

2009

TRIAL HIGHER SCHOOL CERTIFICATE

EXAMINATION

Mathematics

General Instructions

- Reading Time - 5 minutes
- Working Time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 120

Attempt Questions 1-10
All questions are of equal value
At the end of the examination, place your solution booklets in order and put this question paper on top.
Submit one bundle.
The bundle will be separated before marking commences so that anonymity will be maintained.

Student Number: \qquad Teacher: \qquad
Student Name: \qquad

QUESTION	MARK
1	$/ 12$
2	$/ 12$
3	$/ 12$
4	$/ 12$
5	$/ 12$
6	$/ 12$
7	$/ 12$
8	$/ 12$
9	$/ 120$
10	
TOTAL	

Total Marks - 120
Attempt Questions 1-10
All questions are of equal value
Begin each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find the value of $\log _{e} 7$ correct to 2 decimal places.
(b) Solve $2 x+8 \leq 6$ and graph the solution on a number line.
(c) What is the exact value of $\tan \frac{5 \pi}{6}$?

1
(d) Simplify $\frac{x-2}{x+3} \div \frac{3 x-6}{x^{2}-x-12}$.
(e) Solve the pair of simultaneous equations:

$$
\begin{aligned}
& x+y=8 \\
& 3 x-2 y=-11
\end{aligned}
$$

(f) Solve $|2 x+1|=7$.
(g) Find the values of a and b if $\frac{5-\sqrt{3}}{\sqrt{3}-1}=a+b \sqrt{3}$.
(a) $\quad A$ is the point $(-1,5)$ and B is the point $(2,-2)$. The line l though A and B has the equation $7 x+3 y-8=0$.

(i) State the gradient of the line l.
(ii) Find the angle that the line l makes with the positive x-axis to the nearest degree.
(iii) Find the exact length of the interval $A B$.
(iv) $A C$ is perpendicular to $A B$. Find its equation in general form.
(v) $\quad A$ circle with its centre at A is drawn through B. Find the equation of this circle.
(vi) D is the point $(7,-1)$. Find the perpendicular distance from D to the line $A B$.
(vii) Find the area of the triangle $A B D$.
(b) Solve $e^{2 x}-3 e^{x}=4$ giving your answer(s) in exact form.

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) Differentiate the following with respect to x :
(i) $4 x \log _{e} 2 x \quad \mathbf{2}$
(ii) $\cos (4 x-3)$
(b) The third term of a geometric series is 54 and the sixth term is 2. Find:
(i) the common ratio;
(ii) the sum of the first 6 terms.
(c) $\quad P Q R S$ is a parallelogram. $P M$ and $R N$ are perpendicular to $Q S$.

NOT TO
SCALE
(i) Copy the diagram into your writing booklet.
(ii) Prove that $\triangle M P Q \equiv \triangle N R S$.
(iii) Hence prove that $P N R M$ is a parallelogram.
(a) Find the equation of the tangent to the curve $y=3 e^{2 x}$ at $(0,3)$.
(b) Find:
(i) $\int \sec ^{2} 4 x d x$.
(ii) $\int_{-2}^{1} \frac{1}{2-x} d x$.
1
3
(c) There is an 80% chance that Troy will achieve a Band 6 in Mathematics and a 90% chance that Gabriella will.
(i) Draw a probability tree diagram showing this information.
(ii) What is the chance that only one fails to achieve a Band 6?
(iii) What is the chance that at least one fails to achieve a Band 6?
(d) Determine the value(s) of k for which the expression

$$
x^{2}+(2-k) x+k(2-k)
$$

is positive definite.
(a) A curve has a gradient function with equation $\frac{d y}{d x}=6(x-1)(x-2)$.
(i) If the curve passes through the point $(1,2)$, find the equation of the curve.
(ii) Find the coordinates of the stationary points and determine their nature.
(iii) Find any points of inflexion.
(iv) Sketch the graph of the function, showing these key features and the y intercept.
(b) An orienteerer hikes 6 km due East. She then turns on a bearing of $065^{\circ} \mathrm{T}$ and hikes a further 7 km to reach her destination.

