

PRESBYTERIAN LADIES' COLLEGE SYDNEY

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 120

- Attempt questions 1-10
- All questions are of equal value

1	2	3	4	5	6	7	8	9	10	Total	Total

Question 1 (12 marks) Start a new sheet of writing paper.

a) Evaluate $\frac{e^{5}}{(-2)^{2}}$ correct to 3 significant figures.
b) \quad Simplify $\frac{x-1}{1-x}$
c) Solve $|2 x-1| \geq 6$ and graph your solution on a number line.
d) Given $\frac{2}{\sqrt{3}-2}=a \sqrt{3}+b$, find the values of a and b.
e) The velocity of a particle is given by the equation $v=\frac{\log _{e}(t-1)}{2}$, metres per second.

Find the acceleration at $t=2$ seconds.
f) Factorise fully $x^{6}-64$.

End of Question 1

Question 2 (12 marks) Start a new sheet of writing paper.

a) Differentiate, with respect to x :
i) $\quad \frac{\sin x}{x}$
ii) $\quad \log _{e}(5 x-4)^{3}$
b) Find $\int 2 e^{3 x-5} d x$.
c) Evaluate $\int_{1}^{2} \frac{3 x}{4 x^{2}-2} d x$ leaving your answer in exact form.
d) Find the exact value of $\sin 495^{\circ} \tan 240^{\circ}$
e) If KL, MN and PQ are all parallel lines,

End of Question 2

Question 3 (12 marks) Start a new sheet of writing paper.

$A(2,6)$ and $B(-3,1)$ are points on the number plane.
a) On your answer sheet, plot the points on a number plane (at least one-
third of a page).

1
d) Show that the equation of $A B$ is $y=x+4$.
e) Show that the equation of the perpendicular bisector to $A B$ is 2 $x+y-3=0$.
f) Show that $D(6,-3)$ lies on the perpendicular bisector.
g) Find the coordinates of E such that $A D B E$ is a rhombus.
h) Show that the perpendicular distance from D to $A B$ is $\frac{13 \sqrt{2}}{2}$ units.
i) Find the distance $A B$ in surd form. $\mathbf{1}$
j) Hence, or otherwise, find the area of $A D B E$. 1

End of Question 3

Question 4 ($\mathbf{1 2}$ marks) \quad Start a new sheet of writing paper.

a) Solve $2 \sin \theta+\sqrt{3}=0 \quad$ for $0 \leq \theta \leq 2 \pi$
b) \quad Find the value(s) of k in $x^{2}-k x+3 k-8=0$ if:
i) 2 is a root of the quadratic.
ii) The roots are equal in magnitude but opposite in sign.
iii) The roots are real.
iv) The roots are reciprocals of one another.
c)

DIAGRAM NOT DRAWN TO SCALE

In the diagram above, $A B$ is parallel to $C D . X B$ bisects $\angle A B C$ and $Y C$ bisects $\angle B C D . B X=C Y$,
i) Copy the diagram into your answer booklet, showing all information.
ii) Prove that Z is the midpoint of $B C$.

End of Question 4

Question 5 (12 marks) Start a new sheet of writing paper.

a) If the sum of n terms of the series $15+13+11+\ldots$ is 55 , find the number of terms possible in the series.
b) i) Find the sum of the series: $4+8+16+\ldots+1024$
ii) Hence, or otherwise, simplify $2^{4} \times 2^{8} \times 2^{16} \times \ldots \times 2^{1024}$, leaving your answer in index form.
c) i) Find the vertex of the parabola with focus at $(3,2)$ and directrix at $x=5$
ii) Hence, or otherwise, state the equation of the parabola.
iii) Show that the points of intersection of the parabola and the line $2 x+y-6=0$ are $(3,0)$ and $(0,6)$.
iv) Find the area between the parabola and the line in the first quadrant.

End of Question 5

Question 6 (12 marks) Start a new sheet of writing paper.

$$
\text { If } f(x)=6 x^{3}+9 x^{2}-3
$$

a) i) Show that $6 x^{3}+9 x^{2}-3=3(x+1)^{2}(2 x-1)$ 1
ii) Hence find the x intercepts. 2
b) Determine the y intercept. 1
c) Find the stationary point(s) and determine their nature. 4
d) Find the point(s) of inflexion. 2
e) On a number plane (at least one-third of a page) sketch the curve 2

$$
f(x)=6 x^{3}+9 x^{2}-3
$$

showing all of the above features.

End of Question 6

Question 7 (12 marks) Start a new sheet of writing paper.

a) Find the equation of the tangent to the curve $y=x^{2}+\frac{1}{x}$ at the point where $x=1$ (answer in gradient-intercept form)
b) The velocity, $v \mathrm{~m} / \mathrm{s}$, of a particle moving along a straight line is given by $v=2+t-3 t^{2}$ where t is in seconds. If the particle is initially at the origin,
i) Find when the particle is at rest
ii) Sketch the velocity function from $t=0$ to $t=4$ seconds.
iii) Find the total distance travelled by the particle in the first 4 seconds.
c) The graph of $y=f^{\prime}(x)$ is given below:

DIAGRAM NOT DRAWN TO SCALE
Copy or trace the curve into your answer booklet and carefully sketch and label the graph of $y=f(x)$ on the same set of axes. You may need to highlight your answer.

