

Penrith Selective High School

2016

Higher School Certificate
 Examination

Mathematics

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A separate reference sheet is to be provided for this examination paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- All diagrams are not to scale
- Multiple choice answer sheet is on page 14 of this paper

Total Marks - 100
Section I Pages 2-5
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 6-13
90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Student Number:

Section I:

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple choice answer sheet provided on page 14 for Questions 1-10.

Q1. Which expression is a correct factorisation of $x^{3}-8$
(A) $(x-2)\left(x^{2}-2 x+4\right)$
(B) $(x-2)\left(x^{2}-4 x+4\right)$
(C) $(x-2)\left(x^{2}+2 x+4\right)$
(D) $(x-2)\left(x^{2}+4 x+4\right)$

Q2. $\quad \triangle P Q R$ has side lengths x, y and 10 as shown. $\angle R P Q=37^{\circ}$ and $\angle Q R P=42^{\circ}$.

Which of the following is correct for $\triangle \mathrm{PQR}$?
(A) $x=10 \times \frac{\sin 42^{\circ}}{\sin 37^{\circ}}$
(B) $y=10 \times \frac{\sin 37^{\circ}}{\sin 101^{\circ}}$
(C) $\quad x=\frac{10}{\sin 37^{\circ}}$
(D) $y=\frac{10}{\tan 37^{\circ}}$

Q3. Which of the following values of m make the points $(4,-3),(0, m)$ and $(-2,5)$ collinear?
(A) $m=1$
(B) $m=\frac{7}{3}$
(C) $m=4$
(D) $m=-\frac{1}{2}$

Q4. The condition for the quadratic equation $3 x^{2}-12 x+k=0$ to have real roots is
(A) $k \leq 36$
(B) $k \geq 36$
(C) $k \leq 12$
(D) $k \geq 12$

Q5. What is the centre and radius of the circle with the equation

$$
x^{2}+y^{2}+6 x-8 y-11=0 ?
$$

(A) Centre $(-3,-4)$ and radius 36
(B) Centre $(-3,4)$ and radius 36
(C) Centre $(-3,-4)$ and radius 6
(D) Centre $(-3,4)$ and radius 6

Q6. What is the equation of the normal to the curve $y=x^{2}-4 x$ at $(1,-3)$?
(A) $x+2 y-7=0$
(B) $x-2 y-7=0$
(C) $2 x-y-5=0$
(D) $2 x+y+5=0$

Q7. If $a>b$, which of the following is always true?
(A) $a^{2}>b^{2}$
(B) $\frac{1}{a}>\frac{1}{b}$
(C) $-a>-b$
(D) $2^{a}>2^{b}$

Q8. If $\tan 2 x=\sqrt{3}$ in the domain $-180^{\circ} \leq x \leq 180^{\circ}$, the value of x is:
(A) $30^{\circ}, 210^{\circ}$
(B) $-150^{\circ},-330^{\circ}$
(C) A and B
(D) None of above

Q9. The graph illustrated could be:

(A) $y=2^{x}$
(B) $y=(-2)^{x}$
(C) $y=\left(\frac{1}{2}\right)^{x}$
(D) $y=\left(-\frac{1}{2}\right)^{x}$

Q10. The sum of the interior angles of a regular polygon is 4140°. What is the size of each interior angle?
(A) 157.5°
(B) 160°
(C) 162°
(D) 165.6°

Section II

90 Marks

Attempt Questions 11-16
Allow about 2 hour and 45 minutes for this section
Answer each question on a SEPARATE page.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start this question on a new writing page
a) Solve $|4 x-5|=3(x+1)$. 3
b) Express $\frac{\sqrt{8}}{\sqrt{8}-\sqrt{7}}$ in the form $a+b \sqrt{14}$, where a and b are integers.
c) Simplify $\frac{3^{m+1}-3^{m}}{3^{2 m+1}-3^{2 m}}$
d) In the diagram below, $A(-2,-1), B(0,2), C(1,0)$ and $D(-1,-3)$ are the vertices of a parallelogram $A B C D$.

i) Find the midpoint of $C D$.
ii) Find the gradient of $C D$.
iii) Show that the equation of $C D$ is $3 x-2 y-3=0$.
iv) Find the exact length of $C D$.
v) Find the exact perpendicular distance from A to $C D$.
vi) Hence find the area of parallelogram $A B C D$.