(i) Copy the diagram into your writing booklet.
(ii) Find the length of the shortest possible route back to her starting point, correct to the nearest metre.
(iii) Find the true bearing of her destination from her starting point.
(a) The arc $P Q$ of a circle of radius 10 cm is 6 cm long.

NOT TO
SCALE

Calculate:
(i) the angle subtended by $P Q$ at the centre O, expressing your answer in degrees correct to the nearest minute;
(ii) the area of the sector $P O Q$;
(iii) the area of the minor segment of the circle cut off by the chord $P Q$.
(b) A pyramid is built using 1536 blocks on the base level. The next layer contains 1472 blocks and the next 1408, and so on.

(i) How many blocks are used for the ninth layer?
(ii) Before it is capped with a single pyramid block, the top layer has 64 blocks. How many layers are there before the cap is put on?
(iii) How many blocks were used in the construction of the pyramid?
(c) (i) Sketch the curve $y=3 \cos \frac{x}{2}$ for $-\pi \leq x \leq \pi$.
(ii) Use your graph to determine the number of solutions to the equation $\cos \frac{x}{2}=\frac{2 x+1}{3}$ that exist in the domain $-\pi \leq x \leq \pi$.
(a) (i) Find the points where the line $y=2 x-3$ intersects the parabola $y=x^{2}-2 x-3$.
(ii) Hence find the exact area enclosed by the line and the parabola.
(b) Solve $2 \sec ^{2} x=3$ for $0<x<2 \pi$.

Express your answer in radian measure correct to 2 decimal places.
(c) In a new Mathematics textbook, the pages are to have an area of $338 \mathrm{~cm}^{2}$. A margin of 1 cm is left at each side and of 2 cm at the top and bottom of the page. The width of the page is $x \mathrm{~cm}$.

NOT TO
SCALE
(i) Show that the area $A \mathrm{~cm}^{2}$ of the space available on each for print is given by

$$
A=346-4 x-\frac{676}{x}
$$

(ii) Hence find the dimensions of the page so that the area of print is maximised.
(a) The diagram shows a circle with centre O and diameter $A B . P$ is a point on the circumference of the circle. $P N$ is drawn perpendicular to $A B$ and $A P$ is perpendicular to $P B$. Let $\angle P O B=2 x$.

NOT TO
SCALE
(i) Explain why $\angle O A P=\angle O P A=x$.
(ii) Show that $\sin 2 x=\frac{2 P N}{A B}$.
(iii) Use $\triangle A P N$ and $\triangle P A B$ to show that $\sin 2 x=2 \sin x \cos x$.
(b) A parabola has the equation $2 y=x^{2}-8 x+4$.
(i) Find the coordinates of the vertex.
(ii) State the coordinates of the focus and the equation of the directrix.
(iii) Find the x intercepts of the parabola.
(iv) Hence sketch the parabola.

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) Simplify $\log _{b} a \times \log _{c} b \times \log _{a} c$.

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}>0 \text { for } x<-1 \text { and } 1<x<3 . \\
& \frac{d y}{d x}=0 \text { only when } x=-3,1 \text { and } 5 . \\
& y=0 \text { only when } x=1 .
\end{aligned}
$$

Sketch a possible graph of the function.
(c) Use Simpson's rule with three function values to estimate
$\int_{1}^{3} \log _{10} x d x$. Give your answer correct to three significant figures.
(d) (i) Differentiate $\frac{\log _{e} x}{x}$.

(ii) The curve $y=\frac{\sqrt{\log _{e} x}}{x}$ in the domain $1 \leq x \leq e$ is rotated about the x-axis. Using the result in (i), find the volume of the solid formed.
(a) Show that the second derivative of $\log _{e}(1+\sin x)$ is $-\frac{1}{1+\sin x}$.
(b) In January 2000, Judy took a $\$ 300000$ home loan, with interest at 6.0% per annum, compounding monthly.

