Penrith Selective High School

2014

Higher School Certificate
Examination

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total Marks - 100
Section I Pages 2-5
10 marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section II Pages 6-14
60 marks

- Attempt Questions $11-16$
- Allow about 2 hours 45 minutes for this section

Student Number:

Section I:

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

Q1. What is 6.04976 correct to 4 significant figures.
(A) 6.049
(B) 6.0497
(C) 6.050
(D) 6.0498

Q2. What are the solutions of $3 x^{2}-7 x-3=0$?
(A) $x=\frac{-7 \pm \sqrt{85}}{6}$
(B) $x=\frac{7 \pm \sqrt{85}}{6}$
(C) $x=\frac{7 \pm \sqrt{13}}{6}$
(D) $x=\frac{-7 \pm \sqrt{13}}{6}$

Q3. $\frac{x}{3}-\frac{x-4}{6}$ is equal to
(A) $\frac{x-4}{6}$
(B) $\frac{x+4}{6}$
(C) $\frac{x+2}{3}$
(D) $\frac{x+4}{3}$

Q4. What are the solutions of $2 \cos x=-\sqrt{3}$ for $0 \leq x \leq 2 \pi$?
(A) $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$
(B) $\frac{5 \pi}{6}$ and $\frac{7 \pi}{6}$
(C) $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$
(D) $\frac{\pi}{6}$ and $\frac{7 \pi}{6}$

Q5. The line which is perpendicular to $2 x-y+1=0$ with a y intercept of 4 has equation:
(A) $y=-2 x+4$
(B) $y=\frac{-x}{2}+4$
(C) $y=2 x+4$
(D) $y=\frac{x}{2}+4$

Q6. What is the derivative of $\frac{x}{2 x+3}$?
(A) $\frac{3}{(2 x+3)^{2}}$
(B) $\frac{1}{2}$
(C) $\frac{4 x+3}{(2 x+3)^{2}}$
(D) $\frac{1}{4}$

Q7. Two six-sided dice are thrown. The probability that the sum of the uppermost faces is even is:
(A) 1
(B) even
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$

Q8.

The diagram shows the graph of $y=f(x)$. The equation of $y=f(x)$ is:
(A) $\quad f(x)=\left|\frac{1}{2} x-3\right|$
(B) $\quad f(x)=-|2 x-3|$
(C) $\quad f(x)=-\left|\frac{1}{2} x+3\right|$
(D) $\quad f(x)=-\left|\frac{1}{2} x-3\right|$

Q9. The diagram shows the graph of $y=f(x)$

Which of the following statements is true?
(A) $\quad f^{\prime}(a)>0$ and $f^{\prime \prime}(a)<0$
(B) $\quad f^{\prime}(a)<0$ and $f^{\prime \prime}(a)<0$
(C) $\quad f^{\prime}(a)>0$ and $f^{\prime \prime}(a)>0$
(D) $\quad f^{\prime}(a)<0$ and $f^{\prime \prime}(a)>0$

Q10. A geometric series will have a limiting sum if:
(A) $\quad|r|<1$, where r is the common ratio
(B) $|r|>1$, where r is the common ratio
(C) $r<1$, where r is the common ratio
(D) $\quad r>1$, where r is the common ratio

Section II

60 Marks
Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question in a SEPARATE booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
a) Simplify the expression $3 x-5(x-2) \quad 2$
b) Given that $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$, find S_{n} when $n=12, a=3$ and $r=2$

2

1
e) Express $\frac{2}{4-\sqrt{7}}$ with a rational denominator
f) James invests $\$ 1000$ at 7% per year compound interest, compounded quarterly. Calculate that value of the investment after 5 years. Give your answer correct to the nearest dollar.
g) Given that $\log _{a} b=2.75$ and $\log _{a} c=0.25$, find the value of:
(i) $\log _{a}\left(\frac{b}{c}\right)$
(ii) $\quad \log _{a}(b c)^{2}$

