

PENRITH HIGH SCHOOL

2015 HSC TRIAL EXAMINATION

Mathematics

General Instructions:

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In questions 11 16, show relevant mathematical reasoning and/or calculations
- Answer all Questions in the booklets provided

Total marks-100

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

90 marks

- Attempt Questions 11–16
- Allow about 2 hours 45 minutes for this section

Teacher Name:—

This paper MUST NOT be removed from the examination room

Assessor: Dr. Anju Katyal

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section Use the provided multiple–choice answer sheet for Questions 1–10

1. The expression below correct to three significant figures is

$\sqrt{\frac{6.2}{2.}}$	$5^{2} + 12.125$ 751×2.11
(A)	2.96
(B)	2.97
(C)	2.90
(D)	2.969

- 2. Which of the following represents the domain of the function $f(x) = \sqrt{16 x^2}$?
 - (A) $x \neq \pm 4$
 - (B) All real x values.
 - (C) $-4 \le x \le 4$
 - (D) -4 < x < 4
- 3. The 7th term of an arithmetic sequence is 11 and the 21st term is 53. The common difference is given by
 - (A) d = -3
 - (B) d = 3
 - (C) d = 6
 - (D) d = -6.
- 4. For what values of k will the geometric series $1+5k+25k^2+125k^3+\ldots$ have a limiting sum?
 - (A) $-1 \le k \le 1$ (B) $-\frac{1}{5} \le k \le \frac{1}{5}$ (C) $-\frac{1}{5} < k < \frac{1}{5}$ (D) $k < \frac{1}{5}$

5. Which of the following is the graph of $f(x) = 2x^3 - 3x^2$?

6. The diagram below shows the graph of $y = x^2 - 2x - 8$.

What is the correct expression for the area bounded by the *x*-axis and the curve $y = x^2 - 2x - 8$ between $0 \le x \le 6$?

(A)
$$A = \int_0^5 x^2 - 2x - 8dx + \left| \int_5^6 x^2 - 2x - 8dx \right|$$

(B)
$$A = \int_0^4 x^2 - 2x - 8dx + \left| \int_4^6 x^2 - 2x - 8dx \right|$$

(C)
$$A = \left| \int_{0}^{5} x^{2} - 2x - 8dx \right| + \int_{5}^{6} x^{2} - 2x - 8dx$$

(D)
$$A = \left| \int_{0}^{4} x^{2} - 2x - 8dx \right| + \int_{4}^{6} x^{2} - 2x - 8dx$$

7. A bag contains 11 balls of which 4 are blue and the rest are white. One ball is selected at random and removed from the bag. Another ball is selected and removed from the bag. What is the probability that both balls are white?

(A)
$$\frac{42}{110}$$

(B) $\frac{49}{110}$
(C) $\frac{42}{122}$
(D) $\frac{49}{122}$

- 8. The solution to the equation $\log_e(x+2) \log_e x = \log_e 4$ is given by
 - (A) $\frac{2}{5}$ (B) $\frac{2}{3}$ (C) $\frac{3}{2}$ (D) $\frac{5}{2}$
- 9. A particle is moving in a straight line with velocity $v = 1 2e^{-3t}$. Initially the particle is at the origin, t is measured in seconds and v in metres per second.

Which of the following statements is true?

- (A) velocity is 2 m/s as *t* approaches infinity.
- (B) velocity is 1 m/s as *t* approaches infinity.
- (C) velocity is 3 m/s as *t* approaches infinity.
- (D) The particle is at rest for larger values of *t*.

10. A particle moves so that at a time t seconds its position x metres is given by

$$x = 5 + \ln(2t + 1)$$

Which of the following statements is correct?

- (A) The initial displacement is 5 m.
- (B) The velocity after 2 seconds is 40 cm.
- (C) The acceleration is always negative for any values of *t*.
- (D) All of the above.