Judy makes monthly repayments at the end of each month. Let A_{n} be the amount owing on the loan at the end of each month.
(i) If the monthly repayment is $\$ 2000$, show that the amount owing after k months is given by $100000\left[4-(1 \cdot 005)^{k}\right]$.
(ii) How much of the loan is still to be repaid after 9 years?
(iii) Find the number of payments Judy will make to pay off the loan.

In January 2009, Judy was unable to make repayments due to the Global Financial Crisis. Her bank offered her a repayment free period of 18 months, during which time interest continued to be accrued.
(iv) If α is the amount still owing on the loan after 9 years, write an expression involving α for the amount owing after the repayment free period.
(v) Find the new monthly repayment amount, R, which Judy will need to make if she plans to repay the loan in the same amount of time had she not missed any repayments.

End of paper

STANDARD INTEGRALS

$$
\mathrm{NOTE}: \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

2009 HSC MATHEMATICS TRIAL SOUITIONS

Question 1
a) $\log _{e} 7=1.95(2 \mathrm{dp})$
b)

$$
\begin{array}{rl}
2 x+8 & \leq 6 \\
2 x & \leq-2 \\
x & \leq-1 \\
0 & 0
\end{array}
$$

c) $\tan \frac{5 \pi}{6}=\frac{-1}{\sqrt{3}}$

$$
\text { d) } \begin{aligned}
& \frac{x-2}{x+3} \div \frac{3 x-6}{x^{2}-x-12} \\
= & \frac{x-2}{x+3} \times \frac{(x-4)(x+3)}{3(x-2)} \\
= & \frac{x-4}{3}
\end{aligned}
$$

e)

$$
\begin{aligned}
& x+y=8 \\
& 3 x-2 y=-11
\end{aligned}
$$

(1a) $x=8-y$
(a)

$$
\rightarrow \text { (2) } \begin{gathered}
3(8-y)-2 y=-11 \\
24-3 y-2 y=-11 \\
-5 y=-35 \\
y=7
\end{gathered}
$$

inhe C : $\quad x=1$
f)

$$
\begin{array}{llll}
|2 x+1|=7 \\
2 x+7=7 & \text { or } & 2 x+1=-7 \\
2 x=6 & & 2 x=-8 \\
x=3 & \text { or } & x=-4
\end{array}
$$

$$
\text { 9) } \begin{aligned}
& \frac{5-\sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
= & \frac{5 \sqrt{3}+5-3-\sqrt{3}}{3-1} \\
= & \frac{4 \sqrt{3}+2}{2} \\
= & 2 \sqrt{3}+1 \\
\therefore & a=1, b=2 .
\end{aligned}
$$

Question 2
a)i)

$$
\begin{aligned}
3 y & =-7 x+8 \\
y & =-\frac{7}{3} x+\frac{8}{3} \\
\therefore m & =-\frac{7}{3} .
\end{aligned}
$$

ii) $m=\tan \theta$

$$
\begin{aligned}
\therefore \tan \theta & =-\frac{7}{3} \quad \text { (ve so obluse }<\text {) } \\
\theta & =113^{\circ} \text { (hearest deg) }
\end{aligned}
$$

iii) $A(-1,5) \quad B(2,-2)$

$$
\begin{aligned}
d^{2} & =(2+1)^{2}+(-2-5)^{2} \\
& =9+49 \\
d & =\sqrt{58} \text { units. }
\end{aligned}
$$

iv) $m_{A B}=\frac{-7}{3} \therefore m_{A C}=\frac{3}{7}$
(since $m_{1} m_{2}=-1$ for perp. lines)
v) contd...

