

Penrith Selective High School

## 2016

Higher School Certificate Examination

# Mathematics

#### **General Instructions**

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A separate reference sheet is to be provided for this examination paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- All diagrams are not to scale
- Multiple choice answer sheet is on page 14 of this paper

## Student Number: \_

Total Marks – 100

Section I Pages 2-5

#### 10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II Pages 6–13

#### 90 marks

- Attempt Questions 11–16
- Allow about 2 hour 45 minutes for this section

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2016 Higher School Certificate Examination.

Section I:

۰.

#### 10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple choice answer sheet provided on page 14 for Questions 1–10.

#### Q1. Which expression is a correct factorisation of $x^3 - 8$

- (A)  $(x-2)(x^2-2x+4)$
- (B)  $(x-2)(x^2-4x+4)$
- (C)  $(x-2)(x^2+2x+4)$
- (D)  $(x-2)(x^2+4x+4)$
- Q2.  $\triangle PQR$  has side lengths x, y and 10 as shown.  $\angle RPQ = 37^{\circ}$  and  $\angle QRP = 42^{\circ}$ .



Which of the following is correct for  $\triangle PQR$ ?

(A) 
$$x = 10 \times \frac{\sin 42^{\circ}}{\sin 37^{\circ}}$$

(B) 
$$y = 10 \times \frac{\sin 37^{\circ}}{\sin 101^{\circ}}$$

$$(C) \qquad x = \frac{10}{\sin 37^{\circ}}$$

(D) 
$$y = \frac{10}{\tan 37^{\circ}}$$

Q3. Which of the following values of m make the points (4, -3), (0, m) and (-2, 5) collinear?

- (A) m = 1(B)  $m = \frac{7}{3}$
- 3
- (C) m = 4
- (D)  $m = -\frac{1}{2}$

Q4. The condition for the quadratic equation  $3x^2 - 12x + k = 0$  to have real roots is

- (A)  $k \leq 36$
- (B)  $k \ge 36$
- (C)  $k \le 12$
- (D)  $k \ge 12$

Q5. What is the centre and radius of the circle with the equation

$$x^2 + y^2 + 6x - 8y - 11 = 0?$$

- (A) Centre (-3, -4) and radius 36
- (B) Centre (-3, 4) and radius 36
- (C) Centre (-3, -4) and radius 6
- (D) Centre (-3, 4) and radius 6

Q6. What is the equation of the normal to the curve  $y = x^2 - 4x$  at (1, -3)?

- (A) x + 2y 7 = 0
- (B) x 2y 7 = 0
- (C) 2x y 5 = 0
- (D) 2x + y + 5 = 0

Q7.

٠.

· .

If a > b, which of the following is always true?

- (A)  $a^2 > b^2$
- (B)  $\frac{1}{a} > \frac{1}{b}$
- (C) -a > -b
- (D)  $2^a > 2^b$

Q8. If  $\tan 2x = \sqrt{3}$  in the domain  $-180^\circ \le x \le 180^\circ$ , the value of x is:

- (A) 30°, 210°
- (B) -150°, -330°
- (C) A and B
- (D) None of above

Q9. The graph illustrated could be:



$$(A) \quad y = 2^x$$

$$(B) \qquad y = (-2)^x$$

(C) 
$$y = \left(\frac{1}{2}\right)^n$$

(D) 
$$y = \left(-\frac{1}{2}\right)^x$$

Q10. The sum of the interior angles of a regular polygon is 4140°. What is the size of each interior angle?

t

¥ ;

.

- (A) 157.5°
- (B) 160°
- (C) 162°
- (D) 165.6°

Section II

1

٠.

#### 90 Marks Attempt Questions 11–16 Allow about 2 hour and 45 minutes for this section

Answer each question on a SEPARATE page.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start this question on a new writing page

a) Solve |4x - 5| = 3(x + 1).

b) Express 
$$\frac{\sqrt{8}}{\sqrt{8} - \sqrt{7}}$$
 in the form  $a + b\sqrt{14}$ , where a and b are integers. 2

3

c) Simplify 
$$\frac{3^{m+1}-3^m}{3^{2m+1}-3^{2m}}$$
 2

#### Question 11 continues on page 7

d)

In the diagram below, A(-2, -1), B(0, 2), C(1, 0) and D(-1, -3) are the vertices of a parallelogram *ABCD*.

