QUESTION 1

(Begin a new sheet)

Marks

(a) Express $\frac{2}{4+\sqrt{3}}$ with a rational denominator.

In the diagram, $P Q \| T R$, $\angle \mathrm{PQR}=85^{\circ}, \angle \mathrm{QPS}=120^{\circ}$, $\angle \mathrm{PSR}=75^{\circ}$ and $\angle \mathrm{SRT}=0^{\circ}$.

Copy the diagram onto your answer sheet.

Find the value of θ.
(e) Find the values of y for which $|9 y-11|>7$.
(f) Find the primitive function of $\sec ^{2} 4 x$. 1
(g) A country property increased in value by $121 / 2 \%$ to a new value of $\$ 36000$.

What was the value of the property before the increase?

QUESTION 2

(a) Differentiate the following functions:
(i) $\sqrt{3 x^{2}+2}$
(ii) $(x+1) \ln x$
(iii) $\frac{x}{\sin 2 x}$
(b) Find:
(i) $\int\left(x-\frac{2}{x^{3}}\right) d x$
(ii) $\int e^{3 x+2} d x$
(c) Find the exact value of $\int_{0}^{\pi / 2} \cos \frac{x}{2} d x$

NOT TO SCALE

The diagram shows points $\mathrm{A}(-3,-2), \mathrm{B}(-1,4)$ and $\mathrm{C}(5,2)$ in the Cartesian plane.
Copy this diagram onto your answer sheet.
(a) Find the gradient of $A C$.
(b) Point P is the midpoint of $A C$. Show that the coordinates of P are $(1,0)$. Mark point P on your diagram.
(c) Show that the equation of the line perpendicular to $A C$ and passing through the point P is $2 x+y-2=0$.
(d) Show that B lies on the line $2 x+y-2=0$.
(e) Show that the length of BP is $2 \sqrt{5}$ units.
(f) Point P is the midpoint of the interval $B D$.
(i) On your diagram show the position of point D .
(ii) Find the coordinates of D.
(g) Explain why the quadrilateral ABCD is a rhombus.
(h) Find the area of $\triangle B P C$.
(i) Hence find the area of the rhombus $A B C D$.
(a) The graph of $y=f(x)$ passes through the point $(-1,4)$ and $f^{\prime}(x)=5-3 x^{2}$.

Find $f(x)$.
(b) The following table gives five values of the function $y=f(x)$.

x	0	1	2	3	4
$f(x)$	1	0.5	0.41	0.37	0.33

Use the five function values and Simpson's rule to approximate $\int_{0}^{4} f(x) d x$.
(Give your answer correct to 2 decimal places.)
(c) The equation of a parabola is $\left(x^{2}-3\right)^{2}=-12(y-1)$. Find the:
(i) coordinates of its vertex.
(ii) equation of its directrix.

WXYZ is a parallelogram. XP bisects $\angle \mathrm{WXY}$ and ZQ bisects $\angle \mathrm{WZY}$.
Copy the diagram onto your answer sheet.
(i) Explain why $\angle \mathrm{WXY}=\angle \mathrm{WZY}$.
(ii) Prove $\triangle \mathrm{WXP}$ is congruent to $\triangle \mathrm{YZQ}$.
(iii) Hence find the length of $P Q$ given $W Y=20 \mathrm{~cm}$ and $Q Y=8 \mathrm{~cm}$.
(a) (i) Write down the discriminant of $x^{2}-2 k x+6 k$.
(ii) For what values of k is $x^{2}-2 k x+6 k$ always positive?
(b)

NOT TO SCALE

The diagram shows a sketch of the curve $y=x^{3}-6 x^{2}+9 x+4$. The curve has a local maximum point at A and a point of inflexion at B. The line l is a normal to the curve at point B and meets the x axis at point C.
(i) Find the coordinates of point \mathbf{A}.
(ii) Show that the coordinates of point B is $(2,6)$.
(iii) Show that the equation of the line l is $x-3 y+16=0$.
(iv) Find the coordinates of point C.
(a)

NOT TO SCALE

The diagram shows part of the hyperbola $y=\frac{4}{1+x}$ and the line $y=4-x$.
The hyperbola and line intersect at the points $(0,4)$ and $(3,1)$.
Calculate the exact area of the shaded region.
(b) (i) If x^{0} is an acute angle, find the value of x if $3 \cos (2 x)=1$.
(Answer correct to 2dp)
(ii) Sketch the curve $y=3 \cos (2 x)-1$ for the domain $\frac{-\pi}{2} \leq x \leq \frac{\pi}{2}$ clearly showing the x and y axis intercepts and the range.