End of Question 11

a) Differentiate and simplify where necessary.
(i) $x \ln (x-3)$
(ii) $\frac{3 x^{2}-4 x+7}{x}$
b) (i) Evaluate $\int_{1}^{3} 6 e^{3 x}+1 d x$
(ii) Find $\int \sin 4 x d x$
c) Find the equation of the tangent to the curve $y=\frac{1}{2} \sin x$, at the point $(\pi, 0)$
d) Sketch $y=3 \cos \frac{x}{2}$ for $-\pi \leq x \leq \pi$ showing all key features.
e) A point $\mathrm{P}(x, y)$ moves so that it is always twice the distance from the point $\mathrm{A}(1,4)$ as it is to point $\mathrm{B}(2,-8)$. Show that the equation of the path traced by P is $3 x^{2}-14 x+3 y^{2}+72 y+255=0$.

End of Question 12

a) The diagram shows a triangle ABC . The point $\mathrm{A}(4,1)$ lies on l given by the equation $x+2 y=6$, and the point $\mathrm{B}(-5,-2)$ lies on the line k, given by the equation $y=2 x+8$.

(i) Show that the point C , which is the point of intersection of l and k has coordinates ($-2,4$).
(ii) Find the gradient of the line joining A and B .
(iii) Hence, or otherwise, find the equation of the line $A B$.
(iv) Find the perpendicular distance from the point A to the line k.
(v) Hence, or otherwise, find the area of the triangle ABC.

Question 13 continues on page 9

b) Food tins are stacked so there are 49 tins on the bottom row, 45 tins on the next row, 41 tins on the row after and so on until a total of 321 cans are stacked.

(i) Write down a formula for the number of cans in the $n^{\text {th }}$ row.
(ii) How many rows are in the stack in total?
(iii) How many cans are in the top row of this stack?
c) If α and β are the roots of the quadratic equation $3 x^{2}+8 x-7=0$, find the value of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv) $\alpha^{2}+\beta^{2}$

End of Question 13

a) A factory manufactures light bulbs. Testing showed that 1 out of 20 bulbs tested was faulty.
Three of these bulbs are selected at random and tested.
What is the probability that:
(i) All three bulbs tested are faulty?
(ii) None of the bulbs are faulty?
(iii) Exactly two bulbs are faulty?

1

1

2
(iv) At most two bulbs are faulty?
b) $\quad A B C$ is a sector. $\angle \mathrm{BCD}=\frac{\pi}{6}, \mathrm{BA}=\mathrm{BC}=9 \mathrm{~cm}$ and $D C \perp A B$.

(i) Calculate the area of sector $B A C$.
(ii) Calculate the area of the shaded region. Leave your answer in exact form.
c) Find the primitive of:
(i) $\frac{2 x}{x^{2}+3}$
(ii) $\frac{e^{2 x}}{e^{2 x}+3}$
a) Consider the curves $y=x^{2}$ and $y=4 x+5$.
(i) Find any points of intersection.
(ii) Sketch the graphs of the two equations on the same set of axes.
(iii) Find the area of the region enclosed by these two equations.
b) Consider the function $y=2 \sin x+\cos x$
(i) Copy and complete the table of values correct to three decimal places where necessary.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
y					

(ii) Use two applications of Simpson's rule to calculate the approximate area under the curve between $x=0$ and $x=\pi$. Leave your answer correct to 2 decimal places.
c) A cylinder is made to fit inside a sphere with fixed radius r as shown in the diagram.

Let x be the distance from the base of the cylinder to the centre of the sphere, as shown in the diagram. Let R be the radius of the circular base of the cylinder.
(i) Find an expression for, R, the radius of the base of the cylinder in terms of r and x.
(ii) Show that the volume, V , of the cylinder is given by $V=2 \pi x\left(r^{2}-x^{2}\right)$
(iii) Find, in terms of r, the maximum volume of the cylinder.

Give your answer in exact form.