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y-5=\frac{3}{7}(x+1) \\
7 y-35=3 x+3 \\
\therefore \quad 3 x-7 y+38=0
\end{array}
$$

v) Centre $(-1,5)$ radius $\sqrt{58}$

$$
\therefore(x+1)^{2}+(y-5)^{2}=58 .
$$

vi)

$$
\text { 1) } \begin{aligned}
& d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right| \\
& \begin{aligned}
a & =7, b=3, c=-8 \quad x_{1}=7 \quad y_{1}=-1 \\
\therefore d & =\frac{|7(7)+3(-1)-8|}{\sqrt{7^{2}+3^{2}}} \\
& =\frac{38}{\sqrt{58}} \text { units }
\end{aligned}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2} \times \frac{38}{\sqrt{58}} \times \sqrt{58} \\
& =19 \text { units }^{2} .
\end{aligned}
$$

b) let $e^{x}=m$

$$
\begin{aligned}
\therefore & m^{2}+3 m-4=0 \\
& (m-1)(m+4)=0 \\
& m=1 \text { or } m=-4 \\
\therefore & e^{x}=1 \text { or } e^{x}=-4
\end{aligned}
$$

$\therefore x=0$.

Question 3
a) i)

$$
\begin{aligned}
f(x) & =4 x \log _{e} 2 x \\
u & =4 x \quad v \\
u^{\prime} & =\log _{e} 2 x \\
u^{\prime} & =4 \quad v \\
=\frac{2}{2 x} & =\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
\therefore f^{\prime}(x) & =u v^{\prime}+v u^{\prime} \\
& =\frac{4 x}{x}+4 \log _{e} 2 x \\
& =4+4 \log _{e} 2 x
\end{aligned}
$$

ii)

$$
\begin{aligned}
f(x) & =\cos (4 x-3) \\
f^{\prime}(x) & =-4 \sin (4 x-3)
\end{aligned}
$$

b)

$$
\begin{align*}
& T_{3}: a r^{2}=54 \tag{1}\\
& T_{6}: a r^{5}=2 \tag{2}
\end{align*}
$$

i)

$$
\begin{aligned}
& \therefore \quad r^{3}=\frac{2}{54}=\frac{1}{27} \\
& r=\frac{1}{3}
\end{aligned}
$$

ii) sub $\frac{1}{3} \rightarrow(i)$: $a\left(\frac{1}{3}\right)^{2}=54$

$$
\begin{aligned}
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} a=486 \\
\therefore S_{6} & =\frac{486\left(\left(\frac{1}{3}\right)^{6}-1\right)}{-2 / 3} \\
& =728 .
\end{aligned}
$$

c) ii) $\operatorname{In} \triangle M P Q$ \&NRS:

$$
\angle P M Q=\angle S N R=90^{\circ} \text { (given) }
$$

$\angle P Q m=\angle N S R$ (alternate $\angle S, P Q / / S R$)
$P Q=S R$ (oppsider parallelogram acre equal)
$\therefore \triangle M P Q \equiv \triangle N R S$ (ABS).
iii) $P m=N R$ (corresponding sides in congment Δs from i))

Since $\angle R N S=\angle P M N=90^{\circ}$; PM $/ / N R$ as these are
alternate angles.
\therefore PNRM is a parallelogram (l pair of sides equal \& parallel)

Question 4
a)

$$
\begin{aligned}
& y=3 e^{2 x} \quad(0,3) \\
& \frac{d y}{d x}=6 e^{2 x}
\end{aligned}
$$

hen $x=0, \frac{d y}{d x}=6 e^{0}$

$$
\begin{aligned}
\therefore y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =6 x \\
y & =6 x+3 .
\end{aligned}
$$

b) i) $\int \sec ^{2} 4 x d x=\frac{1}{4} \tan 4 x+c$
ii)

$$
\begin{aligned}
\int_{-2}^{1} \frac{1}{2-x} d x & =-1 \int_{-2}^{1} \frac{-1}{2-x} d x \\
& =[-\ln (2-x)]_{-2}^{1} \\
& =-\ln 1+\ln 4 \\
& =\ln 4
\end{aligned}
$$

C) i)