QUESTION 6

(Continued)
(c)

NOT TO SCALE

Beginning with a circular piece of fabric of radius 5 cm , Le sewed together circular strips of different coloured fabrics which increased in width to make a circular tablecloth. The finished width of the first strip was 10 cm , the second was 15 cm , the third was 20 cm and so on.
(i) Show that the width of the tenth strip was 55 cm .
(ii) The radius of the table cloth was 455 cm . How many strips were sewn to the edge of the first circular piece?
(a)

In the diagram, PQRS is a rectangle and $\mathrm{SR}=3 \mathrm{PS} . \mathrm{R}, \mathrm{Q}$ and Y are collinear points. $\mathrm{XQ}=6 \mathrm{~cm}$ and $\mathrm{YQ}=8 \mathrm{~cm}$.
(i) Prove $\triangle P X S$ is similar to $\triangle Q X Y$.
(ii) Hence find the length of PS.
(b) The graph shows the graph of $y=f(x)$.

(i) Copy this graph onto your answer sheet.
(ii) On the same set of axes, sketch the graph of its derivative, $f^{\prime}(x)$.
(c) Consider the function $y=\sin x+\cos x$ in the domain $0 \leq x \leq 2 \pi$. 7
(i) Find $\frac{d y}{d x}$.
(ii) Find the maximum and minimum values of $\sin x+\cos x$ in the given domain.
(iii) Show that the curve cuts the x axis at $x=\frac{3 \pi}{4}$ and at $x=\frac{7 \pi}{4}$.
(iv) Hence sketch the curve of $y=\sin x+\cos x$ in the domain $0 \leq x \leq 2 \pi$.
(a)

NOT TO SCALE
\mathbf{Y}

In the diagram, $X Y$ is an arc of a circle with centre O and radius 12 cm . The length of the $\operatorname{arc} X Y$ is $4 \pi \mathrm{~cm}$. Find the:
(i) exact size of θ in radians.
(ii) area of the sector OXY.
(b) The region bounded by the curve $y=e^{x}+e^{-x}$, the x axis and the lines $x=0$ and $x=2$ is rotated about the x axis. Find the volume of the solid formed. (Leave your answer in terms of e.)
(c) A particle moves along a straight line about a fixed point O so that its acceleration, $a \mathrm{~ms}^{-2}$, at time t seconds is given by $a=8 \cos \left(2 t+\frac{\pi}{6}\right)$. Initially the particle is moving to the right with a velocity of $2 \mathrm{~ms}^{-1}$ from a position $\sqrt{3}$ metres to the left of O.
(i) Find expressions for the velocity and position of the particle at any time t.
(ii) Show that the particle changes directions when $t=\frac{5 \pi}{12}$ seconds.
(iii) At what time does the particle return to its initial position for the first time?
(a) A super bouncy ball is dropped from a window 15 m above the ground. It rebounds $\frac{4}{5}$ of its previous height with every bounce and continues to do so until it stops. What is the total distance travelled by the ball?
(b) The median house price, \$P, in a certain suburb is falling at an increasing rate aficr a recent peak.
What does this tell you about $\frac{d \mathrm{P}}{d t}$ and $\frac{d^{2} \mathrm{P}}{d t^{2}}$?
(c)

Not to SCALE
The diagram shows a cone of base radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$ inscribed in a sphere of radius 50 cm . The centre of the sphere is O and $\angle O A B=90^{\circ}$.