END OF SECTION I

Section II

90 marks Attempt Questions 11–16 Allow about 2 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In questions 11–16, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Use the Question 11 Writing Booklet.

a) Calculate correct to one decimal place the value of $\sqrt{\frac{2xy}{z}}$ when x = 4.3, y = 6.7 and z = 4.9.

b) Simplify the expression given by
$$\frac{x - x^{-1}}{1 + x^{-1}}$$
 2

- c) Differentiate with respect to *x*:
 - i. $11+2x^3$ ii. $e^x \cos x$ 1 2
 - iii. $\log(x^2 + 1)$ 2

d) A parabola has an equation given by $y = \frac{1}{2}(x^2 - 4x + 5)$. i. Express the above equation in the form $(y-q) = 4a(x-p)^2$. 2 ii. Find the co-ordinates of the vertex and focus of the parabola. 2 iii. Find the equation of the directrix of the parabola. 1 iv. Sketch the locus of P, indicating all the above information. 2

Question 12 (15 marks) Use the Question 12 Writing Booklet.

a) Convert $\frac{4\pi}{5}$ radians to degrees.

b) The first quadrant of the circle $x^2 + y^2 = 1$ is shown below. A Point, $P\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ lies on the circle and the line PQ is perpendicular to the *x*-axis.

1

1

i.	Show that the exact value of $\angle POQ = \frac{\pi}{3}$.	1
	3	

- ii. Find the area of the sector *POR* and $\triangle POQ$ 3
- iii. Hence, find the exact shaded area.
- c)

The lines *AB* and *CB* have equations x - 2y + 9 = 0 and 4x - y - 20 = 0 respectively.

i.	Show that the coordinates of the point B are given by $(7, 8)$	1
ii.	Show that the equation of the line AC is $9x + 10y - 45 = 0$.	2
iii.	Calculate the distance AC in exact form.	2
iv.	Find the equation of the line perpendicular to BC which passes through A.	2
v.	Calculate the shortest distance between the point B and the line AC .	1
vi.	Hence find the area of the triangle ABC.	1

Question 13 (15 marks) Use the Question 13 Writing Booklet.

a) Find all values of θ such that $2\cos 2\theta = 1, 0 \le \theta \le 360^{\circ}$.

Evaluate
$$\lim_{x \to 0} \frac{2\sin\frac{x}{2}}{x}$$
 2

2

2

1

c) Prove that $\tan \theta (1 - \cot^2 \theta) + \cot \theta (1 - \tan^2 \theta) = 0$

b)

d) Ashleigh plans to deposit a sum of money into an account which guarantees to pay her 1% interest each month on the balance of her account at the time. Immediately each interest payment is made, Ashleigh intends to withdraw \$500. She has no intention of ever adding to her initial deposit.

Using M to signify the initial deposit and A_n to represent the value of the investment after n withdrawals,

i.	Write an expression for the value of her investment immediately after the first	
	withdrawal.	1

- ii. Show that when she has made the third withdrawal, the balance of her account will be $A_3 = (M(1.01)^3 500(1+1.01+1.01^2))$
- iii. Write the expression for A_n .
- iv. Ashleigh wants her deposit to be sufficient for her to be able to make withdrawals in this manner for 5 years. Show that her initial deposit needs to be \$22500 (to the nearest \$100).
- e) If α and β are the roots of the equation $x^2 5x + 2 = 0$.

Find, without solving, the values of:

i.
$$\alpha + \beta$$
 and $\alpha\beta$ 1

ii.
$$\left(\alpha^2 + \frac{1}{\beta}\right)\left(\beta^2 + \frac{1}{\alpha}\right)$$
 2

Question 14 (15 marks) Use the Question 14 Writing Booklet.

a) Evaluate
$$\sum_{n=1}^{n=3} n^2 (n+1)$$

b) Evaluate the expression
$$\log_2(mn)^3$$
 correct to two decimal places.
It is given that $\log_2 m = 0.2134$ and $\log_2 n = 0.3142$ 2

c) Consider the curve
$$y = -x^3 + 3x^2 + 9x - 11$$
.

i. Show that
$$\frac{dy}{dx} = -3(x-3)(x+1)$$
. 2

ii. Find the co-ordinates of any stationary points and show that there is one point of minima and one point of maxima.