End of Question 15

a) Find the equation of the parabola whose axis is parallel to the y-axis, vertex is $(2,-1)$ and has a tangent with equation $y=2 x-7$.
b) A quantity Q of radium at time t in years is given by

$$
Q=Q_{0} e^{-k t}
$$

where k is a constant and Q_{0} is the initial amount of radium at time $t=0$.
(i) Given that $Q=\frac{1}{2} Q_{0}$ when $t=1530$ years, calculate k, correct to three significant figures.
(ii) After how many years does only 20\% of the initial amount of radium remain, to the nearest whole number.
c)

$A B C D$ and $D E B F$ are two congruent rectangles with sides 3 and 7 units as shown in the diagram. $(A B=D F=7, A D=D E=3)$
(i) Show that $A T=\frac{20}{7}$
(ii) Find the area of the figure $D W B T$.

Question 16 continues on page 14

d) A truck is to travel 1000 kilometres at a constant speed of $v \mathrm{~km} / \mathrm{h}$. When travelling at $v \mathrm{~km} / \mathrm{h}$, the truck consumes fuel at the rate of $\left(60+\frac{v^{2}}{50}\right)$ litres per hour.
The truck company pays $\$ 1.40$ for fuel and pays each of the two drivers $\$ 40$ per hour whilst the truck is travelling.
(i) Let the total cost of fuel and the drivers' wages for the trip be C dollars. Show that

$$
C=28 v+\frac{164000}{v}
$$

(ii) The truck must take no longer than 12 hours to complete the trip, and speed limits require $v \leq 100$.
At what speed v should the truck travel to minimise the cost C ?

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

\qquad

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
$\mathrm{A} \bigcirc$
B
$\mathrm{C} \bigcirc$
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
$\mathrm{C} \bigcirc$
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.
A
$\mathrm{C} \bigcirc$
D \bigcirc
correct

Here					
Hert	1.	AO	BO	CO	DO
	2.	AO	BO	CO	DO
	3.	AO	BO	CO	DO
	4.	AO	BO	CO	DO
	5.	AO	BO	CO	DO
	6.	AO	BO	CO	DO
	7.	AO	BO	CO	DO
	8.	AO	BO	CO	DO
	9.	AO	BO	CO	DO

2014
Mathematics Trial Solutions

Multiple Choice

1	C
2	B
3	B
4	B
5	B
6	A
7	D
8	D
9	A
10	A

Question Marker

11 Lopez
12 Soth
13 Katyal

14 Antone
15 Young
16 Chirgwin

		Marker's Comments
$\text { a) } \begin{aligned} 3 x & -5(x-2) \\ 3 x & -5 x \end{aligned}+100 \text { or }-2(x-5)$		Eurdes was. de whem factor, sin simbintins. A fews students. on to Solue for x
b) $S_{n}=\frac{3\left(2^{17}-1\right)}{2-1}=12285$		
c) $y^{\prime}=6 x^{2}+2 x$		
d) $(4 a-b)(4 a+b)$		
e) $\frac{4+\sqrt{7}}{4+\sqrt{7}} \times \frac{2}{4-\sqrt{7}}=\frac{8+2 \sqrt{7}}{9}$		
f) $\begin{aligned} A & =P\left(1+\frac{1}{100}\right)^{n} \quad \Gamma=7 / 4=1.75 \quad n=20 \\ & =1000\left(1+\frac{1.75}{160}\right)^{n}=\$ 1415 . \end{aligned}$	$\begin{gathered} -7 \\ \text { com } \\ -5 \\ \text { chis } \\ \text { using } \\ \text { form } \end{gathered}$	\% dnd tirm was not lertad to quarters. udents aer-compliad Question bas not compaund interas mula.
9) $)^{j} \log _{a} b-\log _{a} c=2.75-0.25=2.5$ ii) $2\left(\log _{2} b+\log c\right)=2(3)=6$.	$\begin{gathered} -4 \\ \text { of } s . \end{gathered}$	large anember tudents had $(3)^{2}=9$

substituting the value of y in the first equation,

$$
\begin{aligned}
& x+4 x+16=6 \\
& 5 x=-10, x=-2, \quad y=4
\end{aligned}
$$

$C(-2,4)$ - point of intersection
(ii)

$$
\begin{aligned}
M_{A B} & =\frac{1--2}{4--5} \\
& =\frac{3}{9} \\
M_{A B} & =\frac{1}{3}
\end{aligned}
$$

