\qquad

Penrith High School 2013
Trial Higher School
Certificate Examination

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the end of this paper.
- A multiple choice answer sheet is provided at the end of this paper.
- Show all necessary working for questions 11 - 16 in booklets.
- Work on this question paper will not be marked

Total marks - 100

Section 1 - 10 marks

- Attempt questions 1 - 10
- Allow about 15 minutes for this section.

Section 2-90 marks

- Attempt questions 11-16
- Allow about 2 hours and 45 minutes for this section.

Questions		
$1,2,3,11 \propto$		$/ 12$
$4,11 \beta$		$/ 7$
5,6		$/ 2$
$7,8,15 \alpha$		$/ 17$
$9,10,13$		$/ 15$
12		$/ 15$
14		$/ 10$
15β		$/ 11$
$16 \propto$		$/ 100$
16β		
Total		

Section 1

1. Factorise $3 x^{2}+9 x$
(A) $3 x(x+3)$
(B) $3 x(x+9)$
(C) $3 x(x+12)$
(D) $3 x(3 x+3)$
2. $\frac{1}{4}+\frac{x}{8}=$?
(A) $\frac{1+x}{8}$
(B) $\frac{2+x}{8}$
(C) $\frac{1+x}{12}$
(D) $\frac{8+x}{32}$
3. What is the simultaneous solution to the equations $x+y=1$ and $3 x-y=7$?
(A) $x=2$ and $y=-1$
(B) $x=3$ and $y=-2$
(C) $x=2$ and $y=3$
(D) $\quad x=3$ and $y=4$
4. What is the centre and radius of the circle with the equation $x^{2}+y^{2}+6 x-8 y-11=0$?
(A) Centre $(-3,-4)$ and radius 36
(B) Centre $(-3,4)$ and radius 36
(C) Centre $(-3,-4)$ and radius 6
(D) Centre ($-3,4$) and radius 6
5. The chance of a fisherman catching a legal length fish is 4 in 5 . If three fish are caught at random, what is the probability that exactly one is of legal length?
(A) $\frac{4}{125}$
(B) $\frac{12}{125}$
(C) $\frac{16}{125}$
(D) $\frac{48}{125}$
6. Sixty tickets are sold in a raffle. There are two prizes. Lincoln buys 5 tickets.

Which expression gives the probability that Lincoln wins both prizes?
(A) $\frac{5}{60}+\frac{4}{59}$
(B) $\frac{5}{60}+\frac{4}{60}$
(C) $\quad \frac{5}{60} \times \frac{4}{59}$
(D) $\frac{5}{60} \times \frac{4}{60}$
7. What are the x-coordinates of the two stationary points to the curve $y=5+3 x^{3}-2 x^{4}$?
(A) $x=0, x=\frac{2}{3}$
(B) $x=0, x=\frac{3}{2}$
(C) $x=0, x=\frac{8}{9}$
(D) $x=0, x=\frac{9}{8}$
8. Which of the following is the graph of $f(x)=2 x^{3}-3 x^{2}$?
(A)

(B)

(C)

(D)

9. The diagram below shows the graph of $y=x^{2}-2 x-8$.

What is the correct expression for the area bounded by the x-axis and the curve $y=x^{2}-2 x-8$ between $0 \leq x \leq 6$?
(A) $A=\int_{0}^{5} x^{2}-2 x-8 d x+\left|\int_{5}^{6} x^{2}-2 x-8 d x\right|$
(B) $\quad A=\int_{0}^{4} x^{2}-2 x-8 d x+\left|\int_{4}^{6} x^{2}-2 x-8 d x\right|$
(C) $A=\left|\int_{0}^{5} x^{2}-2 x-8 d x\right|+\int_{5}^{6} x^{2}-2 x-8 d x$
(D) $A=\left|\int_{0}^{4} x^{2}-2 x-8 d x\right|+\int_{4}^{6} x^{2}-2 x-8 d x$
10. The diagram below shows a native garden. All measurements are in metres.