Let $\mathrm{OA}=x \mathrm{~cm}$.
(i) Show that $r=\sqrt{2500-x^{2}}$.
(ii) Hence show that the volume, $\mathrm{V} \mathrm{cm}^{3}$, of the cone is given by:

$$
V=\frac{\pi}{3}\left(2500-x^{2}\right)(50+x)
$$

(iii) Find the radius of the largest cone which can be inscribed in the sphere.
(Give your answer to the nearest mm .)
(a) In a fish hatchery, the fish population, N , satisfies the equation $\mathrm{N}=\mathrm{N}_{0} e^{k t}$ where N_{0} and k are constants and t is measured in months.
(i) Initially there were 1000 fish in the hatchery and at the end of 5 months there were 5000 . Find the value of k correct to 3 decimal places.
(ii) Find the number of fish in the hatchery at the end of 8 months. (Give your answer correct to the nearest hundred.)
(iii) At the end of which month will the fish population exceed 50000 for the first time?
(iv) At what rate is the population increasing at the end of six months? (Give your answer correct to the nearest hundred fish per month.)
(b) Mario and Fei Lin worked out that they would save $\$ 50000$ in five years by depositing all their combined monthly salary of $\$ S$ at the beginning of each month into a savings account and withdrawing $\$ 1600$ at the end of each month for living expenses. The savings account paid interest at the rate of 3% p.a. compounding monthly.
(i) Show that at the end of the second month, the balance in their savings account, immediately after making their withdrawal of $\$ 1600$, would be given by $\$\left[\left(1.0025^{2}+1.0025\right) S-1600(1.0025+1)\right]$.
(ii) Hence write down an expression for the balance in their account at the end of the sixtieth month.
(iii) Calculate their combined monthly salary.
(a)

In the diagram, $X Y$ is an arc of a circle with centre O and radius 12 cm . The length of the arc $X Y$ is $4 \pi \mathrm{~cm}$, Find the:
(i) exact size of θ in radians.
(ii) area of the sector OXY.
(b) The region bounded by the curve $y=e^{x}+e^{-x}$, the x axis and the lines $x=0$ and $x=2$ is rotated about the x axis. Find the volume of the solid formed. (Leave your answer in terms of e.)
(c) Show that $\frac{10}{4 x^{2}-25}=\frac{1}{2 x-5}-\frac{1}{2 x+5}$

(d) Sketch the curves $y=\cos 2 x$ and $y=\sin \frac{1}{2} x$ in the domain $0 \leq x \leq 2 \pi$.

From your sketch find the approximate solution(s) of the equation $\cos 2 x-\sin \frac{1}{2} x=0 \quad$ for the domain $0 \leq x \leq 2 \pi$.

QUESTION 9
(a) Evaluate: $\quad \sum_{n=3}^{8}\left(2 \times 3^{n}-2 n\right)$.
(b) Solve : $\quad \log _{27} 16=x \log _{3} 2$
(c) Mario and Fei Lin worked out that they would save $\$ 50000$ in five years by depositing all their combined monthly salary of $\$ S$ at the beginning of each month into a savings account and withdrawing $\$ 1600$ at the end of each month for living expenses. The savings account paid interest at the rate of 3% p.a. compounding monthly.
(i) Show that at the end of the second month, the balance in their savings account, immediately after making their withdrawal of $\$ 1600$, would be given by $\$\left[\left(1.0025^{2}+1.0025\right) S-1600(1.0025+1)\right]$.
(ii) Hence write down an expression for the balance in their account at the end of the sixtieth month.
(iii) Calculate their combined monthly salary.
(a) A die numbered 1 to 6 is rolled twice. The sum S of the numbers which appear uppermost on the die is calculated.
(i) Find the probability that S is greater than 9.
(ii) It is known that 5 appears on the die at least once in the two throws. Find the probability that S is greater than 9.
(b) The median house price, SP. in a certain suburb is falling at an increasing rate afier a recent peak.

What does this tell you about $\frac{d \mathrm{P}}{d t}$ and $\frac{d^{2} \mathrm{P}}{d t^{2}}$?
(c)

NOT TO SCALE
The diagram shows a cone of base radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$ inscribed in a sphere of radius 50 cm . The centre of the sphere is O and $\angle \mathrm{OAB}=90^{\circ}$.