!

4



| i)   | Find the midpoint of CD.                                   | 1 |
|------|------------------------------------------------------------|---|
| ii)  | Find the gradient of CD.                                   | 1 |
| iii) | Show that the equation of <i>CD</i> is $3x - 2y - 3 = 0$ . | 1 |
| iv)  | Find the exact length of CD.                               | 2 |
| v)   | Find the exact perpendicular distance from A to CD.        | 2 |
| vi)  | Hence find the area of parallelogram ABCD.                 | 1 |

a) Show that 
$$\cot \theta + \tan \theta = \csc \theta \sec \theta$$

b) State the domain and range of 
$$y = \sqrt{9 - x^2}$$
 2

c) For the parabola: 
$$(y - 2)^2 = 12(x + 3)$$

d) In the diagram, the line FC bisects AE at F and AD at B. The line AE is parallel to CD.



- i) Prove that  $\triangle ABF$  is similar to  $\triangle ADE$ .
- ii) Hence explain why ED = 2BF.

#### Question 12 continues on page 9

2

1

2

e) If  $\alpha$  and  $\beta$  are the roots of  $5x^2 + 3x - 4 = 0$ . Find the values of:

| i)   | $\alpha + \beta$                     | 1 |
|------|--------------------------------------|---|
| ii)  | αβ                                   | 1 |
| iii) | $\frac{2}{\alpha} + \frac{2}{\beta}$ | 1 |
| iv)  | $\alpha^2 + \beta^2$                 | 1 |

;

#### Question 13 (15 marks) Start this question on a new writing page

a) Given that 
$$f(x) = (x^3 - 2)^5$$
, evaluate:

.

•

i) 
$$f'(1)$$
 2  
ii)  $f''(1)$  2

The diagram shows the graph of a function f(x). b)

3

The graph has a minimum turning point at A, a point of inflexion at B and a horizontal point of inflexion at C.



Sketch the graph of the derivative f'(x).

c) Given that 
$$y = x^2 - x$$
, show that  $\frac{dy}{dx} - \frac{d^2y}{dx^2} = \frac{2y - x}{x}$  3

d) Consider the curve given by 
$$y = 3 + 21x - 9x^2 - x^3$$

\_

| Questic | on 14            | (15 marks) Start this question on a new writing page                                                                                                                                                                                                        |   |
|---------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| a)      | Find th          | ne 17th term of the sequence 5, 9, 13, 17,                                                                                                                                                                                                                  | 1 |
| b)      |                  | Im of the first four terms of an arithmetic series equals to the 11th The sum of the 6th and the 7th term is $-123$ .                                                                                                                                       |   |
|         | i)               | Find the first term and the common difference.                                                                                                                                                                                                              | 2 |
|         | ii)              | Find the sum of the first 10 terms.                                                                                                                                                                                                                         | 1 |
| c)      | i)               | In a geometric series $T_1 = 64$ and $T_4 = 1$ . Find the common ratio.                                                                                                                                                                                     | 1 |
|         | ii)              | Explain why this series has a limiting sum.                                                                                                                                                                                                                 | 1 |
|         | iii)             | Find its limiting sum.                                                                                                                                                                                                                                      | 1 |
| d)      | annum<br>loan is | borrows \$650 000 to buy a house. An interest rate of 7.2% per a compounded monthly is charged on the outstanding balance. The to be repaid in equal monthly instalments $(M)$ over 30 year period. s the amount owing at the end of the <i>n</i> th month: |   |
|         | i)               | Write down an expression for $A_1$ .                                                                                                                                                                                                                        | 1 |
|         | ii)              | Show that the amount owing after three months is:                                                                                                                                                                                                           | 2 |
|         |                  | $A_3 = 650000(1.006)^3 - M(1 + 1.006 + 1.006^2)$                                                                                                                                                                                                            |   |
|         | iii)             | Explain why $A_{360} = 0$ .                                                                                                                                                                                                                                 | 1 |
|         | iv)              | Find the value of each instalment $M$ to the nearest cent.                                                                                                                                                                                                  | 3 |
|         | v)               | Suppose now that Mario elects to pay \$5000 per month instead of the amount calculated in part iii). Show that he can pay off the loan 106 months earlier.                                                                                                  | 1 |