3

1

1

- iii. Find the co-ordinates of the points of inflexion, if any.
- iv.Sketch the curve, clearly showing the y-intercept and all the stationary points
and inflexion point(s).2
- v. For what values of x is the curve concave up?

d)

In the diagram above, $\angle BCA = \angle BAH = \alpha$, AB = 6 and BH = 4.

i.	Show that $\triangle ABC \parallel \mid \triangle HBA$	2
ii.	Hence, or otherwise, find the length HC.	1

Question 15 (15 marks) Use the Question 15 Writing Booklet

a) Find the exact value of the following definite integrals:

i.
$$\int_{2}^{6} \frac{1}{x+2} dx$$
 2
ii. $\int_{0}^{1} (e^{2x}+1) dx$ 2
iii. $\int_{\pi/4}^{\pi/3} \operatorname{sec}^{2}(x) dx$ 2

b) A company decided to raise money for the end-of-season trip, 100 tickets were sold and two prizes were offered. Two tickets were drawn without replacement to determine the prize-winners.

Rocky bought some of the tickets. The probability that he won both prizes was $\frac{2}{275}$. Find:

i. The number of tickets bought by Rocky. 1

1

- ii. The probability of his winning at least one prize.
- c) Consider the function given by the equation $y = \cos 2x$.

d)

i.	Sketch the graph of the function $y = \cos 2x$ for $-\pi \le x \le \pi$.	2
ii.	On the same diagram, sketch the line $y = 1 - x$	1
iii.	Hence, determine the number of solutions of the equation $1 - x = \cos 2x$	1
Use the	Trapezoidal Rule with three values to estimate the area bounded by $y = \cos^2 x$,	

- $x = 0, x = \frac{\pi}{2}$ and the *x*-axis to 3 decimal places. 2
- e) Using the sketch of the gradient function drawn below, sketch its primitive function.

Question 16 (15 marks) Use the Question 16 Writing Booklet.

a)	For what value (s) of k does $3x^2 + 2x + k = 0$ have real roots?	1
b)	Find the equation of the normal to the curve $y = 2\ln(x)$ at the point $x = e$.	2
c)	A particle moves with velocity v m/s in the time t seconds according to:	
	$v = \frac{5}{\sqrt{1+3t}}$ Find	
	i. the acceleration as a function of time <i>t</i> .	2
	ii. The displacement x as a function of time t if initially the particle was 2 metres to the right of the origin.	2
d)	The population W of Williamtown is increasing exponentially according to the	
	equation $W = W_0 e^{0.02t}$ while the population H of Hectorville is decreasing exponentially	
	according to the equation $H = H_0 e^{-0.01t}$.	
	If the current populations of Williamtown and Hectorville are 8000 and 12000 respectively, how long, to the nearest year, will it be before their population are the same?	3
e)	A box, open at the top, is to be made from cardboard. The base of the box is a square of side x cm and its height is y cm.	
	i. If the volume of the box is to be 32 cm ³ , show that $y = \frac{32}{x^2}$.	1

ii. Show that the area of cardboard needed will be $A = x^2 + \frac{128}{x}$ cm². 2

2

iii. Find the dimensions of the box if this area is to be a minimum.

End of Question 16

End of paper

Exam Quart Trial 7015 MATHEMATICS	: Ouestion!!	
Suggested Solutions		Marker's Comments
a) $\sqrt{\frac{2\pi y}{z}}$ $\sqrt{\frac{2(4.3)(6.7)}{4.9}}$ = 3.4 (correct to 1 d.p)	MC Answers IB 2C 3B 4C 5D 6D 7A 8B 9B 10C	well done
b) $\frac{7L - \frac{1}{7L}}{1 + \frac{1}{7L}} = \frac{7L^2 - 1}{\frac{7L}{7L}}$ = $\frac{7L + 1}{7L}$ = $\frac{(7L - 1)(3(1 + 1))}{(3(1 + 1))}$ = $\frac{7L - 1}{7L}$	*	these students who didn't convert to $\frac{1}{2}$ got this wrong. Some tried to (rationalise) the denominate
c)(i) $6x^{2}$ (ii) $e^{ix}\cos x = vu + uv^{2}$ $= \cos x e^{x} + e^{x}$ (iii) $\frac{2x}{x^{2}+1}$	sinx)	well dore well done
d) $y = \frac{1}{2}(x^2 - 4x + 5)$ (i) $2y = (x-2)^2 + 1$ $2y - 1 = (x-2)^2$ $2(y - \frac{1}{2}) = (x-2)^2$ $= 4(\frac{1}{2})(y - \frac{1}{2}) = (x-2)^2$ (ii) $(2,\frac{1}{2}) = (x-2)^2$ (iii) $(2,\frac{1}{2}) = for \cos(2,\frac{1}{2})$ (iii) $(3,0)$	L L L L L L L L L L L L L L L L L L L	It was obvious if students indestood the concept and knew which direction to take in this guestion