End of Question 11

a) Show that $\cot \theta+\tan \theta=\operatorname{cosec} \theta \sec \theta$
b) State the domain and range of $y=\sqrt{9-x^{2}}$
c) For the parabola: $(y-2)^{2}=12(x+3)$
i) State the coordinates of the vertex and the focus.
ii) Write down the equation of the axis of symmetry.
iii) Sketch this parabola showing all above information.
d) In the diagram, the line $F C$ bisects $A E$ at F and $A D$ at B. The line $A E$ is parallel to $C D$.

i) Prove that $\triangle A B F$ is similar to $\triangle A D E$.
ii) Hence explain why $E D=2 B F$.
e) If α and β are the roots of $5 x^{2}+3 x-4=0$. Find the values of:
i) $\alpha+\beta \quad 1$
ii) $\alpha \beta$ 1
iii) $\frac{2}{\alpha}+\frac{2}{\beta} \quad 1$
iv) $\alpha^{2}+\beta^{2} \quad 1$
a) Given that $f(x)=\left(x^{3}-2\right)^{5}$, evaluate:
i) $f^{\prime}(1) \quad 2$
ii) $\quad f^{\prime \prime}(1)$
b) The diagram shows the graph of a function $f(x)$.

The graph has a minimum turning point at A, a point of inflexion at B and a horizontal point of inflexion at C.

Sketch the graph of the derivative $f^{\prime}(x)$.
c) Given that $y=x^{2}-x$, show that $\frac{d y}{d x}-\frac{d^{2} y}{d x^{2}}=\frac{2 y-x}{x}$
d) Consider the curve given by $y=3+21 x-9 x^{2}-x^{3}$
i) Find any turning points and determine their nature. 3
ii) Find any points of inflexion.
a) Find the 17 th term of the sequence $5,9,13,17, \ldots$
b) The sum of the first four terms of an arithmetic series equals to the 11th term. The sum of the 6 th and the 7th term is -123 .
i) Find the first term and the common difference. 2
ii) Find the sum of the first 10 terms.
c) i) In a geometric series $T_{1}=64$ and $T_{4}=1$. Find the common ratio.
ii) Explain why this series has a limiting sum.
iii) Find its limiting sum.

1
d) Mario borrows $\$ 650000$ to buy a house. An interest rate of 7.2% per annum, compounded monthly is charged on the outstanding balance. The loan is to be repaid in equal monthly instalments (M) over 30 year period. If A_{n} is the amount owing at the end of the nth month:
i) Write down an expression for A_{1}.
ii) Show that the amount owing after three months is:

$$
A_{3}=650000(1.006)^{3}-M\left(1+1.006+1.006^{2}\right)
$$

iii) Explain why $A_{360}=0$.
iv) Find the value of each instalment M to the nearest cent.
v) Suppose now that Mario elects to pay $\$ 5000$ per month instead of the amount calculated in part iii). Show that he can pay off the loan 106 months earlier.
a) Find
i) $\quad \int\left(3 x^{2}-\frac{1}{x^{2}}\right) d x$
ii) $\quad \int(\sqrt{x}+1)^{2} d x$
b) Find the area enclosed between the curve $y=x^{2}-x-6$, the x-axis and the lines $x=1$ and $x=4$.
c) Find the values of k if $\int_{1}^{k}\left(3 x^{2}-25\right) d x=24$
d) Use Simpson's rule with 5 function values to find the approximate area enclosed between the curve $f(x)=\frac{x}{1+x^{2}} d x$, the x-axis and the line $x=1$ and $x=2$. Round your answer to 3 decimal places.
e) The region bounded by the curve $y=2-\sqrt{x}$ and the x-axis between $x=0$ and $x=4$ is rotated about the x-axis to form a solid.
i) Sketch the above region, showing all important features.
ii) Hence or otherwise, find the exact volume formed.
a) Luigi has designed a garden bed which consists of a rectangle of width y metres and length $4 x$ metres, and a semi-circle as shown in the diagram.

