PENRITH HIGH SCHODL

2015 HSC TRIAL EXAMINATION

Mathematics

General Instructions:

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In questions $11-16$, show relevant mathematical reasoning and/or calculations
- Answer all Questions in the booklets provided

Total marks-100

SECTION I Pages 3-6

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

SECTION II Pages 7-13

90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the provided multiple-choice answer sheet for Questions 1-10

1. The expression below correct to three significant figures is
$\sqrt{\frac{6.25^{2}+12.125}{2.751 \times 2.11}}$
(A) 2.96
(B) 2.97
(C) 2.90
(D) 2.969
2. Which of the following represents the domain of the function $f(x)=\sqrt{16-x^{2}}$?
(A) $\quad x \neq \pm 4$
(B) All real x values.
(C) $-4 \leq x \leq 4$
(D) $-4<x<4$
3. The $7^{\text {th }}$ term of an arithmetic sequence is 11 and the $21^{\text {st }}$ term is 53 . The common difference is given by
(A) $d=-3$
(B) $d=3$
(C) $d=6$
(D) $d=-6$.
4. For what values of k will the geometric series $1+5 k+25 k^{2}+125 k^{3}+\ldots$. . have a limiting sum?
(A) $-1 \leq k \leq 1$
(B) $-\frac{1}{5} \leq k \leq \frac{1}{5}$
(C) $-\frac{1}{5}<k<\frac{1}{5}$
(D) $k<\frac{1}{5}$
5. Which of the following is the graph of $f(x)=2 x^{3}-3 x^{2}$?
(A)

(B)
(C)

(D)

6. The diagram below shows the graph of $y=x^{2}-2 x-8$.

What is the correct expression for the area bounded by the x-axis and the curve $y=x^{2}-2 x-8$ between $0 \leq x \leq 6$?
(A) $\quad A=\int_{0}^{5} x^{2}-2 x-8 d x+\left|\int_{5}^{6} x^{2}-2 x-8 d x\right|$
(B) $\quad A=\int_{0}^{4} x^{2}-2 x-8 d x+\left|\int_{4}^{6} x^{2}-2 x-8 d x\right|$
(C) $\quad A=\left|\int_{0}^{5} x^{2}-2 x-8 d x\right|+\int_{5}^{6} x^{2}-2 x-8 d x$
(D) $\quad A=\left|\int_{0}^{4} x^{2}-2 x-8 d x\right|+\int_{4}^{6} x^{2}-2 x-8 d x$
7. A bag contains 11 balls of which 4 are blue and the rest are white. One ball is selected at random and removed from the bag. Another ball is selected and removed from the bag. What is the probability that both balls are white?
(A) $\frac{42}{110}$
(B) $\frac{49}{110}$
(C) $\frac{42}{122}$
(D) $\frac{49}{122}$
8. The solution to the equation $\log _{e}(x+2)-\log _{e} x=\log _{e} 4$ is given by
(A) $\frac{2}{5}$
(B) $\frac{2}{3}$
(C) $\frac{3}{2}$
(D) $\frac{5}{2}$
9. A particle is moving in a straight line with velocity $v=1-2 e^{-3 t}$.

Initially the particle is at the origin, t is measured in seconds and v in metres per second.

Which of the following statements is true?
(A) velocity is $2 \mathrm{~m} / \mathrm{s}$ as t approaches infinity.
(B) velocity is $1 \mathrm{~m} / \mathrm{s}$ as t approaches infinity.
(C) velocity is $3 \mathrm{~m} / \mathrm{s}$ as t approaches infinity.
(D) The particle is at rest for larger values of t.
10. A particle moves so that at a time t seconds its position x metres is given by

$$
x=5+\ln (2 t+1)
$$

Which of the following statements is correct?
(A) The initial displacement is 5 m .
(B) The velocity after 2 seconds is 40 cm .
(C) The acceleration is always negative for any values of t.
(D) All of the above.

END OF SECTION I

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hour and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In questions 11-16, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Use the Question 11 Writing Booklet.
a) Calculate correct to one decimal place the value of $\sqrt{\frac{2 x y}{z}}$
when $x=4.3, y=6.7$ and $z=4.9$.
b) Simplify the expression given by $\frac{x-x^{-1}}{1+x^{-1}}$
c) Differentiate with respect to x :
i. $\quad 11+2 x^{3}$
ii. $e^{x} \cos x$
iii. $\quad \log \left(x^{2}+1\right)$
d) A parabola has an equation given by $y=\frac{1}{2}\left(x^{2}-4 x+5\right)$.
i. Express the above equation in the form $(y-q)=4 a(x-p)^{2}$.
ii. Find the co-ordinates of the vertex and focus of the parabola.
iii. Find the equation of the directrix of the parabola.
iv. Sketch the locus of P , indicating all the above information.