, . ,

÷.,

Question 15

د •

#### (15 marks) Start this question on a new writing page

a) Find

i) 
$$\int \left(3x^2 - \frac{1}{x^2}\right) dx$$
 2

ii) 
$$\int \left(\sqrt{x}+1\right)^2 dx$$
 2

b) Find the area enclosed between the curve  $y = x^2 - x - 6$ , the x-axis and 2 the lines x = 1 and x = 4.

c) Find the values of k if 
$$\int_{1}^{k} (3x^2 - 25)dx = 24$$
 3

d) Use Simpson's rule with 5 function values to find the approximate area enclosed between the curve  $f(x) = \frac{x}{1+x^2}dx$ , the x-axis and the line x = 1 and x = 2. Round your answer to 3 decimal places. 2

e) The region bounded by the curve  $y = 2 - \sqrt{x}$  and the x-axis between x = 0 and x = 4 is rotated about the x-axis to form a solid.

.

### Question 16 (15 marks) Start this question on a new writing page

a) Luigi has designed a garden bed which consists of a rectangle of width y metres and length 4x metres, and a semi-circle as shown in the diagram.



If the perimeter of the garden bed is to be 50 metres.

b)

| i)                                 | Show that the perimeter of this garden bed can be expressed as                                                                                                                                                                                                                                                   | 1 |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                    | $2x\pi + 2y + 4x = 50$                                                                                                                                                                                                                                                                                           |   |
| ii)                                | Rearrange the above perimeter to express $y$ in terms of $x$ .                                                                                                                                                                                                                                                   | 1 |
| iii)                               | Show that the area of the garden bed can be given by the formula                                                                                                                                                                                                                                                 | 2 |
|                                    | $A = 100x - 8x^2 - 2x^2\pi$                                                                                                                                                                                                                                                                                      |   |
| iv)                                | Find the value of $x$ that gives the maximum area. Correct your answer to 2 decimal places.                                                                                                                                                                                                                      | 3 |
| straigh<br>walk f<br><i>km</i> alc | is on a paddle board in the ocean 3 $km$ from the nearest point O on a at beach. He needs to paddle to a point A east along the beach and auther east the rest of the distance to meet his friend Peach who is 6 ong the beach from O. Yoshi is able to paddle at a rate of 4 $km/h$ alk at a rate of 5 $km/h$ . |   |
| i)                                 | Draw a diagram to represent this information.                                                                                                                                                                                                                                                                    | 1 |
| ii)                                | Let x be the distance between point O and point A. Show that the total time $T(x)$ hours, for Yoshi to reach Peach is given by:                                                                                                                                                                                  | 2 |

$$T(x) = \frac{\sqrt{x^2 + 9}}{4} + \frac{6 - x}{5}$$

- iii) Find value of x that gives the minimum time for Yoshi to reach4 Peach on the beach.
- iv) Find the minimum time for Yoshi to reach Peach on the beach. 1

#### **End of Paper**

Name: \_\_\_\_Antone\_\_\_\_\_

## Maths Trial 2016

## 4 Options Multiple Choice Answer Sheet for Qns 1 To 10

| 1)<br>2)<br>3)<br>4)<br>5)  | A<br>A<br>A<br>A<br>A | B<br>B<br>B<br>B<br>B                                                                       | C C C C<br>O          | n<br>D<br>D<br>D<br>D<br>D |
|-----------------------------|-----------------------|---------------------------------------------------------------------------------------------|-----------------------|----------------------------|
| 6)<br>7)<br>8)<br>9)<br>10) | A<br>A<br>A<br>A      | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | C<br>C<br>C<br>C<br>C | 0 0 0 0<br>0 0             |