Let $O A=x \mathrm{~cm}$.
(i) Show that $r=\sqrt{2500-x^{2}}$.
(ii) Hence show that the volume, $\mathrm{V} \mathrm{cm}^{3}$, of the cone is given by:

$$
V=\frac{\pi}{3}\left(2500-x^{2}\right)(50+x)
$$

(iii) Find the radius of the largest cone which can be inscribed in the sphere. (Give your answer to the nearest mm.)

- SOLUTIONS NSGHS LU MATHEMATICS TRILL HSC EXAMINATION OUESTION SOLUTIONS NSGHS QU MATHEMATICS TRIA
QUESTION 2

$$
1999
$$

a)

$$
\frac{2}{4+\sqrt{3}} \frac{4-\sqrt{3}}{4-\sqrt{3}}=\frac{2(4-\sqrt{3})}{16-3}
$$

a)(1)

$$
=\frac{2(4-\sqrt{3})}{13}(\mathrm{~lm})
$$

$$
\begin{aligned}
\left.\frac{d}{d x}\left(\left(3 x^{0}+2\right)\right)^{x}\right\} & =\frac{1}{2}\left(3 x^{2}+2\right)^{\frac{1}{x}} \times 6 x \\
& \left.=3 x\left(3 x^{2}+2\right)^{ \pm}\right) \\
& =\frac{3 x}{\sqrt{3 x+2}}
\end{aligned}
$$

b)

$$
\begin{aligned}
6 x^{2}-x-2 & =0 \\
(3 x-2)(2 x+1) & =0 \quad 11 \\
x & =-\frac{1}{2}, \frac{2}{3} 1
\end{aligned}
$$

c)

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& A B^{2}-7^{2}+6^{2}-2 \times 7+6 \cos 30^{\circ},>2 \mathrm{~m} \\
& A B=3.5005 \cdots \\
& e 4 \mathrm{~cm}
\end{aligned}
$$

(ii) $\left.\begin{array}{l}d x\end{array}\{(x+1) \ln x\}(x+1) \cdot \frac{1}{x}+(\ln x) x\right)$
(III) $\begin{aligned} d \operatorname{da}\left\{\frac{x}{\sin \alpha x}\right\} & =\frac{1 \cdot \sin 2 x-(2 \cos 2 x) x}{\sin -2 x} \\ & =\sin 2 x-2 x \cos 2 x\end{aligned}$
b) $\int\left(x-2 x^{-2}\right) d x=\frac{1}{2} x^{2}+x^{-2}+c$
d)
e) $|9 y-11|>7$
$9 y-11>7$ or $9 y-11<-7$
$9 y>18$ or $8 y<4$
$y>2$ or $y<\frac{4}{4}$
$y>2$ or $y<\frac{4}{9}$

1 (2m)
2
a) $\frac{(m)}{2}$
b) $P\left(-\frac{3+5}{2}, \frac{-2+2}{2}\right)=P(1,0)$ (m)
c) $=-2 ;(30)^{2} y-0=-2(x-1) ;(2 m)$

(iii) $\int e^{3 x+2} d x=\frac{1}{3} e^{3 x+2}+$
c) $I=\left[2 \sin \frac{x}{2}\right]_{0}^{\frac{\pi}{2}}$

3
OUESTIOU3
f) $\int \sec ^{2} 4 x d x=\frac{1}{4} \tan 4 x+(1 / 2)$
g) $112 \frac{1}{2} \%$ of $x=\$ 36000, \begin{aligned} & x, \\ & x\end{aligned}$

$$
\frac{x}{d, \$ 32000, ~ p h e n ~}
$$

$$
\text { u } \$ 32000
$$

a) $L . H S=2(-1)+(4)-2=0=R H S$
e) $B P=\sqrt{(1+1)^{2}+(0-4)^{2}}=\sqrt{20}=2 \sqrt{S}$
e) $B P=\sqrt{(1+1)^{2}+(0-4)^{2}}=\sqrt{20}=2 \sqrt{5}(\mathrm{~m})$
f) ${ }^{(1)}{ }^{4}(1 m)(11)(-1,4)(1,0) 0\left(x, y y_{2}\right)$ $\left.(10)=\left(\frac{-1+x_{3}}{2}\right) \frac{1}{2}+y_{2}\right)$
(im) $x,=3 \quad y=-4$
(img) $A C, B D$ DIAGONALS BISECT AT 90°
h)
$A=\frac{1}{2} \times \sqrt[2]{5} \times 2 \sqrt{5}=10$
i) 40 soucer (m)