Exam 2011 Find pois MATHEMATICS : Question
$$\mathbb{Z}_{n}$$

Suggested Solutions Marker's Comments
a) $\frac{4(180)}{5} = 144^{\circ}$
b) $\int_{\mathbb{Z}_{2}} \frac{1}{5} = 144^{\circ}$
c) $\int_{\mathbb{Z}_{2}} \frac{1}{5} = 144^{\circ}$
b) $\int_{\mathbb{Z}_{2}} \frac{1}{5} = 144^{\circ}$
 $\int_{\mathbb{Z}_{2}} \frac{1}{5} = 144^{\circ}$
 $\int_{\mathbb{Z}_{2}} \frac{1}{5} = 144^{\circ}$
 $\int_{\mathbb{Z}_{2}} \frac{1}{5} = 144^{\circ}$
 $\int_{\mathbb{Z}_{2}} \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$
 $\int_{\mathbb{Z}_{2}} \frac{1}{5} = \frac$

Exam	MATHEMATICS : Question	
	Suggested Solutions	Marker's Comments
(1) MAC : y-y y-0	$= \frac{-4.5}{5}$ = $\frac{9}{10}$ = $m(x-x_1)$ = $\frac{9}{10}(x-5)$	well done
$(iii) \qquad \sqrt{4}$ $= \sqrt{\frac{18}{4}}$ $= \sqrt{\frac{181}{2}}$	$= -7 \times 173$ + 10y - 45 = 0 $5^{2} + 5^{2}$	students who didn't leave in exact form had travbles in the part (V)
(iv) 450 MBC = - 	$-\frac{1}{4}$ $-\frac{1}{4}$ $+.5 = -\frac{1}{4}(x-0)$ -18 = -x	some students did not inderstand what they were finding
(v) 9: $d = \frac{1}{1}$ = 9	$\frac{x' + 4y - 18 = 0}{x_{1} + 6y_{-} + 6z} = (7, 8)$ $\frac{x_{1} + 8y_{1} + 6}{\sqrt{4^{2} + 8^{2}}} = (7, 8)$ $\frac{x_{1} + 8y_{1} + 6}{\sqrt{4^{2} + 8^{2}}} = (7, 8)$ $\frac{y_{1} + 10(8) - 45}{\sqrt{4^{2} + 10^{2}}} = \frac{98}{\sqrt{181}} = \frac{1}{\sqrt{181}} = $	(8)

Exam Mathematics Trial MATHEMATICS :Q	uestion 13a, b, c, d
2015 Suggested Solutions	Marker's Comments
a. $\lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} = 1$ multiply numerator and denomina	Many students didn't know the rule lim sin x = 1
$\int \frac{2\sin \frac{x}{2}}{x} = 1$ b. $2\cos 2\theta = 1$	
$\cos 2\theta = \frac{1}{2}$ $2\theta = 60^{\circ}, 300^{\circ}, 420^{\circ}, 660^{\circ}, \dots$ $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	
c. tand (1-cot20) + cot0 (1-tan26 Expand LHS	(a) = 0 Best method : expand the bracket
LHS=tand=coto+coto-tand	
= O = RHS	
d. $\frac{d^2y}{dx^2} = 3$ $y = \frac{3x^2}{2} - 6x + 6$ $\frac{dy}{dx} = \frac{3x^2}{2} - 6x + 6$	c Done poorly This style of
$x = 1 \frac{dy}{dx} = -3 \qquad 0 = \frac{3}{2}(1) - 6(1) + 0 = \frac{9}{2}(1) - \frac{9}{2}(1) -$	c common.
c = 6 dy = 3x - 6 $y = \frac{3x^2}{2} - 6x$	$-\frac{9}{2}$
asc	