If the perimeter of the garden bed is to be 50 metres.
i) Show that the perimeter of this garden bed can be expressed as

$$
2 x \pi+2 y+4 x=50
$$

ii) Rearrange the above perimeter to express y in terms of x.
iii) Show that the area of the garden bed can be given by the formula

$$
A=100 x-8 x^{2}-2 x^{2} \pi
$$

iv) Find the value of x that gives the maximum area. Correct your answer to 2 decimal places.
b) Yoshi is on a paddle board in the ocean 3 km from the nearest point O on a straight beach. He needs to paddle to a point A east along the beach and walk further east the rest of the distance to meet his friend Peach who is 6 km along the beach from O . Yoshi is able to paddle at a rate of $4 \mathrm{~km} / \mathrm{h}$ and walk at a rate of $5 \mathrm{~km} / \mathrm{h}$.
i) Draw a diagram to represent this information.
ii) Let x be the distance between point O and point A. Show that the total time $T(x)$ hours, for Yoshi to reach Peach is given by:

$$
T(x)=\frac{\sqrt{x^{2}+9}}{4}+\frac{6-x}{5}
$$

iii) Find value of x that gives the minimum time for Yoshi to reach Peach on the beach.
iv) Find the minimum time for Yoshi to reach Peach on the beach.

End of Paper

\qquad Antone \qquad
\qquad Antone \qquad

Maths Trial 2016

4 Options Multiple Choice Answer Sheet for Qns 1 To 10

1)	A	B	C	D
2)	A	B	C	D
3)	A	B	C	D
4)	A	B	C	D
5)	A	B	C	D
6)	A	B	C	D
$7)$	A	B	C	D
8)	A	B	C	D
$9)$	A	B	C	D
$10)$	B	B	C	D

a) $2 x^{2}-9 x-5=(2 x+1)(x-5)$

$$
\text { b) } \begin{aligned}
& |3 x+1|<4 \\
& -4<3 x+1<4 \Rightarrow-5<3 x<3 \\
& \Rightarrow-5 / 3<x<1
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=x^{2}+3 x, \text { at } x=2, y=10 \\
& y^{\prime}=2 x+3, \text { at } x=2, m=7
\end{aligned}
$$

Equation of tangent at $(2,10)$:

$$
\begin{aligned}
y-10 & =7(x-2) \\
\Rightarrow y & =7 x-4 \text { or } 7 x-y-4=0 \\
\text { d) } f(x) & =x \sin 2 x \\
f(x) & =2 x \cos 2 x+\sin 2 x
\end{aligned}
$$

e)

$$
\begin{aligned}
& x^{2}=8(y-3) \\
& a=2, \text { Focus }(0,5)
\end{aligned}
$$

f)

$$
\begin{aligned}
& \theta^{r}=20 \\
& l=2 \times 20=40 \mathrm{~cm}
\end{aligned}
$$

g)

$$
\begin{aligned}
\int_{1}^{4} e^{2 x} d x & =\frac{1}{4}\left[e^{2 x}\right]_{1}^{4} \\
& =\frac{1}{4}\left(e^{8}-e^{2}\right)
\end{aligned}
$$

D. Antone

$$
\begin{gathered}
139(9) n(0,4) c(6,1) \\
m=\frac{1-4}{6-0}=-\frac{3}{6}=\frac{-1}{2} \\
y-4=-\frac{1}{2}(x-0) \\
2 y-8=-x \\
x+2 y-8=0
\end{gathered}
$$

$$
\text { (i) } \begin{aligned}
d & =\frac{|1(1)+2(-4)-8|}{\sqrt{1^{2}+2^{2}}} B(1,-4) \\
& =\frac{11-8-8 \mid}{\sqrt{5}}=\frac{15}{\sqrt{5}}
\end{aligned}
$$

（in潼）

$$
\begin{gathered}
m=2, B(1,-4) \\
y+4=2(x-1) \\
y-4=2 x+z \\
2 x-y+4=0
\end{gathered}
$$