4

Exam MATHEMATICS : Question. 1  
Suggested Solutions Marker's Comments  
(a) 
$$2x^{2} - 9x - 5 = (2\pi + 1)(x - 5)$$
 ( $x - 5$ )  
(b)  $13\pi + 1| \le 4$   
 $-4 \le 3\pi + 1 \le 4 \Rightarrow -5 \le 3\pi \le 3$   
 $\Rightarrow -5/3 \le \pi \le 1$  ( $-9/4 + 1/1 + 1/4 = 10$ )  
 $y' = 2\pi + 3\pi$ ,  $at = 2, y = 10$   
 $y' = 2\pi + 3\pi$ ,  $at = 2, m = 7$   
Equation of tangent at  $(2, 10)$ :  
 $y - 10 = 7(\pi - 2)$   
 $\Rightarrow y = 7\pi - 4$  ( $2, 10$ ):  
 $y - 10 = 7(\pi - 2)$   
 $\Rightarrow y = 7\pi - 4$  ( $2, 7\pi - y - 4 = 0$ )  
 $d) f(x) = x \sin 5\pi x$   
 $f^{1}(x) = 2x \cos 2x + 5 \sin 2x$   
 $f^{1}(x) = 2x \cos 2x + 5 \sin 2x$   
 $e) x^{2} = 8(y - 3)$   
 $a = 2$ ,  $Fo \cos(0, 5)$   
 $f) g'' = 20$   
 $l = 2x 20 = 40$  cm ( $r = \frac{1}{4}$  ( $e^{2} - e^{2}$ )  
 $D. Antony$ 

| Exam 20 trial                                                                                                                                                     | MATHEMATICS : Questi  | on.1.2     | ·                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|--------------------------------------------------|
| · DNG MA                                                                                                                                                          | Suggested Solutions   | ·········· | Marker's Comments                                |
| $\frac{\partial dx}{\partial x} \left( e^{4x} + 2x \right)^{3} = 3 \left( e^{4x} + 2x \right)^{2} \left( 4e^{4x} + 2z \right)^{2} \left( 4e^{4x} + 2 \right)^{3}$ |                       |            | Some students<br>did deduct 1<br>from the power  |
| $i) \frac{d}{dx} \left( \frac{\cos x}{x+1} \right)$ $= -\frac{\sin x (x+1) - \cos x}{(x+1)^2}$                                                                    |                       |            | Most students<br>did this correctly              |
| (a) $\int \frac{6x}{x^2 + 3} dx = 3 \int \frac{2x}{x^2 + 3} = 3 \ln(x)$                                                                                           | dx <sup>2</sup> +3)+C |            | Most students<br>did this correctly              |
| c) i) $T_{15} = a + (n-1)d$<br>= $b + (15-1)5$<br>= $7b$                                                                                                          |                       |            | Some students                                    |
| $\begin{array}{c} \dot{u} \\ \dot{u} \\ S_{15} = \frac{15}{2} \left[ 2 \times 6 + (1 + 1) \right] \\ = \frac{15}{2} \left( 12 + 70 \right) \\ = 615 \end{array}$  |                       |            | the formula<br>for To and                        |
| $\frac{1}{100} = \frac{1}{2} \left( 2 \times 6 + \frac{1}{2} \right) = \frac{1}{2} \left( 2 \times 6 + \frac{1}{2} \right) = \frac{1}{2} \left( 12 + 5 \right)$   | _5)                   |            | Some students                                    |
| $700 = 5n^{2} + 7n$ $5n^{2} + 7n - 700 = 0$ $n = -7 \pm \sqrt{7^{2} - 4x5}$ $2x5$                                                                                 | -                     |            | did not solve<br>for n.                          |
| $= -7 \pm \sqrt{49 + 1400}$ $\frac{10}{10}$ $n_{2} = -12.55.07$                                                                                                   | 11 153                |            |                                                  |
| $n > 0  and  mv$ $i  n =   $ $d(i)  i)  A = \frac{h}{2} \left( 0 + \frac{h}{2} \right) $                                                                          | U                     | where h= 5 | Students<br>d.d not                              |
| $= 220 m^{2}$ $iii) V = 1.2 \times 220$                                                                                                                           |                       |            | get all y<br>values. Some studen<br>did not know |
| $= 264 m^{3}$                                                                                                                                                     |                       |            | the trapezoid rule.                              |