End of Question 11

Question 12 (15 marks) Use the Question 12 Writing Booklet.
a) Convert $\frac{4 \pi}{5}$ radians to degrees.
b) The first quadrant of the circle $x^{2}+y^{2}=1$ is shown below. A Point, $P\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ lies on the circle and the line PQ is perpendicular to the x-axis.

i. Show that the exact value of $\angle P O Q=\frac{\pi}{3}$.
ii. Find the area of the sector $P O R$ and $\triangle P O Q$
iii. Hence, find the exact shaded area.
c)

The lines $A B$ and $C B$ have equations $x-2 y+9=0$ and $4 x-y-20=0$ respectively.
i. Show that the coordinates of the point B are given by $(7,8)$
ii. Show that the equation of the line $A C$ is $9 x+10 y-45=0$.
iii. Calculate the distance $A C$ in exact form.
iv. Find the equation of the line perpendicular to $B C$ which passes through A.
v. Calculate the shortest distance between the point B and the line $A C$.
vi. Hence find the area of the triangle $A B C$.

Question 13 (15 marks) Use the Question 13 Writing Booklet.
a) Find all values of θ such that $2 \cos 2 \theta=1,0 \leq \theta \leq 360^{\circ}$.
b) Evaluate $\underset{x \rightarrow 0}{\operatorname{Lim}} \frac{2 \sin \frac{x}{2}}{x}$
c) Prove that $\tan \theta\left(1-\cot ^{2} \theta\right)+\cot \theta\left(1-\tan ^{2} \theta\right)=0$
d) Ashleigh plans to deposit a sum of money into an account which guarantees to pay her 1% interest each month on the balance of her account at the time. Immediately each interest payment is made, Ashleigh intends to withdraw $\$ 500$. She has no intention of ever adding to her initial deposit.

Using M to signify the initial deposit and A_{n} to represent the value of the investment after n withdrawals,
i. Write an expression for the value of her investment immediately after the first withdrawal.
ii. Show that when she has made the third withdrawal, the balance of her account will be $A_{3}=\left(M(1.01)^{3}-500\left(1+1.01+1.01^{2}\right)\right)$
iii. Write the expression for A_{n}.
iv. Ashleigh wants her deposit to be sufficient for her to be able to make withdrawals in this manner for 5 years. Show that her initial deposit needs to be $\$ 22500$ (to the nearest $\$ 100$).
e) If α and β are the roots of the equation $x^{2}-5 x+2=0$.

Find, without solving, the values of:
i. $\alpha+\beta$ and $\alpha \beta$
ii. $\left(\alpha^{2}+\frac{1}{\beta}\right)\left(\beta^{2}+\frac{1}{\alpha}\right)$

End of Question 13

Question 14 (15 marks) Use the Question 14 Writing Booklet.
a) Evaluate $\sum_{n=1}^{n=3} n^{2}(n+1)$
b) Evaluate the expression $\log _{2}(m n)^{3}$ correct to two decimal places.

It is given that $\log _{2} m=0.2134$ and $\log _{2} n=0.3142$
c) Consider the curve $y=-x^{3}+3 x^{2}+9 x-11$.
i. Show that $\frac{d y}{d x}=-3(x-3)(x+1)$.
ii. Find the co-ordinates of any stationary points and show that there is one point of minima and one point of maxima.
iii. Find the co-ordinates of the points of inflexion, if any.
iv. Sketch the curve, clearly showing the y-intercept and all the stationary points and inflexion point(s).
v. For what values of x is the curve concave up?
d)

In the diagram above, $\angle B C A=\angle B A H=\alpha, A B=6$ and $B H=4$.
i. Show that $\triangle A B C$ III $\triangle H B A$
ii. Hence, or otherwise, find the length $H C$.