$$
\begin{aligned}
& .4 \mathrm{~cm} \\
& \cdots 4 \mathrm{~cm} \\
& \angle D R S=80^{\circ}\binom{\text { angle sum of }}{\text { Quadulatial }} \\
& \angle \overline{D R T}=95^{\circ}\binom{\text { Conterno }}{\text { angles }} \mathrm{m} \\
& \begin{aligned}
\angle S R T & =\angle Q R T-\angle Q R S ~\left(U_{0}\right. \text { Adquat) } \\
& =95^{\circ}-80^{\circ}
\end{aligned} \\
& =15^{\circ} \quad \mathrm{lm}
\end{aligned}
$$

(1) 4

05
a (1)
a)

$$
\begin{aligned}
f^{\prime}(x) & =5-3 x^{2} \\
f(x) & =5 x-x^{3}+c \\
4 & =-5+1+c \\
\therefore< & =8 \\
f(x) & =5 x-x^{3}+8
\end{aligned}
$$

$2 m$

$$
u \sin G a \equiv 3
$$

a) (1) opposite angles of

(ii) $w x=Z X$ (opsandes of panelelagna)
$\angle X W P=\angle Z Y \Phi$ (altenotr agheo) 1

$\therefore W \times P-\triangle Y Z \phi(A A+N D$
(1ii) $W P=Y \emptyset$ (convesssides of
Now

$$
\begin{align*}
& w n+P Q+\varphi Y=20 \\
& x+P Q+x=20 \tag{20}\\
& 8+n \varphi+8=20 \\
& \therefore \phi \varphi=4
\end{align*}
$$

v)
(iii) at B (2,6)

$$
\frac{d y}{d x}=3\left(2^{2}-4 \times 2+3\right)=-3
$$

Nomal les grad $\frac{1}{3}$
Equalian is

$$
\begin{gather*}
y=6=\frac{1}{3}(x-2) \\
3 y-18-x-2 \\
x x^{3} y+16<0 \text { (1) } \tag{1}
\end{gather*}
$$

$$
\begin{aligned}
P_{u t} y & =0 \quad \text { m }(\text { (l) } \\
x+y & =0 \\
x & =-16 i(-16,0)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\angle W+\angle Z=180^{\circ} \not \subset / \prime\right) \text { (} \mathrm{m} \\
& \angle X=\angle Z \dot{c} \angle W X Y=\angle W Z Y
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) }
\end{aligned}
$$

> (2m)
> c) $(x-3)^{2}=-12(y-1) \quad(2 m)$

96
a)

$$
\begin{aligned}
A & \left.=\iint(4-x)-\left(\frac{4}{1+x}\right)\right\}\left.d x\right|_{1} ^{3} \\
& =\left[4 x-\frac{x^{2}}{2}-4 \ln (1+x)\right]_{0}^{3} \\
& =\left[\left(12-\frac{9}{2}-4 \ln 4\right)-(0-4 \ln 1)\right] \\
& =\frac{1}{2}-4 \ln 4
\end{aligned}
$$

1 a)
ie $\left(\frac{15}{2}-4 \ln 4\right)$ osuaver.nith
5)
(3in)
(${ }^{\prime}$ n $\triangle \triangle S, \triangle \Phi \times Y$
$\angle S P X=\angle Y O X=90^{\circ}($ gave $) . ?$
$\angle P \times S=\angle \Phi \times Y$ (ventopposigh)
$\therefore \triangle P \times S|I| \Phi \times Y$ (equiangulont
(ii) $\frac{8}{x}=\frac{6}{3 x-6}$ (Racdies) (R compondy
$6 x=24 x-48$

$$
x=\frac{8}{3} \text { ie } D S=\frac{8}{3} \mathrm{~cm}
$$

(1) $P(Y Y Y)=(0.7)^{3}=0.343$ (1m
(1)

$$
\begin{aligned}
P(x \geqslant 1) & =1-P(x=0) \\
& =1-P(\text { NNN }) \quad 2 m) \\
& =1-(0.3)^{3} \\
& =0.973
\end{aligned}
$$

$$
\text { (1) } y=\sin x+\cos x
$$

c) This is ariotmetic series Temiss
(1)

$$
\begin{align*}
a & =10, d=5 \\
T_{10} & =a+9 d \\
& =10+9 \times 5 \\
& =55
\end{align*}
$$