$$|3 \ (3)(i)\pi(0,4) \ (6,1)$$

$$M = \frac{1-4}{6-0} = -\frac{3}{6} = -\frac{1}{2}$$

$$Y - 4 = -\frac{1}{2}(n-0)$$

$$2Y - 8 = -n$$

$$N + 2Y - 8 = 0$$

$$(II) d = \frac{|1(1) + 2(-4) - 8|}{\sqrt{12 + 2^2}} = \frac{11 - 8 - 8|}{\sqrt{5}} = \frac{15}{\sqrt{5}}$$

most common error mixing the ord -ve

.

$$[13)b_{2}(1)b_{2}(1)b_{2}(1)b_{3}(1)b_{4}(1) = 0$$

$$b_{1} - x^{2} = 0$$

$$x_{1}(b - 2x) = 0$$

$$x_{2} = 0 \quad x_{2}(b - 2x) = 0$$

$$x_{3} = 0 \quad x_{4}(b - 2x) = 0$$

$$x_{4} = 0 \quad x_{4}(b - 2x) = 0$$

$$x_{4} = 0 \quad x_{4}(b - 2x) = 0$$

$$x_{4} = 0 \quad x_{4}(b - 2x) = 0$$

$$x_{4} = 0 \quad x_{4}(b - 2x) = 0$$

$$x_{4} = 0$$

Shekents tended  
to integrate either  

$$A = \int_{0}^{7} t \int_{0}^{7}$$
  
or  $A = \int_{0}^{6} t \int_{0}^{7}$ 

· .

•

$$\frac{d^2y}{dx^2} = 6x + b$$

$$\frac{d^2}{y} = 0$$

$$6n + b = D$$
  
$$6n = -b$$
  
$$n = -1$$

n -2 -1 0 d<sup>2</sup>y/dx<sup>2</sup> -6 0 6 (change in concernity) i point of inflexion ad (-1, 11)

¢

(1) 
$$-6 \le x \le 4$$
  
 $x = b, y = -34$   
 $x = 4, y = 7b$ .

Some students  
used more from  
$$\chi = -3$$
 in part (i)

$$V = \int_{a}^{b} T y^{2} dx$$

$$= T \int_{1}^{2} \frac{2n}{3x^{2} - 1} dx$$

$$= T \int_{1}^{2} \frac{bn}{3x^{2} - 1} dx$$

$$= T \int_{1}^{2} \frac{bn}{3x^{2} - 1} dx$$

$$= T \int_{3}^{2} \left[ \ln(3x^{2} - 1) \right]$$

. Mar value at 76

j

c) (i) 
$$M_{0} = 100$$
  
 $60 = 100e^{-35K}$   
 $\frac{60}{100} = 0^{-35K}$   
 $\ln(0.6) = -35K$   
 $\ln(6.6) = -35K$   
 $\frac{1}{-35}$ 

.

b Ar

.

$$M = Sog$$

$$M' = -(-1m\frac{6}{10}) \times So$$

$$= -0.7297$$

$$M' = 0.7391m$$

(iii) 
$$S = 100e^{-kt}$$
  
 $\frac{1}{20} = e^{-kt}$   
 $\ln(0.05) = -kt$   
 $t = \ln(0.05) = 205.26$   
 $\frac{1}{-k}$ 