(iii) en of st. line $A B$,

$$
\begin{aligned}
& y-1=\frac{1}{3}(x-4) \\
& 3 y=x-1
\end{aligned}
$$

(c) (i) $\alpha+\beta=-\frac{8}{3}$
(ii) $\quad \alpha \beta=-\frac{7}{3}$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}$

$$
=-\frac{8}{3} \div-\frac{7}{3}
$$

$$
=\frac{8}{7}
$$

(iv) $\alpha^{2}+\beta^{2}=$
$(\alpha+\beta)^{2}-2 \alpha \beta$

$$
\begin{aligned}
& =\left(-\frac{8}{3}\right)^{2}-2\left(-\frac{7}{3}\right) \\
& =\frac{106}{9}
\end{aligned}
$$

\qquad
some students were putting incorrect
Ea n of roots

$$
\text { (a)(i) } P(F F F)=\left(\frac{1}{20}\right)^{3}=\frac{1}{8000}
$$

Penrith SHS

2014 HSC Trial - 2U Math

 Qn(14): Total 15 Marks$$
P(F)=\frac{1}{20} \quad P(G)=\frac{19}{20}
$$

$$
\text { (ii) } P(G G G)=\left(\frac{19}{20}\right)^{3}=\frac{6859}{8000}
$$

$$
\text { (iii) } P(F F G)=3\left(\frac{1}{20}\right)^{2}\left(\frac{19}{20}\right)=\frac{57}{8000}
$$

(iv) $P($ At most two bulbs are faulty $)=1-P(F F F)=1-\left(\frac{1}{20}\right)^{3}=\frac{7999}{8000}$
(b)(i) Area of sector $=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 9^{2} \times \frac{\pi}{3}=\frac{27 \pi}{2} \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \text { (ii) } B D=9 \sin \frac{\pi}{6}=4 \cdot 5 \mathrm{~cm} \quad C D=9 \cos \frac{\pi}{6}=4 \cdot 5 \sqrt{3} \mathrm{~cm} \\
& \text { Shaded Area }=\frac{27 \pi}{2}-\frac{1}{2} B D \times C D=\frac{27 \pi}{2}-\frac{1}{2} \times 4 \cdot 5 \times 4 \cdot 5 \sqrt{3} \\
& =\frac{27 \pi}{2}-\frac{81 \sqrt{3}}{8}=\frac{10 a \pi-81 \sqrt{3}}{\theta} \mathrm{~cm}^{2} \\
& \text { (c)(i) } \int \frac{2 x}{x^{2}+3} d x=\ln \left(x^{2}+3\right)+C \\
& \text { (ii) } \int \frac{e^{2 x}}{e^{2 x}+3} d x=\frac{1}{2} \ln \left(e^{2 x}+3\right)+C
\end{aligned}
$$

Exam MATHEMATICS : Question...... 15	
Suggested Solutions	Marker's Comments
$\begin{array}{lll} \text { ai } y=x^{2} \quad y=4 x+5 & & \\ x^{2}=4 x+5 & x=5 & y=5^{2} \\ x^{2}-4 x-5=0 & & =25 \\ (x-5)(x+1)=0 & x=-1 & y=(-1)^{2} \\ x=5,-1 & & =1 \\ (5,25)(-1,1) \end{array}$	- rememaber to find the y value
	label axes label points of intersection - some students didn't show that lines intersect twice
iii $\begin{aligned} A & =\int_{-1} 4 x+5-x^{2} d x \\ & =\left[\frac{4 x^{2}}{2}+5 x-\frac{x^{3}}{3}\right]_{-1}^{5} \\ & =\left[2 x^{2}+5 x-\frac{x^{3}}{3}\right]_{-1}^{5} \\ & =\left[\left(2(5)^{2}+5(5)-\frac{5^{3}}{3}\right)-\left(2(-1)^{2}+5(-1)-\frac{(-1)^{3}}{3}\right]\right. \\ & =\left[\frac{100}{3}--\frac{8}{3}\right] \\ & =\frac{108}{3}=36 \text { units }^{2} \end{aligned}$	
b.i. $\text { ii. } \begin{aligned} A & =\frac{\pi}{2}-0 \\ & \left.=\frac{\pi}{12} \cdot\{4+8 \sqrt{2}\}=4\left(\frac{3}{\sqrt{2}}\right)+2(2)+4\left(\frac{\sqrt{3}}{2}\right)-1\right\} \\ & =4.009119 \ldots=4.01 \end{aligned}$	answer in radians not degrees