Cabrilla
ii)

$$
\begin{aligned}
P(\text { ore fails }) & =\text { Troy fails } \times \text { Gabachieles }+ \text { Cabfails } x \text { troy achieves } \\
& =0.2 \times 0.9+0.1 \times 0.8 \\
& =0.26
\end{aligned}
$$

iii)

$$
\begin{aligned}
P(\text { at least aretails }) & =1-P(\text { no fails }) \\
& =1-0.8 \times 0.9 \\
& =0.28 .
\end{aligned}
$$

d) Positive definite if $a>0$ and $\Delta<0$

$$
\begin{gathered}
b^{2}-4 a c<0 \\
(2-k)^{2}-4(1)(2-k) k<0 \\
4-4 k+k^{2}-8 k+4 k^{2}<0 \\
4-12 k+5 k^{2}<0 \\
5 k^{2}-10 k-2 k+4<0 \\
5 k(k-2)-2(k-2)<0 \\
(5 k-2)(k-2)<0 \\
\frac{x}{4} \sqrt{2} \\
\frac{2}{5} \\
\frac{2}{5}<k<2
\end{gathered}
$$

Questions
a) $\frac{d y}{d x}=6(x-1)(x-2)$
i)

$$
\begin{aligned}
& \frac{d y}{d x}=6\left(x^{2}-3 x+2\right) \\
& \therefore y=6\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right)+c \\
& \operatorname{sub}(1,2) \quad 2=6\left(\frac{1}{3}-\frac{3}{2}+2\right)+c \\
& 2=2-9+12+c \\
& c=-3
\end{aligned}
$$

\therefore eqn is $y=2 x^{3}-9 x^{2}+12 x-3$.
ii) SPs occur chen $\frac{d y}{d x}=0 \therefore x=1$ or 2
test: $\frac{d^{2} y}{d x^{2}}=12 x-18$
hen $x=1 \quad \frac{d^{2} y}{d x^{2}}=-6 \therefore \Omega \max S P$.
wen $x=2 \frac{d^{2} y}{d x^{2}}=6 \therefore \tau \min S P$
find y values: ven $x=1, y=2-9+12-3=2$ somaxspat $(1,2)$ then $x=2 \quad y=2(2)^{3}-9(2)^{2}+12(2)-3=1$ min sp at $(2,1)$
iii) inflexions occur if $\frac{d^{2} y}{d x^{2}}=0$

$$
\begin{aligned}
& 12 x-18=0 \\
& x=\frac{3}{2} \quad \text { find } y \text { value: } y=2\left(\frac{3}{2}\right)^{3}-9\left(\frac{3}{2}\right)^{2}+12\left(\frac{3}{2}\right)-3=\frac{3}{2}
\end{aligned}
$$

test for change in concavity:

x	1	$\frac{3}{2}$	2
$d^{2} y$	-	0	+

$\therefore\left(\frac{3}{2}, \frac{3}{2}\right)$ is a pt of inflexion.
iv)

i)

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
d^{2} & =6^{2}+7^{2}-2(6)(7) \cos 155^{\circ} \\
& =161.129 \ldots \\
d & =12.69369 \ldots \\
& =12.694 \mathrm{~km} \text { (iequest } m \text {) }
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{\sin a^{\circ}}{7} & =\frac{\sin 155^{\circ}}{12.694} \\
\sin a^{\circ} & =0.233 \\
a^{\circ} & =13.48^{\circ} \quad(2 d p)
\end{aligned}
$$

\because beaving is $(90-13.48)^{\circ} \mathrm{T}=76.52^{\circ} \mathrm{T}$ (2dp)

Question 6
a) i)

$$
\begin{aligned}
L & =r \theta \\
\epsilon & =10 \theta \\
\theta & =\frac{3}{5} \times \frac{180}{\pi} \\
& =34^{\circ} 23^{\prime} \text { (n everest }
\end{aligned}
$$ min)

ii)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2}(10)^{2}\left(\frac{3}{5}\right) \\
& =30 \mathrm{~cm}^{2}
\end{aligned}
$$

iii)

$$
\begin{aligned}
A & =\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& =30-\frac{1}{2}(10)^{2}\left(\sin \frac{3}{5}\right) \\
& =1.77 \mathrm{~cm}^{2}\left(2 d_{p}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
& 1536+1472+1405+\ldots \\
& a=1536 ; d=-64 \\
& T_{n}=1536-64(n-1)
\end{aligned}
$$