What is an approximate value for the area of the native garden using the trapezoidal rule with 4 intervals?
(A) $31 \mathrm{~m}^{2}$
(B) $62 \mathrm{~m}^{2}$
(C) $71 \mathrm{~m}^{2}$
(D) $74 \mathrm{~m}^{2}$

Section 2: Free response

Start each question in a new booklet.
Question 11 Start this question in a new booklet.
$\propto \quad$ i. Evaluate to 1 decimal place: $(1 \cdot 2)^{2}+(2 \cdot 1)^{2}$
ii. Simplify $5 \sqrt{3}+\sqrt{20}-2 \sqrt{12} \quad 2$
iii. Factorise $3 x^{2}+8 x-16 \quad 2$
iv. Solve for $n:|3 n-5|=4 n-7 \quad 2$
v. Express as a single fraction in simplest form: $\frac{(3 x-4)}{2}-\frac{(x+1)}{5}$
β i. If α and β are the roots of $3 x^{2}-6 x+12=0$, find the value of:
a. $\alpha+\beta$

1
b. $\alpha^{2}+\beta^{2}$
ii. For the equation $x^{2}+(m-3) x+m=0$
a. Find an expression (in simplest form) for the discriminant $b^{2}-4 a c$, in terms of m.
b. Hence find the values of m for which the equation has two roots.

Question 12 Start this question in a new booklet
i. Find the exact value of $\cos \frac{\pi}{6} \quad 1$
ii. Solve $5 \cos ^{2} \theta+2 \sin \theta-2=0$ for $0 \leq \theta \leq 2 \pi$
iii. Sketch $y=2 \cos 3 x$ for $0 \leq x \leq 2 \pi$.
iv. Differentiate $\sin 2 x$
v. Prove that $\frac{\sin \theta \cos ^{2} \theta-\sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$
vi. The diagram shows a sector $O A C$ with area $90 \pi \mathrm{~cm}^{2}$ and $O A=15 \mathrm{~cm}$.

Not to scale
a. Find the size of θ in radians.
b. Find the perimeter of the segment $A B C$. Give your answer correct to the nearest cm .
vii. In the diagram, prove that $\tan \times \tan \mathrm{y}=\frac{m}{m+n}$

Question 13 Start this question in a new booklet
i. The gradient of a curve is given by $\frac{d y}{d x}=6 x^{2}-6$. The curve passes through the point $(2,-1)$. Find the equation of the curve.
ii. By first constructing a table of values, use Simpson's rule with 5 function values to approximate the area enclosed between the curve $y=\frac{1}{5-x^{\prime}}$ the x-axis and the lines $x=0$ and $x=4$. Answer correct to 2 significant figures.
iii. A function, $y=f(x)$, is drawn below and represented by the curve $A B C D E F G$. Note: $A B$ is an arc of a circle, centre $(0,0)$ and radius 1 unit.

a. Show that the area enclosed between the curve $y=f(x)$, the x axis and the ordinates $x=0$ and $x=5$ is $\frac{\pi+14}{4}$.
b. For the above information, find the value of $\int_{0}^{5} f(x) d x$.

Leave your answer in terms of π.
iv. In the diagram, the shaded region is bounded by the parabola $y=-x^{2}+1$, the y-axis and the line $y=\frac{3 x}{2}$.
a. Find A , the y -intercept of the parabola $y=-x^{2}+1$.
b. Find B, the point of intersection of the parabola and the line.
c. Find the volume of the solid formed when the shaded region is rotated about the y-axis.

Question 14 Start this question in a new booklet.
i. Solve $3 \log _{7} 2=\log _{7} x-\log _{7} 4 \quad 2$
ii. Differentiate the following with respect to x :
a. $x^{2} \log _{e} x$
b. $\frac{e^{x}}{3 x-2}$
iii. Find $\int 5 e^{2 x} d x$
iv. Find $\int \frac{4}{2 x-7} d x$
v. Given that $\frac{d}{d x}\left(e^{x^{2}}\right)=2 x e^{x^{2}}$, evaluate $\int_{0}^{1} x e^{x^{2}} d x$.
vi. Find the equation of the tangent to the curve $y=2 x e^{x}$ at the point 2 $(1, e)$.
vii. Find the area enclosed by the curve $y=\log _{e} x$, the x axis and the line $x=2$.