$\frac{a_{y}}{a_{2}}=\cos x-\infty$
Put $\frac{a_{y}}{a_{x}}=0$

$$
\sin x=\cos x
$$

i $\tan x=1$

$$
\left.\begin{array}{l}
x=1 \tag{2m}\\
4 x
\end{array} \frac{\pi}{4}, \frac{5 \pi}{4}\right\}
$$

(III) $y=0$ ie $\sin ^{\prime} x+\cos x=0$
c $\quad x=3 \pi / 4 ; 7 \pi / 4$

$$
\begin{align*}
& \begin{aligned}
y^{\prime \prime} & =-\sin x-\cos x \\
& =-(\sin x+\cos x)
\end{aligned} \\
& =-(\sin x+\cos x) 1 \text { (Te575) } \\
& \text { at } x=\pi, y^{\prime \prime}=-\sqrt{2}<0 \Rightarrow \text { MAXTURN+DT } \\
& a t x=5 \pi, y^{\prime \prime}=\sqrt{2}>0 \Rightarrow \text { min TuRN M. }
\end{align*}
$$

$$
\begin{aligned}
& 0.7 \text { yes } 0_{0.3}^{0.7} \mathrm{Y} \stackrel{0.7}{-3} \mathrm{Y}
\end{aligned}
$$

108
a) $l=r \theta$

$$
4 \pi \pm 2 \theta
$$

$$
\begin{equation*}
\theta \cdot \frac{\pi}{3} \tag{im}
\end{equation*}
$$

(4)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{5}{12} \times \frac{2}{3} \\
& =24 \pi
\end{aligned}
$$

$424 \pi \mathrm{cin}^{2} \mathrm{~m}$
b)

09

$$
\begin{aligned}
& \text { a) } S=\left(2 \times 3^{3}-6\right)+\left(2 \times 3^{4}-8\right)+\left(2 \times 3^{5}-10\right) \\
&+1\left(2 \times 3^{2}-16\right) \\
&= 2\left(3^{3}+3^{4}++3^{8}\right)(6+8+10+16) \\
&= 2 \cdot \frac{3^{3}\left(3^{6}-1\right)}{2}-\frac{6}{2}(6+16) 2 \\
&=3^{3}\left(3^{3}-1\right)-66 \\
&=19590
\end{aligned}
$$

b)

$$
\begin{aligned}
\log _{2} 16 & =x \log _{3} 2 \\
x \log _{3} 2 & =\frac{\log _{3} 16}{\log _{3} 2} \\
x \log _{3} 2 & =\frac{\log _{3} 16}{\log _{3}} \\
x & =\frac{4 \log _{1} 2}{3 \log _{2} 2}=\frac{4}{3}
\end{aligned}
$$

$$
\begin{aligned}
V & =\pi \int_{0}^{2}\left(e^{x}+e^{-x}\right)^{2} d x \\
& =\pi \int^{2}\left(e^{2 x}+2+e^{-2 x}\right) d x \\
& =\pi\left[\frac{e^{2 x}}{2}+2 x-\frac{e^{2 x}}{2}\right]_{0}^{2} \\
& \left.=\pi\left(\frac{e^{4}+4-1}{2 e^{4}}\right)^{2}-\left(\frac{1}{2}+0-\frac{1}{2}\right)\right]
\end{aligned}
$$