Solving simultaneousiy

$$
\begin{align*}
& 2 x-y+6=0 \\
& x+2 y-8=0 \ldots(1) \tag{2}\\
& y=2 x+4 \ldots \text { (3) }
\end{align*}
$$

Sub（3）vitos（2）

$$
\begin{gathered}
x+2(2 x-6)-8=0 \\
x+4 x+16-8=0 \\
x+4 x=-10 \\
5 x=-20 \\
x=x 6
\end{gathered}
$$

Sub into（1）

$$
\begin{aligned}
& -4-4 \quad+\quad 6=0 \\
& \text { 害 }=y \\
& -\left(-\frac{\pi}{5}\right)^{-}
\end{aligned}
$$

wost commen error mixing tie and ve

Many students dior wot use simultaneovis equachom but to real to luse peipertiaila distance．
(3)b)(i) when $y=0$

$$
\begin{gathered}
6 x-x^{2}=0 \\
x(6-x)=0 \\
x=0 \text { ax } x=6
\end{gathered}
$$

$$
(\operatorname{ir}) A=\left|\int_{0}^{7}\left(6 x-x^{2}\right) d x\right|
$$

$$
=\left|\left[\frac{6 x^{2}}{2}-\frac{x^{2}}{3}\right]_{6}^{7}\right|
$$

$$
=\left|\left[3 x^{2}-\frac{x^{3}}{3}\right]_{6}^{7}\right|
$$

$$
=\left\lvert\,\left[3(7)^{2}-\frac{(7)^{3}}{3}\right]-\left[3(b)^{2}-\frac{(6)^{3}}{3}\right]\right.
$$

$$
=\left[149-114 \frac{1}{3}\right]-[108-727
$$

$$
=5 \frac{2}{3} \text { units }
$$

c) (i) $P(R R)=\frac{5}{7} \times \frac{4}{5}=\frac{20}{35}=\frac{4}{7}$
(ii)

$$
\begin{aligned}
P(a t \text { leas } 71 \omega) & =1-P(R R) \\
& =1-\frac{4}{7} \\
& =\frac{3}{7}
\end{aligned}
$$

$$
\begin{aligned}
(\text { iii })(B \operatorname{son} \operatorname{san} C) & =\left(\frac{5}{7} \times \frac{4}{5}\right)+\left(\frac{2}{7} \times \frac{1}{5}\right) \\
& =\frac{22}{35}
\end{aligned}
$$

(a) (i)

$$
\begin{aligned}
& y=x^{3}+3 x^{2}-9 x \\
& \frac{d y}{d x}=3 x^{2}+6 x-9
\end{aligned}
$$

when $d y / d x=0$

$$
\begin{gathered}
3\left(x^{2}+2 x-3\right)=0 \\
3(x-1)(x+3)=0 \\
x=1 \text { and } x=-3 \\
\frac{d^{2} y}{d x^{2}}=6 x+6 \\
a+x=1, d^{2} y / d x^{2}=12 \\
y=-5
\end{gathered}
$$

\therefore minteinirg point at $(1,-5)$
at $x=-3, y=27$
and $d^{2} y / d x^{2}=-12$
\therefore max at $(-3,21)$
(ii) $\frac{d^{2} y}{d x^{2}}=6 x+1$
when $d^{2} / y / d x^{2}=0$

$$
\begin{gathered}
6 x+b=0 \\
6 x=-6 \\
x=-1
\end{gathered}
$$

x	-2	-1	0
$d^{2} y / d x^{2}$	-6	0	6

(chonge in concounty)
\therefore point of untiex 10 O $\alpha+(-1,11)$

* Fru coa drefe was not giveis.
* Concale up/adowr hass usen in conclusion- instand कf moxilnin.
* Morny sindents did hof tos : concuwiy
(iii) when $\frac{d^{2} y}{d x^{2}}<0$

$$
\therefore \quad x<-1
$$

(iv)

$$
\begin{aligned}
& -6 \leq x \leq 4 \\
& x=6, y=-34 \\
& x=4, y=76
\end{aligned}
$$