i)

$$
\begin{aligned}
T_{9} & =1536-64(8) \\
& =1024
\end{aligned}
$$

ii)

$$
\begin{aligned}
& 64=1536-64(n-1) \\
& 64(n-1)=1472 \\
& n-1=23 \\
& \therefore n=24 \text { so } 24 \text { layers }
\end{aligned}
$$

iii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+l) \\
S_{24} & =\frac{24}{2}(1536+64)+1 \\
& =19201 \text { blocks. }
\end{aligned}
$$

c) i) $y=3 \cos \frac{x}{2} \quad-\pi \leqslant x \leqslant \pi$. amplitude $=3 \quad$ paned $=\frac{2 \pi}{n}=\frac{2 \pi}{1 / 2}=4 \pi$.

ii) to solve $\cos \frac{x}{2}=\frac{2 x+1}{3}$, need to sketch $y=2 x+1$
\therefore There is one solution in the given domain.

Question 7
a) i)

$$
\begin{align*}
& y=2 x-3 \\
& y=x^{2}-2 x-3 \tag{2}
\end{align*}
$$

$$
(1)=(2)
$$

$$
\begin{aligned}
& 2 x-3=x^{2}-2 x-3 \\
& 0=x^{2}-4 x \\
& 0=x(x-4)
\end{aligned}
$$

$$
x=0, \text { or } x=4 \text {, }
$$

he (1)

$$
\begin{aligned}
& y=-3 \quad y=2(4)-3 \\
& =5
\end{aligned}
$$

\therefore The points of intersection are $(0,-3)$ and $(4,5)$.
ii)

$$
\begin{aligned}
\therefore A & =\int_{0}^{4} 2 x-3-\left(x^{2}-2 x-3\right) d x \\
& =\int_{0}^{4} 4 x-x^{2} d x \\
& =\left[\frac{4 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{4} \\
& =2(4)^{2}-\frac{4^{3}}{3}-(0-0) \\
& =10 \frac{2}{3} \text { units }^{2}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
\sec ^{2} x & =\frac{3}{2} \\
\cos ^{2} x & =\frac{2}{3} \\
\cos x & = \pm \sqrt{\frac{2}{3}} \\
\therefore x & =0.62,3.76 \\
& =2.52 \mathrm{~S} .68
\end{aligned}
$$

C)

$$
\begin{aligned}
& A=x y=338 \mathrm{~cm}^{2} \\
& \therefore y=\frac{338}{x}
\end{aligned}
$$

i)

$$
\begin{aligned}
\therefore A_{\text {text }} & =(x-2)(y-4) \\
& =(x-2)\left(\frac{338}{x}-4\right) \\
& =338-4 x-\frac{676}{x}+8 \\
& =346-4 x-\frac{676}{x}
\end{aligned}
$$

ii) \max / \min occurs chen $\frac{d A}{d x}=0$

$$
\begin{aligned}
\frac{d A}{d x} & =-4+\frac{676}{x^{2}} \\
\therefore \quad 4 & =\frac{676}{x^{2}} \quad \operatorname{len} \frac{d A}{d x}=0 \\
x^{2} & =169 \\
x & =13 \quad \text { (dimensions }=\text { negative }
\end{aligned}
$$

test in $\frac{d t^{2}}{d x^{2}}=\frac{-1352}{x^{3}}$
when $x=13 \quad \frac{d A^{2}}{d x^{2}}=-v e$
\therefore I max TP \therefore max value
wen $x=13, y=\frac{338}{13}=26$
\therefore dimensions are $13 \mathrm{~cm} \times 26 \mathrm{~cm}$ to maximise print area.