End of Question 14

Question 15 (15 marks) Use the Question 15 Writing Booklet
a) Find the exact value of the following definite integrals:
i. $\quad \int_{2}^{6} \frac{1}{x+2} d x$
ii. $\quad \int_{0}^{1}\left(e^{2 x}+1\right) d x$
iii. $\quad \int_{\pi / 4}^{\pi / 3} 3 \sec ^{2}(x) d x$
b) A company decided to raise money for the end-of-season trip, 100 tickets were sold and two prizes were offered. Two tickets were drawn without replacement to determine the prize-winners.

Rocky bought some of the tickets. The probability that he won both prizes was $\frac{2}{275}$.
Find:
i. The number of tickets bought by Rocky.
ii. The probability of his winning at least one prize.
c) Consider the function given by the equation $y=\cos 2 x$.
i. Sketch the graph of the function $y=\cos 2 x$ for $-\pi \leq x \leq \pi$.
ii. On the same diagram, sketch the line $y=1-x$
iii. Hence, determine the number of solutions of the equation $1-x=\cos 2 x$
d) Use the Trapezoidal Rule with three values to estimate the area bounded by $y=\cos ^{2} x$, $x=0, x=\frac{\pi}{2}$ and the x-axis to 3 decimal places.
e) Using the sketch of the gradient function drawn below, sketch its primitive function.

End of Question 15

Question 16 (15 marks) Use the Question 16 Writing Booklet.
a) For what value (s) of k does $3 x^{2}+2 x+k=0$ have real roots?
b) Find the equation of the normal to the curve $y=2 \ln (x)$ at the point $x=e$.
c) A particle moves with velocity $v \mathrm{~m} / \mathrm{s}$ in the time t seconds according to:

$$
v=\frac{5}{\sqrt{1+3 t}}
$$

Find
i. the acceleration as a function of time t.
ii. The displacement x as a function of time t if initially the particle was 2 metres to the right of the origin.
d) The population W of Williamtown is increasing exponentially according to the equation $W=W_{0} e^{0.02 t}$ while the population H of Hectorville is decreasing exponentially according to the equation $H=H_{0} e^{-0.01 t}$.

If the current populations of Williamtown and Hectorville are 8000 and 12000 respectively, how long, to the nearest year, will it be before their population are the same?
e) A box, open at the top, is to be made from cardboard. The base of the box is a square of side $x \mathrm{~cm}$ and its height is $y \mathrm{~cm}$.
i. If the volume of the box is to be $32 \mathrm{~cm}^{3}$, show that $y=\frac{32}{x^{2}}$.
ii. Show that the area of cardboard needed will be $A=x^{2}+\frac{128}{x} \mathrm{~cm}^{2}$.
iii. Find the dimensions of the box if this area is to be a minimum.

End of Question 16

End of paper

Exam Mathematics Trial MATHEMATICS: Question...... 13a,b,c,d

Marker's Comments
a. $\lim _{x \rightarrow 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}}=1$
multiply numerator and denominator by 2

$$
\lim _{x \rightarrow 0} \frac{2 \sin \frac{x}{2}}{x}=1
$$

b. $2 \cos 2 \theta=1$

$$
\begin{aligned}
\cos 2 \theta & =\frac{1}{2} \\
2 \theta & =60^{\circ}, 300^{\circ}, 420^{\circ}, 660^{\circ}, \ldots \\
\theta & =30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}
\end{aligned}
$$

c. $\tan \theta\left(1-\cot ^{2} \theta\right)+\cot \theta\left(1-\tan ^{2} \theta\right)=0$

Expand LHS

$$
\begin{aligned}
L H S & =\tan \theta-\cot \theta+\cot \theta-\tan \theta \\
& =0 \\
& =\text { RHS }
\end{aligned}
$$

d. $\frac{d^{2} y}{d x^{2}}=3$

$$
y=\frac{3 x^{2}}{2}-6 x+c
$$

when $x=1 \quad y=0$

$$
\begin{aligned}
& x=1 \frac{d y}{d x}=-3 \\
& -3=3(1)+c \\
& c=6 \\
& \frac{d y}{d x}=3 x-6
\end{aligned}
$$

Best method:
expand the brackets

Done poorly

$$
\frac{d y}{d x}=3 x+c
$$

This style of question is

$$
0=\frac{3(1)}{2}-6(1)+C
$$ common.