Exam Mathematics Trip	MATHEMATICS Ouestion 13 a C	
2015 S	Suggested Solutions	Marker's Comments
ei A, = Mx1.01 - 500	C	This was done very well
ii. $A_2 = A_1 \times 1.01 - 50$ = $M \times 1.01^2 - 50$	00x1.01-500	part ii
$= M \times 1.01^2 - 5$	00(1+1.01)	Ishow these equations
$A_3 = A_2 \times 1.01 - 50$	00	
$= M \times 1.01^3 - 50$	$DO(1+1.01+1.01^2)$	
$iii. A_n = M \times 1.01^n - 50$	$DO((1+1.01+1.01^2++1.01^{n-1}))$	
iv. $n = 5 \times 12$ = 60		some errors included:
$A_{60} = 0$ $0 = M \times 1.01^{60} - 50$	$00(1+1.01+1.01^2++1.01^{59})$	n = 6 or $n = 120$
$500\left(\frac{1\cdot01^{60}-1}{0\cdot01}\right) = M$	×1.01 60	
$M = \frac{500 (1.01^{6})}{1.01^{60} \times 0}$	$ \frac{9}{-1} = \$22477.5192 $ $ = \$22500 (nearest $100) $	
f.i. $\alpha + \beta = -\frac{b}{a} = -\frac{b}{1}$	2 = 5	
$\alpha \beta = \frac{c}{\alpha} = 2$		
$\left \begin{array}{c} \prod \left(\alpha^{2} + \frac{1}{\beta} \right) \left(\beta^{2} + \frac{1}{\alpha} \right) \right $	-	Easier method:
Expand		brackets
$\alpha^2 \beta^2 + \alpha + \beta + \frac{1}{\alpha \beta}$		0
$=(2)^{2}+5+\frac{1}{2}$		
$= 9\frac{1}{2}$		

Exam 20 Moths MATHEMATICS : Question	Generally well enswered
a) $\frac{3}{2} n^{2} (n+1) = 1 \times 2 + 4 \times 3 + 9 \times 4$ = 50	Wellansweted
b) $\log_2(mn)^3 = 3\log_2(mn)$ = $3(\log_2 m + \log_2 n)$	Learn the log laws.
= 3(0.2134 + 0.3142) = 1.5828 = 1.58 (to 2 dp)	Remember to round, off to required accuracy.
(i) $y = -x^3 + 3x^2 + 9x - 11$ $\frac{dy}{dx} = -3(x^2 - 2x - 3) \leq \frac{-3(x - 3)(x + 1)}{2}$	This is a 'show that' question. Asthere are not many Steps, for 2 marks, it is important not to miss the 2nd line out. The 3rd line is allow
$\begin{array}{llllllllllllllllllllllllllllllllllll$	to you!
$\frac{d^{2}y}{dx^{2}} = -6x + 6$ $\frac{d^{2}y}{dx^{2}} = -18 + 6 = -12 < 0$ $\frac{d^{2}y}{dx^{2}} = -18 + 6 = -12 < 0$ $\frac{d^{2}y}{dx^{2}} = -18 + 6 = -12 < 0$	Q'Show that. You need to put both the value of -12 for dzy dsz
$D_{L} = 1$, $\frac{d^{2}y}{d^{2}z^{2}} = 6 + 6 = 12.76$ $\frac{(-1, -16)}{10cal}$ minima	many students Subbed x = -1 in incorrectly.
$\frac{2 - 2 - 1 \ 0 \ 2 \ 3 \ 4}{\left(\frac{dy}{dx} - 15 \ 0 \ 9 \ 9 \ 0 \ -15}\right)}$	Hgain put Values and signs and put Dr, dy in Some Students put in
	- g og ostund

Exam au Maths Mathematics Question.
Suggested Solutions
$$\frac{d}{d} (i) \underline{ln \ AABC, A HBA} = AB is common V
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A CB = x (gues)
C HAB = C A C$$