Question 8
a) i) $A O=O P$ (radii)
so $\angle O A P=\angle O P A$ (equal angles opp. equal sides)
$\angle P O B=\angle O A P+\angle O P A \quad($ extener $\angle \triangle A O P)$

$$
\therefore \quad 2 x=\angle O A P+\angle O P A
$$

$$
\therefore \quad \angle C A P=\angle O P A=x .
$$

ii) $\sin 2 x=\frac{P N}{O P}$ from $\triangle P O N$

$$
\begin{aligned}
& =\frac{P N}{\frac{1}{2} A B} \text { (since } A B \text { is a diameter a of is aradius) } \\
& =\frac{2 P N}{A B} .
\end{aligned}
$$

iii) in $\triangle A P N \quad \sin x=\frac{P N}{A P}$
in $\triangle P A B \quad \cos x=\frac{A P}{A B}$

$$
\begin{aligned}
\therefore \sin x \cos x & =\frac{P N}{A P} \times \frac{A P}{A B} \\
& =\frac{P N}{A B} \\
\therefore 2 \sin x \cos x & =\frac{2 P N}{A B}=\sin 2 x \text { from ii). }
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& \quad 2 y=x^{2}-8 x+4 \\
& 2 y+12=x^{2}-8 x+16 \\
& 2(y+6)=(x-4)^{2} \\
& \therefore \text { vertex }(4,-6) .
\end{aligned}
$$

ii) using $(x-h)^{2}=4 a(y-k)$

$$
4 a=2 \quad \therefore a=\frac{1}{2}
$$

\therefore focus is $\left(4,-5 \frac{1}{2}\right)$
direchix is $y=-6 \frac{1}{2}$
iii)

$$
\begin{aligned}
& x \operatorname{ins}: y=0 \\
& 2(0+6)=(x-4)^{2} \\
& 12=(x-4)^{2} \\
& \pm \sqrt{12}=x-4 \\
\therefore & x=4+2 \sqrt{3} \text { or } 4-2 \sqrt{3} .
\end{aligned}
$$

Question 9
a)

$$
\begin{aligned}
& \log _{b} a \times \log _{c} b \times \log _{a} c \\
= & \frac{\log _{a} a}{\log _{a} b} \times \frac{\log _{a} b}{\log _{a} c} \times \log _{a} c \\
= & \log _{a} a \\
= & 1
\end{aligned}
$$

b)

$$
\text { c) } f(x)=\log _{10} x
$$

$$
\begin{aligned}
& \left.\begin{array}{c|c|c|c}
x & 1 & 2 & 3 \\
f(x) & \log _{10} 1 & \log _{10} 2 & \log _{10} 3
\end{array} \right\rvert\, \quad \int_{1}^{3} f(x) d x=\frac{3-1}{6}\left(\log _{10} 1+4 \log _{10} 2+\log ^{2}\right. \\
& =0.5604 \ldots \\
& \doteq 0.560 \text { (3sf) }
\end{aligned}
$$

$$
\text { d)i) } \begin{aligned}
y & =\frac{\log _{e} x}{x}
\end{aligned} \quad \begin{aligned}
u & =\ln x \quad v=x \\
u^{\prime} & =\frac{1}{x} \quad v^{\prime}
\end{aligned}=1 .
$$

ii)

$$
\begin{aligned}
V & =\pi \int_{1}^{e}\left(\frac{\sqrt{\log _{e} x}}{x}\right)^{2} d x \\
& =\pi \int_{1}^{e} \frac{\ln x}{x^{2}} d x
\end{aligned}
$$

from i), $\frac{\ln x}{x^{2}}=-\left(\frac{1-\ln x}{x^{2}}-\frac{1}{x^{2}}\right)$

$$
\begin{aligned}
\therefore V & =-\pi \int_{1}^{e}\left(\frac{1-\ln x}{x^{2}}-x^{-2}\right) d x \\
& =-\pi\left[\frac{\ln x}{x}+\frac{1}{x}\right]_{1}^{e} \\
& =-\pi\left(\frac{\ln e}{e}+\frac{1}{e}-\left(\frac{\ln 1}{1}+1\right)\right) \\
& =-\pi\left(\frac{2}{e}-1\right) \\
& =\pi-\frac{2 \pi}{e} \text { units }^{3} .
\end{aligned}
$$