Question 15 Start this question in a new booklet.
$\propto) \quad$ Consider the curve given by $y=x^{3}-3 x^{2}-9 x+1$.
i. Find $\frac{d y}{d x}$
ii. Find the coordinates of the two stationary points.
iii. Determine the nature of the stationary points.
iv. Sketch the curve clearly showing stationary points and y intercept.
β i. A particle moves in a straight line so that its displacement, x metres from a fixed point on a line, is given by $x=t+\frac{25}{t+2}$ where t is measured in seconds.
a. Find the particle's initial position. 1
b. Find expressions for the velocity and acceleration in terms of t.
c. Find when and where the particle is at rest. 2
d. Find the limiting velocity of the particle.
ii. The number N of bacteria in a culture at a time t seconds is given by the equation $N=25000 e^{0.007 t}$
a. What is the number of bacteria initially?
b. Determine the number of bacteria after 30 seconds (to the nearest whole number).
c. After what time period will the number of bacteria have doubled?
d. At what rate is the number of bacteria increasing when $t=30$ seconds?

Question 16 Start this question in a new booklet.
$\propto)$

- $A(-4,3)$
- $B(3,1)$
i. Find the gradient of $A B$.
ii. Find the midpoint of $A B$. 1
iii. Show that the equation of the perpendicular bisector of $A B$ is

$$
14 x-4 y+15=0
$$

iv. What is the perpendicular distance of the line found in part iii to the origin (0,0)?
β i. An arithmetic series has first term 3 and common difference 4.
a. Find the $17^{\text {th }}$ term.
b. Find the sum of the tenth to the twentieth terms (inclusive).
ii. The sum of the first 8 terms of a geometric series is 17 times the sum of its first 4 terms. Find the common ratio.
iii. Colin borrows $\$ 30000$ to buy a new car. He is charged an interest rate of 15% pa, calculated and compounded monthly, and an amount M is repaid every month. If A_{n} is the amount owing after n months, show that
a. $A_{2}=30000 \times 1.0125^{2}-M(1+1.0125) \quad 1$
b. Hence, show that $A_{n}=\$ 30000 \times 1.0125^{n}-M\left(\frac{1.0125^{n}-1}{0.0125}\right)$
c. Find the value of M, to the nearest cent, if the loan is repaid at the end of 7 years.
d. How much extra, in total, will be repaid if the loan is taken over 10 years? (Answer to the nearest dollar)

2013 TRIAL MATHEMATICS

SOLUTIONS

Question 17
ג)i) $5 \cdot 9$
(1)
ii)

$$
\begin{aligned}
& 5 \sqrt{3}+\sqrt{20}-2 \sqrt{12} \\
& 5 \sqrt{3}+\sqrt{4 \times 5}-2 \sqrt{4 \times 3} \\
& 5 \sqrt{3}+2 \sqrt{5}-4 \sqrt{3} \\
& =\sqrt{3}+2 \sqrt{5} \quad \text { (2) }
\end{aligned}
$$

iii) $3 x^{2}+8 x-16$

$\left(3 x-\mu^{4}\right)(x+4)$
iv) $|3 n-5|=4 n-7$
$3 n-5=4 n-7 \quad 5-3 n=4 n-7$

$$
2=n \quad-7 n=-12
$$

$$
(1=1)
$$

$n=2$ is a Solution $n=12 / 7$ $\left.(-31 \pm 4)^{\prime}\right)$

$$
\begin{equation*}
\text { (3) i) a) } \alpha+\beta=-\frac{b}{a}=\frac{b}{3}=2 \sqrt{ }(1) . \tag{1}
\end{equation*}
$$

Q1-10 at end
ii) $x^{2}+(m-3) x+m=0$
a)

$$
\begin{align*}
A & =b^{2}-4 a c \\
& =(m-3)^{2}-4(1)(m) \\
& =m^{2}-6 m+4-4 m \\
& =m^{2}-10 m+9 \\
& m \tag{1}\\
& =(m-9)(m-1)
\end{align*}
$$

b) $\Delta>0$ has two unequal

$$
\begin{align*}
& \Delta>0 \\
& (m-a)(m-1)>0 \\
& m=9, m=1 \tag{2}\\
& m>a \quad \sqrt{ } \\
& m<1 \quad \sqrt{ }
\end{align*}
$$

to have two real cllstinet roots.