$$
c=\frac{q}{2}
$$

b)

$$
\begin{aligned}
\log _{2}(m n)^{3} & =3 \log _{2}(m n) \\
& =3\left(\log _{2} m+\log _{2} n\right) \\
& =3(0.2134+0.3142) \\
& =1.5828 \\
& =1.5 \mathrm{z}(\text { to } 2 \mathrm{dp})
\end{aligned}
$$

c) i)

$$
\begin{aligned}
y & =-x^{3}+3 x^{2}+9 x-11 \\
\frac{d y}{d x} & =-3\left(x^{2}-2 x-3\right) \\
& =-3(x-3)(x+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) Solve } \frac{d y}{d x}=0, \quad x=3,-1 \\
& x=3, y=16 \quad \therefore \frac{(3,16)(-1,-16) \text { are }}{\text { Stationary points }} \\
& x=-1, y=-16 \\
& \frac{d^{2} y}{d x^{2}}=-6 x+6 \\
& x=3, \frac{d^{2} y}{d x^{2}}=-18+6=-12<0
\end{aligned}
$$

$\therefore(3,16)$ is a local maxima

$$
\begin{gathered}
x=-1, \frac{d^{2} y}{d x^{2}}=6+6=12>0 \\
\therefore(-1,-16) \text { local minima }
\end{gathered}
$$

for alternatively

$$
\left(\begin{array}{c|cccccc}
\frac{x}{d y} & -2 & -1 & 0 & 2 & 3 & 4 \\
(-15 & 0 & 9 & 9 & 0 & 0-15 \\
d x & - & + & + & & -
\end{array}\right)
$$

Learn the \log laws.

Remember to round of to required accuracy.
This is a 'show that' question. Asthere are not 2 monks, it is important not line out. The ard line is given to you!

(d) 3 values : $3=0, x-\frac{\pi}{4}, x=\frac{\pi}{2}$
$\int_{0}^{\frac{\pi}{2}} \cos ^{2} x=\frac{h}{2}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right.$

- Some stu dinds ared Sim Pcom $=\frac{\frac{\pi}{2}-0}{2}\left[f(0)+2 f\left(\frac{\pi}{4}\right)+f\left(\frac{\pi}{2}\right)\right]$ $\vdots \frac{\pi}{8}\left[1+2\left(\frac{1}{\sqrt{2}}\right)^{2}+0\right]$ rule

Care lessnes 5 usad exact
e)
$\doteqdot 0.785$ unib 2
.
\longrightarrow val ve ms tood
(ii)

$$
\begin{aligned}
A & =x \times x+4 x y \\
& =x^{2}+4 x \times \frac{32}{x^{2}} \\
& =x^{2}+\frac{128}{x}
\end{aligned}
$$

(iii) for area to be minimums, $\frac{d A}{d x}=0$

$$
\begin{aligned}
& \frac{d A}{d x}=2 x-\frac{128}{x^{2}} \\
& \frac{d A}{d x}=0 \Rightarrow 2 x=\frac{128}{x^{2}} \\
& \Rightarrow \quad x^{3}=64 \\
& x=4
\end{aligned}\left\{\begin{array}{c}
\text { minimum } \\
\text { requirement: } \\
\frac{d^{2} A}{d x^{2}}=2+\frac{128 \times 2}{x^{3}} \\
>0 \\
\text { for } x=4
\end{array}\right.
$$

deducted 1/2 mark for students who did not shaw that area is minimum for $x=4$.
box.
f)

$$
\begin{array}{rlr}
V & \left.=\pi \int_{1}^{2} \begin{array}{r}
y=\frac{2}{1+x^{2}} \\
y\left(1+x^{2}\right)= \\
y+y x^{2} d y \\
y x^{2}
\end{array}\right) \\
& =\int_{1}^{1}\left(\frac{2}{y}-1\right) d y & x^{2} \\
& =\pi(2 \ln y-y)_{1}^{2} \\
& =\pi(2 \ln 2-2 \ln 1+1) \\
& =\pi(2 \ln 2-1) \quad \text { as } \ln 1=0
\end{array}
$$

$$
y\left(1+x^{2}\right)=2
$$

$$
\left.\begin{array}{rl}
y x^{2} & =2 \\
y x^{2} & =2-y \\
x^{2} & =2-y
\end{array}\right\}_{\text {son }} \text { song ot } 10
$$

$$
\begin{array}{r}
y+y x^{2}=2 \\
4 x^{2}-2-4
\end{array}
$$

$$
\left.\begin{array}{rl}
x^{2} & =2-y \\
x^{2} & =\frac{2-y}{y}
\end{array}\right\} \text { forgot make }
$$

$$
=\frac{2}{y}-1
$$

END.-