\therefore mane value att 76
b)

$$
\begin{aligned}
V & =\int_{a}^{b} \pi y^{2} d x \\
& =\pi \int_{1}^{3} \frac{2 x}{3 x^{2}-1} d x \\
& =\frac{\pi}{3} \int_{1}^{2} \frac{6 x}{3 x^{2}-1} d x \\
& =\frac{\pi}{3}\left[\ln \left(3 x^{2}-1\right)\right]_{1}^{3} \\
& =\frac{\pi}{3}[\operatorname{lin} 26-\ln 2] \\
& =2.69 \text { units }
\end{aligned}
$$

Some students used ware from $x=-3$ in part (i)

Some students mede cure less substitution errors.
c) (i)

$$
\begin{aligned}
& m_{0}=100 \\
& 60=100 e^{-35 k} \\
& \frac{60}{100}=e^{-33 k} \\
& \ln (0.6)=-35 k \\
& \therefore k=\frac{h\left(\frac{6}{10}\right)}{-35}
\end{aligned}
$$

Wary students da
not leave in exact form.
(ii)

$$
\begin{aligned}
& m=m_{0} e^{-k t} \\
& m^{\prime}=-k m_{0} e^{-k t}
\end{aligned}
$$

where $m=$ mice
thence $m^{\prime}=$-长m

$$
\begin{aligned}
m & =50 \mathrm{~g} \\
m^{\prime} & \left.=-\frac{\left(-\ln \frac{6}{10}\right.}{3^{5}}\right) \times 50 \\
& =-0.7297 \ldots \\
m^{\prime} & =0.73 \mathrm{~g} 1 \mathrm{~m} .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& 5=100 e^{-k t} \\
& \frac{1}{20}=e^{-k t} \\
& \ln (0.05)=-k t \\
& t=\frac{\ln (0.05)}{-k}=205.26
\end{aligned}
$$

$$
\therefore t=206 \mathrm{~min}
$$

$$
\begin{aligned}
& \text { Exam } 2016 \text { Tical MATHEMATICS :Question...... } 15 \\
& \text { ai. } \frac{T_{3}}{T_{2}}=\frac{T_{2}}{T_{1}}=\frac{2 x}{3} \quad \therefore \text { geometric } \\
& \text { ii. }|r|<1 \quad\left|\frac{2 x}{3}\right|<1 \quad-1<\frac{2 x}{3}<1 \\
& -3<2 x<3 \\
& -\frac{3}{2}<x<\frac{3}{2} \\
& \text { iii. } S_{\infty}=\frac{a}{1-r}=\frac{x}{3} \div\left(1-\frac{2 x}{3}\right) \\
& =\frac{x}{3} \times \frac{3}{3-2 x} \\
& =\frac{x}{3-2 x}
\end{aligned}
$$

bi. $v(t)=\frac{6 t\left(4+t^{3}\right)-3 t^{2}\left(3 t^{2}\right)}{\left(4+t^{3}\right)^{2}}$

$$
=\frac{24 t-3 t^{4}}{\left(4+t^{3}\right)^{2}}
$$

ii. rest when $v(t)=0$

$$
\begin{aligned}
& 0=\frac{24 t-3 t^{4}}{\left(4+t^{3}\right)^{2}} \\
& 0=3 t\left(8-t^{3}\right) \\
& 3 t=0 \quad t^{3}=8 \\
& t=0 \quad t=2
\end{aligned}
$$

(iii) $x(i)=\frac{3(1)^{2}}{4+(t)^{3}}=\frac{3}{5} \quad x(2+2 \sqrt{2})=\frac{3(2+2 \sqrt{2})^{2}}{4+(2+2 \sqrt{2})^{2}}=\frac{3}{5}$
\therefore particle is in the same position at t_{1} and t_{2}.
(iv) the particle moves away from $x=\frac{3}{5}$ and then returns
(v) test

t	$-\frac{1}{2}$	0	$\frac{1}{2}$	$3 / 2$	2
$x^{i}(t)$	$5 / 2$				
	0	0.8	0.69	0.35	0
	-0.14				

\therefore max displacement when $x=2$
$x(2)=\frac{3(2)^{2}}{4+2^{3}}=1$
(v) always test for max or min when it is mentioned

Qu 16-continual next prye
D. Antone

