip

S a) (. r.O a) $S_{z}(2\times 3-6)t(2\times 3^{4}-8)+(2\times 3^{5}-10)$ ATT = QE $= 2(3^{3}+3^{4}+3^{8}) - (6+8+10++16)^{4}$ 0 · Iz Im +16 2 (6+16) 3*(<u>3-1</u> (40 Az 5 r 6) = 33(36-1)-66 = 1= x12'× # = 19 390 22417 a 24TI cui (Im b) $\log 16 = x \log 2$ 6) × log 2 Ve TI X log 2 = *77 = 11 [La +2x-R [SEE BACK PAG c) tot A, be accu mail A1 = (1.0025)5 -1600 Az= ((1.0025)5-1600+5]60025 CUBIC (A_= (1.0025) +1.0025]5-1600[1+1.002 7x+5-(2x-5) AL = [1.0025+(10025) - 1(1.0025) 22-5-22+5 (Jx+5) (2x-5) - 1600 [1+1.0025+ Aso SINCE = 50000 1.0025 +1.0025)++(1.0025) =1600 5000+1600/1+1.0025+(1.0025)+. +1.0005 [1.0025+(1.0025) S = 50000 + 1600 [1(1.0025 1=5115 5.th 1.0025 (1.0025) 17,97 325.73 DOLLARS

Q<u>5=2395678910112</u> f=12345654321) $\mathcal{I}\mathcal{O}$ a(!) E = { (4,6) (1) (5 5 4m 5-6 b) P $V = \frac{1}{3} T (2500 - \chi^2) (50 + \chi)$ (11) dV = 1 TT \$ (2500-22). 1+ (50+2) \$22 <u>c)</u> = 17 2500 - x2 - 100x -2x2 = 5 TI \$ 2500 - 100x - 3x2 Put dV = 0 for maxi ~ Py 1500-100m-3x7 () z 2500-100x-3xC 2500-2 c () 3x + 100x - 2500 = 0 50)=0(m) (R)(Tis = 4 TT (2500-x2 YSO+x -100-()r =

 Qq_{c} aunt accumulat Let A, be the a withdrawal Imenth and af A,=(1.0025)5-1600 <u>[(1.0025)5-1600+5] 1.0025-1600</u> Aze = [(1.0025) + 1.0025] 5 - 1600 [1+1.0025] [1+1.0025+ - (1.00E) $(11) \quad \begin{array}{c} A = \left[1.0025 + (1.0025)^{2} + 1.0025 \right]^{2} \end{array}$ (111) A60 - 50000 $\left[1.0025 + (1.0025)^{3} + + (1.0025)^{60}\right] - 1600$ 1+1.0025+-(10025)7/=56 S = 5000 + 1600 [1+1.0025+ + (1.0025 $\frac{10025+(10025)^{2}+...+(10025)^{60}}{1000}$ 50000+ 1600 [14 tm [1.0025 (1.0025)"-1 2325..73