[SEE BACK PA6E]
c) lot A, be accumulatad moitten urth d manal

$$
=\pi\left(\frac{e^{8}+8 e^{4}-1}{2 e^{4}}\right)
$$ aster unth daval

$$
A_{1}=(1.0025) s-1600
$$

$$
=\left(A_{2}=(10025)^{2}+10025\right] 5-160001(1) 00025
$$

$$
-1600[1+1.00255+(1005)]
$$

$$
\text { SINCE } A_{60}=50000
$$

$$
\begin{aligned}
& S=\frac{50000+1600\left[\frac{\left(1.00250^{30}-1\right.}{0.2}\right]}{\left[\frac{1.0025(1.00255(1)-1)}{0.0025}\right]} \\
& =2325.73 .0025
\end{aligned}
$$

$\Phi 10$ $J=\left\{\begin{array}{l}s=2345678910112 \\ f=1.2345654321\end{array}\right\}$
a(i)

$$
\begin{aligned}
& E=\{(6,6)(64)(5,5)(5,6)(65)(6,6)\} \\
& P(E)=
\end{aligned}
$$

(II) 5

5-6 6-5

$$
\begin{aligned}
P\left(E_{3}\right) & =\frac{1}{12} \\
&
\end{aligned}
$$

b)

$$
\frac{\frac{d p}{d x}<0}{\frac{p P}{d t^{2}}}
$$

c)

Fiaw Dythagonao
(1)

$$
\begin{aligned}
& x=50 \\
& 2500-x^{2}
\end{aligned}
$$

(1)

$$
\left.\begin{array}{rl}
V & =\frac{1}{3} \\
& =\frac{1}{3} \pi\left(2500-x^{2}\right)(50+x)
\end{array}\right\}
$$

$$
V=\frac{1}{3} \pi\left(2500-x^{2}\right)(50+x)
$$

(III)

$$
\begin{aligned}
\frac{d V}{d x} & =\frac{1}{3} \pi\left\{\left(2500-x^{2}\right) 1+(50+x)\{[2 x)\right. \\
& =\frac{1}{3} \pi\left\{2500-x^{2}-100 x-2 x^{2}\right\} \\
& =\frac{1}{5} \pi\left\{2500-100 x-3 x^{2}\right\}
\end{aligned}
$$

Put $\frac{d V}{d x}=0$ for marmum

$$
\begin{aligned}
& \begin{array}{l}
13500-100 x-3 x\}=0 \\
2500-100 x-3 x^{2}<0
\end{array} \\
& 3 x^{2}+100 x-2500=0 \\
& 150)(0+50)=0(140) \\
& x=-50, \frac{50}{3} \\
& \frac{a^{2} V}{d x^{2}}=\left\{\begin{array}{c}
10 x \\
a t \\
x=50-6 x\} \\
d^{2}
\end{array}\right\} \\
& \text { at } x=\frac{50}{3}, \frac{d v}{d x t} \times 0 \Rightarrow \text { IAX } \\
& \text { ๆ } \therefore r=\sqrt{2500-\frac{500}{9} \text { ie }}
\end{aligned}
$$

QQ)
(1) Let A, he the amount accuminulateo. aster Imanth and after withdrawal

$$
\begin{align*}
& A_{1}=(1.0025) S-1600 \\
& A_{2}=[(1.0025) S-1600+S] 1.0025-1600 \\
& \therefore=\left[(1.0025)^{2}+1.0025\right] S-1600[1+1.0025]
\end{align*}
$$

(II) $A_{60}=\left[1.0025+(1.0025)^{2}+\cdots+(1.0025)^{50}\right]_{s}-1600[1+1.0025+\cdot(10025)$

$$
\begin{align*}
& \text { (iii) } \quad A_{60}=50000 \tag{m}\\
& {\left[1.00257(1.0025)^{2}++(1.0025)^{60}\right] 5-1600\left[1+1.0025+(1.0025)^{59}\right] 50} \\
& \begin{aligned}
S & \left.=\frac{50000+1600\left[1+1.0025+\cdot+(1.0025)^{59}\right]}{1.0025+(1.0025)^{2}+\ldots+(1.0025)^{60}}\right] \\
& \left.=\frac{50000+1600\left[\frac{1.0025)^{50}-1}{0.0025}\right]}{1}\right] \\
& =2325.07301 \mathrm{~lm}
\end{aligned} \\
& \text { wm }
\end{align*}
$$