Question 10
a)

$$
\begin{aligned}
& f(x)=\log _{e}(1+\sin x) \quad \begin{aligned}
& f^{\prime}(x)=\frac{f^{\prime}(x)}{f(x)}=\frac{\cos x}{1+\sin x \quad u=\cos x \quad u \quad v=1+\sin x} \\
& \begin{aligned}
f^{\prime \prime}(x) & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}}
\end{aligned}=\frac{-\sin x(1+\sin x)-\cos ^{2} x}{(1+\sin x)^{2}} \quad v^{\prime}=\cos x \\
&=\frac{-\sin x-\sin ^{2} x-\left(1-\sin ^{2} x\right)}{(1+\sin x)^{2}}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\sin x-1}{(1+\sin x)^{2}} \\
& =\frac{-(\sin x+1)}{(1+\sin x)^{2}} \\
& =\frac{-1}{1+\sin x}
\end{aligned}
$$

b) i) $\$ 300000 ; 6 \% \rho \cdot a=0.005$ p.m. $R=\$ 2000$ p.m.

$$
\begin{aligned}
A_{1} & =300000(1.005)-2000 \\
A_{2} & =A_{1}(1.005)-2000 \\
& =300000(1.005)^{2}-2000(1.005)-2000 \\
A_{3} & =A_{2}(1.005)-2000 \\
& =300000(1.005)^{3}-2000(1.005)^{2}-2000(1.005)-2000
\end{aligned}
$$

\therefore afferk monts

$$
\begin{aligned}
A_{k} & =300000(1.005)^{k}-2000(1.005)^{k-1}-\ldots-2000(1.005)-2000 \\
A_{k} & \left.=300000(1.005)^{k}-\frac{2000\left(1.005^{k}-1\right)}{1.005-1}\right) \\
& =300000(1.005)^{k}-400000\left(1.005^{k}-1\right) \\
& =400000-100000(1.005)^{k} \\
& =100000\left[4-(1.005)^{k}\right] .
\end{aligned}
$$

ii) After 9 years $=108$ monts: $k=108$

$$
\begin{aligned}
\therefore A_{108} & =400000-100000(1.005)^{108} \\
& =228630.0501 \ldots
\end{aligned}
$$

ie stillowes $\$ 228630.05$.
iii) Loan repaid chen $A_{x}=0$
$100000\left[4-1.005^{k}\right]=0$
$1.005^{k}=4$
k. $\operatorname{in} 1.005=\ln 4$
$k=278$ (neovest payment).
iv) let $\alpha=A_{108}$. Amant dui after interest free pend = A_{126}; Interest has been accord is tires.

$$
\therefore A_{126}=\alpha(1.005)^{18}
$$

v) let the new repayment be R.

10 yrs 6 morns have passed $=126$ payments
$\therefore 278-126=152$ payments to go.
\therefore now $B_{152}=0$ when loan is repaid.

$$
\begin{aligned}
B_{1} & =A_{126}(1.005)-R \\
& =\alpha(1.005)^{19}-R \\
B_{2} & =B_{1}(1.005)-R \\
& =\alpha(1.005)^{20}-R(1.005)-R \\
B_{3} & =B_{2}(1.005)-R \\
& =\alpha(1.005)^{24}-R(1.005)^{2}-R(1.005)-R \\
\cdots B_{152} & =\alpha(1.005)^{170}-R(1.005)^{151-R(1.005)^{150}-\cdots-R} \\
B_{152} & =\alpha(1.005)^{170}-\left[\frac{R\left(1.005^{152}-1\right)}{1.005-1}\right] \quad r=1.005 \quad n=152
\end{aligned}
$$

$B u+B_{150}=0$

$$
\frac{R\left(1.005^{152}-1\right)}{0.005}=\alpha(1.005)^{170}
$$

$$
\begin{aligned}
R & =\left[400000-100000(1.005)^{108}\right](1.005)^{170}(0.005) \\
& =2353.0565 \cdots \\
& =\$ 2353.06
\end{aligned}
$$

\therefore new repayment amount is $\$ 2353.06$