| Exam 2016 Thick MATHEMATICS : Question 15<br>Suggested Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marker's Comments                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Qi. $\frac{T_3}{T_2} = \frac{T_2}{T_1} = \frac{2x}{3}$ : geometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i. not enough to<br>find $r = \frac{2x}{3}$ only                     |
| ii. $ r  < 1$ $\left \frac{2x}{3}\right  < 1 - 1 < \frac{2x}{3} < 1$<br>-3<2x<3<br>$-\frac{3}{2} < x < \frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ii. some students<br>found limiting<br>sum instead of<br>[r]<1       |
| $111. 5_{\infty} = \frac{\alpha}{1-r} = \frac{x}{3} \div (1 - \frac{2x}{3})$ $= \frac{x}{3} \times \frac{3}{3-2x}$ $= \frac{x}{3-2x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iii. many students<br>found sum of GF<br>instead of<br>limiting sum  |
| bi. $w(t) = \frac{bt(4+t^3)-3t^2(3t^2)}{(4+t^3)^2}$<br>= $\frac{24t-3t^4}{(4+t^3)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bi. first line is<br>enough for full<br>marks without<br>simplifying |
| ii) rest when $v(t) = 0$<br>$0 = \frac{24t - 3t^{4}}{(4+t^{3})^{2}}$ $0 = \frac{8}{3t}(8-t^{3})$ $3t = 0  t^{3} = 8$ $t = 0  t = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |
| (11i) $\chi(1) = \frac{3(1)^2}{4+(t)^3} = \frac{3}{5} \qquad \chi(2+2\sqrt{2}) = \frac{3(2+2\sqrt{2})^2}{4+(2+2\sqrt{2})^2} = \frac{3}{5}$<br>.: particle is in the same position at $t_1$ and $t_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 (111) Show that'<br>question -><br>show substitution               |
| (iv) the particle moves away from $x = \frac{3}{5}$<br>and then returns<br>(v) test $\frac{t}{1-\frac{1}{2}}   0   \frac{1}{2}   \frac{3}{2}   2   \frac{5}{2}$ when $x = 2$<br>$x^{1}(t)   0.8   0   0.69   0.38   0   -0.14$ when $x = 2$<br>$x(2) = \frac{3(2)^{2}}{4+2^{3}} = \frac{1}{4+2^{3}}   \frac{1}{2}   \frac{1}{$ | acement<br>(v) always test for                                       |
| $\int (2) = \frac{3(2)^2}{4+2^3} = 3$                                                                                                                                                                                                                                                                                                                                                | I max or min when<br>it is mentioned                                 |

•

Exam Mathematics : Question [5]  
Suggested Solutions  
Ci. 
$$A_1 = 20000 \times 1.0075^{-1} P$$
  
 $A_2 = 20000 \times 1.0075^{-1} - P(1+1.0075^{-1})$   
ii.  $A_n = 20000 \times 1.0075^{-1} - P(1+1.0075^{-1})$   
 $A_n = 0$   
 $P = \frac{20000 \times 1.0075^{-1}}{1+1.0075^{-1}-1} = $415467$   
 $\frac{1.0075^{-10}-1}{0.0075^{-1}} = $415467$   
iii. show your calculation  
(24910 - 20000 = 4900 saved)  
iii. show your calculation  
(29000 - 20000 - 24900 saved)  
iii. show your calculation

¢

Exam MATHEMATICS Question 16  
Suggested Solutions  

$$a.i) \left(\frac{a+b}{5}\right)^{2} - \left(\frac{a'+b''}{25} + 2ab}{25} = \frac{23ab+2ab}{15}\right)$$

$$= \frac{25ab}{25} = ab$$

$$= \frac{25ab}{15} = ab$$

$$= \frac{23ab+2ab}{15} = \frac{23ab+2ab}{15}$$

$$= \frac{25ab}{15} = ab$$

$$= \frac{1}{15} = \frac{1}{15$$

Exam MATHEMATICS Suggested Solutions c-i) △SOR=+X4X6cmx S(x,y)= 12 Sing /  $C-iii) \triangle S'OT = [\chi_{2X} \in Sin(90-\alpha)]$ = GGJX A = 12 Sinx+6 Gosq C-iii)  $\frac{dA}{dI} = 12 GOA - 6 sing$  $dA = 0 \implies 12 \cos \alpha - 6 \sin \alpha = 0 \implies ten \alpha = 2$  $\frac{\sqrt{1^2}A}{\sqrt{1^2}} = -12 \text{ sind} - 6 \text{ Gosq}$ When tond = 2  $\frac{J'A}{J'x_1} = -12 \times \frac{L}{\sqrt{r}} - 6 \times \frac{1}{\sqrt{r}} < 0$ i There is a mase value at d = tom 2. L C-IV) For S(x,y);  $\chi = 6 \cos \lambda = \frac{6}{\sqrt{2}}$  $y = 6 \sin \alpha = \frac{12}{\sqrt{F}}$ D. Antone