C.

$$
R=\sqrt{r^{2}-x^{2}}
$$

ii. $V=\pi R^{2} h$ (cylinder)
$\forall h=2 x$

$$
\begin{aligned}
V & =\pi\left(r^{2}-x^{2}\right) 2 x \\
& =2 \pi x\left(r^{2}-x^{2}\right)
\end{aligned}
$$

iii. $\frac{d V}{d x}=2 \pi\left(r^{2}-x^{2}\right)+2 \pi x(-2 x)$
$\begin{aligned} d x & =2 \pi r^{2}-2 \pi x^{2}-4 \pi x^{2}\end{aligned}$
$=2 \pi r^{2}-6 \pi x^{2}=0$
$6 \pi x^{2}=2 \pi r^{2}$
$x^{2}=\frac{r^{2}}{3}$

$$
x= \pm \frac{r}{\sqrt{3}} \text { since } x>0 \quad x=\frac{r}{\sqrt{3}}
$$

test for max volume

$$
\frac{\partial^{2} v}{\partial x^{2}}=-12 \pi x=-\frac{12 \pi r}{\sqrt{3}} \text { when } x=\frac{r}{\sqrt{3}}
$$

\therefore max volume since $\frac{\partial^{2} v}{\partial x^{2}}<0$

$$
\begin{aligned}
V & =2 \pi\left(\frac{r}{\sqrt{3}}\right)\left(r^{2}-\left(\frac{r}{\sqrt{3}}\right)^{2}\right) \\
& =\frac{2 \pi r}{\sqrt{3}}\left(\frac{3 r^{2}-r^{2}}{3}\right)=\frac{2 \pi r}{\sqrt{3}}\left(\frac{2 r^{2}}{3}\right)
\end{aligned}=\frac{4 \pi r^{3}}{3 \sqrt{3}}{ }^{3}=\frac{4 \sqrt{3} \pi r^{3}}{9} .
$$

differentiate with respect to x
remember to test for max volume using $\frac{d v}{d x}$ or $\frac{d^{2} y}{\partial x^{2}}$

Exam $y_{r} 12$ 2U TRIAL MATHEMATICS : Question..16	CHIRGWEN
Suggested Solutions	Marker's Comments
Qib d) i) Driver cost $=2 \times 40 \times \frac{1000}{V}$ $=\frac{80000}{V}$ $\begin{aligned} \text { Petrol cost } & =1.40 \times\left(60+\frac{V^{2}}{50}\right) \times \frac{1000}{V} \\ & =\frac{84000}{V}+28 \mathrm{~V} \end{aligned}$ Total cose $\begin{aligned} C & =\frac{80000}{V}+\frac{84000}{V}+28 V \\ & =28 V+\frac{164000}{V} \end{aligned}$ ii) \therefore minimum cose when $v=+\sqrt{\frac{4100}{7}}$ Howerer finc has to be less than 12 hours, $\begin{aligned} & t=\frac{1000}{\sqrt{\frac{41000}{7}}} \div 13 \text { hours. } \\ & \therefore \quad v=\frac{1000}{12} \\ & \quad v=83 \frac{1}{3} \mathrm{~km} / \mathrm{h} \end{aligned}$	i) Studens didine draw th cinnectiong time $=\frac{1000}{V}$, or forgecting that there are 2 diven. Gimmon Erron (i) xincorrect differentiation α wrote down 16400 intead of 164000 , transcriptervor α majurity of indens for gor to check whetter the V (speed) lhey found satisfied all conditions given by the question.