PR. i) $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \quad \frac{2}{1} \sqrt{6}$
(ii)

$$
\begin{aligned}
& 5 \cos ^{2} \theta+2 \sin \theta-2=0, \quad 0 \leqslant \theta \leqslant 2 \pi \\
& 5\left(1-\sin ^{2} \theta\right)+2 \sin \theta-2=0 \\
& -5 \sin ^{2} \theta+2 \sin \theta+3=0 \\
& 5 \sin ^{2} \theta-2 \sin \theta-3=0
\end{aligned}
$$

$\operatorname{Let}_{x=\sin \theta}(5 x-5)(5 x+3)=0 \begin{aligned} & x-15 \\ & +-2\end{aligned}$

$$
x=1 \text { or }-3 / 5 \quad \frac{+-2}{-5,3}
$$

$\sin \theta=1$

$$
\therefore \theta=\frac{\pi}{2}(\operatorname{tor} 1.570)
$$

$$
\begin{aligned}
& \sin \theta=-3 / 5 \quad 2 \pi-0.6435 \\
& \therefore \theta=3.785 \text { or } 5.640(t 04 \mathrm{sf}) \\
& \text { (or } 216.90,323.1^{\circ} \text {) }
\end{aligned}
$$

Pernod= $\frac{2 \pi}{3}$ Amplitude $=2$
(IV) $\frac{d}{d x}(\sin 2 x)=2 \cos 2 x$

$$
\text { (v) } \begin{aligned}
L H S & =\frac{\sin \theta \cos ^{2} \theta-\sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\frac{\sin \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& =\frac{\sin \theta\left(\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}=\frac{\sin \theta\left(2 \cos ^{2} \theta-1\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& =\frac{\sin \theta}{\cos \theta}=\tan \theta=\text { RUS }
\end{aligned}
$$

12
vi)

$$
\text { a) } \begin{aligned}
A & =\frac{1}{2} r^{2} \theta \\
90 \pi & =\frac{1}{2}(15)^{2} \theta \\
\theta & =\frac{180 \pi}{225}=\frac{4 \pi}{5}
\end{aligned}
$$

b)

$$
\begin{aligned}
L & =r \theta \\
& =15 \times \frac{4 \pi}{5}=12 \pi \\
A C^{2} & =15^{2}+15^{2}-2 \times 15 \times 15 \cos \frac{4 \pi}{5} \\
& =450-450 \cos \frac{4 \pi}{5} \\
& =814.05 \ldots \\
A C & =28.53 \ldots
\end{aligned}
$$

$$
P=A C+12 \pi
$$

$P=66 \mathrm{~cm}$ (to nearest cm)
'vii)

$$
\frac{\tan x}{(\text { SOHCOH}}=\frac{m}{h}\left(\frac{\text { opp }}{\operatorname{dan} y}\right) \tan y=\frac{h}{m+n}
$$

(SOHOAHTOR)

$$
\begin{aligned}
\tan x \cdot \tan y & =\frac{m}{\hbar} \times \frac{h}{m+n} \\
& =\frac{m}{m+n}
\end{aligned}
$$

013

$$
\begin{aligned}
& \text { i). } \frac{d y}{d x}=6 x^{2}-6 \text {. } \\
& y=2 x^{3}-6 x+c \\
& (2,-1) \text {. } \\
& -1=2(2)^{3}-6(2)+c . \\
& -1=16-12+c \\
& -5=c \\
& \therefore y=2 x^{3}-6 x-5 .
\end{aligned}
$$

ii)
$\begin{array}{llllll}x & 0 & 1 & 2 & 3 & 4\end{array}$ $\begin{array}{lllllll}y & 0.2 & 0.25 & 0.3 & 0.5 & 1\end{array}$

$$
\begin{aligned}
A & =\frac{1}{3}[0.2+4(0.25+0.5)+2(0.3)+1] \\
& =\frac{1}{3}[1.2+3+0.6] \\
& =\frac{1}{3}[4.8 \dot{6}] \\
& =1.6 \dot{2}
\end{aligned}
$$

iiii)

$$
\text { a) } \begin{aligned}
A & =\frac{1}{4} \pi+\frac{1}{2}+3 \\
& =\frac{\pi+2+12}{4} \\
& =\frac{\pi+14}{4}
\end{aligned}
$$

b)

$$
\begin{aligned}
\int_{0}^{5} f(x) d u & =-\frac{1}{4} \pi+\frac{1}{2}-3 \\
& =\frac{-\pi+2-12}{4} \\
& =\frac{-10-\pi}{4}
\end{aligned}
$$

2U-Trial 2013 Qn(14)-5otution
i

$$
\begin{gathered}
\text { [i] } 3 \log _{7} 2=\log _{7} x-\log _{7} \text { Qr }^{2} \\
\log _{7} 8=\log _{7} \frac{x}{4} \\
8=\frac{x}{4} \Longrightarrow x=32 \\
\text { ii] a) } y=x^{2} \ln x \\
y^{\prime}=x^{2} \cdot \frac{1}{x}+2 x \ln x \\
=x+2 x \ln x \\
=x(2 \ln x+1)
\end{gathered}
$$

b)

$$
\begin{aligned}
y & =\frac{e^{x}}{3 x-2} \\
y^{\prime} & =\frac{(3 x-2) e^{x}-3 e^{x}}{(3 x-2)^{2}}
\end{aligned}
$$

$i i i$

$$
\int 5 e^{2 x} d x=\frac{5}{2} e^{2 x}+c
$$

$\hat{i \hat{V}}$

$$
\int \frac{4}{2 x-7} d x=2 \ln (2 x-7)+C
$$

$$
\begin{aligned}
& \int_{0}^{1} x e^{x^{2}} d x=\frac{1}{2} \int_{0}^{1} 2 x e^{x^{2}} d x \\
& =\frac{1}{2}\left[e^{x^{2}}\right]_{0}^{1} \\
& =\frac{1}{2}(e-1)
\end{aligned}
$$

$$
\begin{aligned}
& \overline{V i \mid} \\
& y=2 x e^{x} \\
& y^{\prime}=2 x e^{x}+2 e^{x}, x=1 \\
& m=4 e \\
& y-e=4 e(x-1)
\end{aligned}
$$

15. $\propto \quad y=x^{3}-3 x^{2}-9 x+1$
i. $\frac{d y}{d x}=3 x^{2}-6 x-9$
ii.

$$
\begin{aligned}
& \frac{d y}{d x}=0 \\
& 3\left(x^{2}-2 x-3\right)=0 \\
& (x-3)(x+1)=0 \\
& x=3,-1 \\
& (3,-26)(-1,6)
\end{aligned}
$$

iii. $\frac{d^{2} y}{d x^{2}}=6 x-6$
$(3,-26) \frac{d^{2} y}{d x^{2}}=12>0$ min
$(-1,6) \frac{d^{2} y}{d x^{2}}=-12<0 \pi$ max

B. $x=t+\frac{25}{t+2}$
a. $t=0 \quad x=12 \frac{1}{2}$ metres
b.

$$
\begin{aligned}
\dot{x} & =1-25(t+2)^{-2} \\
& =1-\frac{25}{(t+2)^{2}} \\
\ddot{x} & =50(t+2)^{-3} \\
& =\frac{50}{(t+2)^{3}}
\end{aligned}
$$

c. rest $\dot{x}=0$

$$
\begin{aligned}
& 0=1-\frac{25}{(t+2)^{2}} \\
& 1=\frac{25}{(t+2)^{2}} \\
& t^{2}+4 t+4=25 \\
& t^{2}+4 t-21=0 \\
& (t+7)(t-3)=0 \\
& t=3,-7 \quad \therefore t=3 . \\
& x=3+\frac{25}{5}=8 \text { metres. }
\end{aligned}
$$

d. $\dot{x}=1$
ii. $N=25000 e^{0.007 t}$
a. $t=0 \quad N=25000$
b.

$$
\begin{aligned}
b . N & =25000 e^{0.007 \times 30} \\
& =30841.95 \\
& =30842 \\
c .50000 & =25000 e^{0.007 t} \\
2 & =e^{0.007 t} \\
t & =\frac{\ln 2}{0.007}=99.02 \mathrm{sec}
\end{aligned}
$$

d. $\frac{\partial N}{d t}=0.007 \times 25000 e^{0.007 \times 30}$ $007 \times 25000 e$

$$
=0.007 \times 30841.95
$$

$=215.89$ bacteria second
16) α) 1) $m_{A B}=\frac{1-3}{3+4}=-\frac{2}{7}$ (1)
ii)

$$
\begin{align*}
m_{A B} & =\left(-\frac{4+3}{2}, \frac{3+1}{2}\right) \\
& =\left(-\frac{1}{2}, 2\right) \tag{1}
\end{align*}
$$

iii)

$$
\begin{align*}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=\frac{7}{2}\left(x+\frac{1}{2}\right) \\
& 2 y-4=7 x+\frac{7}{2} \\
& 4 y-8=14 x+7 \\
& 14 x-4 y+15=0 \tag{1}
\end{align*}
$$

iv) $q_{1}=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}(0,0)$

$$
\begin{align*}
&=\frac{14(0)-4(0)+151}{\sqrt{142+(-4)^{2}}} \\
& \therefore d_{2}=\frac{15}{\sqrt{212}} \text { or } \frac{15}{2 \sqrt{53}} \\
& \text { or } \frac{15 \sqrt{503}}{106} \\
& \text { or } \div 1.03 \text { units } \tag{1}
\end{align*}
$$

$$
\text { p) i) a) } \begin{aligned}
& a=3 \\
& d=4
\end{aligned}
$$

$$
\begin{align*}
T_{n} & =a+(n-1) d \\
T_{17} & =3+(16) 4 \\
& =67 \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& b S_{20}-S_{10}+T_{10} \\
& S_{n}= \frac{h}{2}[(n-1) d] \\
& S_{10}= 5\left(6+(9)^{4}\right) \\
&= 210 \\
& S_{20}= 10(6-(19) 4) \\
&= 820 \\
& T_{10}=3+(9) 4 \\
&=39 \\
& \therefore S_{\text {mm }}=820-210+30 \quad(2) \\
&=649
\end{aligned}
$$

16 BiI. $S_{8_{0}}=17 S_{4}$

$$
\begin{gathered}
\frac{Q\left(r^{8}-1\right)}{r-1}=\frac{17 \infty\left(r^{4}-1\right)}{r-1} \\
r^{8}-1=17\left(r^{4}-1\right) \\
\left(r^{4}-1\right)\left(r^{4}+1\right)=17\left(r^{4} 1\right) \\
r^{4}+1=17 \\
r^{4}=16 \\
r^{4}= \pm 2 \\
\therefore r=2 .
\end{gathered}
$$

ib) (B) iii) a) $A 0=\$ 30,000 ; r=1.0125$

$$
\begin{align*}
A_{1} & =30000 \times 1.0125-m \\
A_{2} & =A_{1} \times 1.0125-m \\
& =(30000 \times 1.0125-m) 1.0125-m \\
& =30000 \times 1.0125^{2}-1.0125 m-m \\
\therefore A_{2} & =30000 \times 1.0125^{2}-m(1+10125) \tag{1}
\end{align*}
$$

b)

$$
\text { b) } \begin{aligned}
A_{3} & =A_{2} \times 1.0125-m \\
& =\left[30000 \times 1.0125^{2}-m(1+1.0125)\right] 1.0125-m \\
& =30000 \times 1.0125^{3}-m\left(1+1.0125+1.0125^{2}\right) \\
\therefore A_{n} & =30000 \times 1.0125^{n}-m\left(1+1.0125+1.0125^{2}+\ldots\right.
\end{aligned}
$$

with common ratio 1.0125

$$
\begin{equation*}
\text { and } \sin =\frac{1 \cdot 0125^{n}-1}{0-0125-1} \tag{1}
\end{equation*}
$$

Hence $A_{n}=30000 \times 1.0125^{n}-m\left(\frac{1.025^{n}-1}{0.0125}\right)$
c)

$$
\begin{align*}
& 30000 \times 1.0125^{84}-m\left(\begin{array}{l}
1.0125^{-84}-1 \\
\left.m=\frac{0.0125 \times 30000 \times 1.012504}{0.0120}\right) \\
A 84=\$ 578.90
\end{array}\right) \tag{2}
\end{align*}
$$

d)

$$
\begin{aligned}
& 84 \times \$ 578.90=\$ 48627.82 \\
& A_{120}=30000 \times 1.0125^{120}-m\left(1.0125^{120}\right) \\
& =\$ 58080.58
\end{aligned}
$$

\therefore Extra paid $=558080$ ry 9848627.82

$$
=\$ 9453 \cdot \frac{1}{2} \rightarrow(9452.76)
$$

Select the alternative $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D that best answers the question. Fill in the response oval completely.

Sample: $\quad 2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
C

D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct -answer by writing the word correct and -drawing arrarrow as follows.