End of Question 7

Question 8 (12 marks) Start a new sheet of writing paper.

a) i) Sketch $y=1-\sin 2 x$ for $-\pi \leq x \leq \pi$ is $2 x+y=1$.
iii) For what range of values of m does the equation $1-\sin 2 x=1-m x$ have exactly 3 solutions in the domain $-\pi \leq x \leq \pi$.
b) Find the volume generated when the area between the curve $y=\tan x$ and $x=0$ and $x=\frac{\pi}{4}$ is rotated about the x-axis.
c) Constance is doing yo-yo tricks. She is doing "around the world". That is, she is keeping the yo-yo at its maximum length for a complete revolution. The length of the string on the yo-yo is 0.4 metres.
i) Find the distance the yo-yo travels from a point A to another point B if the angle subtended at the centre is $\frac{3 \pi}{5}$ radians.
ii) Find the area of the sector that the yo-yo sweeps around from A to B .

End of Question 8

Question 9 (12 marks) Start a new sheet of writing paper.

a) Simplify:

$$
\tan \theta \sqrt{1-\sin ^{2} \theta}
$$

b) Evaluate $\sum_{n=0}^{4} \sin ^{2}\left(\frac{n \pi}{3}\right)$. the curve $y=2^{x}$, the x-axis, $x=-1$ and $x=1$. Leave your answer in surd form.
d) A radioactive element used in a hospital decays according to $y=A e^{-k t}$, where k is a constant and t is time in years. If the element has a mass, y, of 200 g in 2009 , and 182 g in 2010:
i) Show that $k=-\log _{e}\left(\frac{91}{100}\right)$
ii) Find its mass in 2039. Answer to 1 decimal place.
iii) Find its half-life (that is, the length of time elapsed when it has lost half 2 of its original mass).

End of Question 9

Question 10 (12 marks) \quad Start a new sheet of writing paper.

a) Solve:
$\log _{e}(6 x+9)-\log _{e}(x-1)=\log _{e}(3 x-1)$
b) The general term of a geometric series is defined by $T_{n}=(x-2)^{n}$. find:
i) The value(s) of x for which the series has a limiting sum
ii) This limit in terms of x
c) A 3 m vertical fence stands 2 metres from a high vertical wall. A ladder is placed from the horizontal ground to the wall, resting on the fence. The base of the ladder is x metres from the fence.

i) Show that the square of the length of the ladder is given by
$L^{2}=(x+2)^{2}\left(1+\frac{9}{x^{2}}\right)$
ii) How long is the shortest ladder that can reach from the ground outside the fence to the wall, correct to 2 decimal places? Show all working.

End of Examination

Blank Page

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Solutions for exams and assessment -tasks

Academic Year	Yr 12	Calendar Year	2010
Course	20 maths	Name of task/exam	TRIAL EXAM

Question 1:
a)

$$
\begin{aligned}
\frac{e^{5}}{(-2)^{2}} & =37.103 \ldots \\
& =37.1 \quad\left(3 \mathrm{sig} f_{i g s}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{x-1}{1-x} & =\frac{x-1}{-(-1+x)} \\
& =\frac{(x-1)^{\prime}}{-(x-1)^{\prime}} \\
& =-1
\end{aligned}
$$

c) $|2 x-1| \geqslant 6$

$$
\begin{array}{rl}
2 x-1 \leqslant-6, & 2 x-1 \geqslant 6 \\
2 x \leqslant-5 & 2 x \geqslant 7 \\
x \leqslant-\frac{5}{2}, & x \geqslant \frac{7}{2}
\end{array}
$$

d) $\frac{2}{\sqrt{3}-2}=a \sqrt{3}+b$

$$
\begin{aligned}
L_{H S} & =\frac{2}{\sqrt{3}-2} \times \frac{\sqrt{3}+2}{\sqrt{3}+2} \\
& =\frac{2 \sqrt{3}+4}{3-4} \\
& =-2 \sqrt{3}-4 \\
\therefore & -2 \sqrt{3}-4=a \sqrt{3}+b \\
& \therefore a=-2, \quad b=-4
\end{aligned}
$$

- e) $v=\frac{\log _{e}(t-1)}{2}$

$$
\begin{aligned}
& a=\frac{1}{2}\left(\frac{1}{t-1}\right) \\
& a=\frac{1}{2(t-1)}
\end{aligned}
$$

when $t=2$

$$
\begin{aligned}
& a=\frac{1}{2(1)} \\
& a=\frac{1}{2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

f) $x^{6}-64=\left(x^{3}\right)^{2}-8^{2}$

$$
=\left(x^{3}-8\right)\left(x^{3}+8\right)
$$

$$
=(x-2)\left(x^{2}+2 x+4\right)(x+2)\left(x^{2}-2 x+4\right)
$$

$O R$

$$
\begin{aligned}
x^{6}-64 & =\left(x^{2}\right)^{3}-4^{3} \\
& =\left(x^{2}-4\right)\left(x^{4}+4 x^{2}+16\right) \\
& =(x-2)(x+2)\left(x^{4}+4 x^{2}+16\right)
\end{aligned}
$$

Question $2:$

$$
\begin{array}{ll}
\text { a) i) } \frac{d}{d x}\left(\frac{\sin x}{x}\right) & u=\sin x \\
=\frac{u^{\prime}=\cos x}{v^{2}}-u v^{\prime} & v=x \\
=\frac{v^{\prime}=1}{x^{2}} &
\end{array}
$$

Page 1 of 11

$$
=\frac{x \cos x-\sin x}{x^{2}}
$$

Solutions for exams and assessment -tasks

Academic Year	yr 12	Calendar Year	2010
Course	20 maths	Name of task/exam	TRIAL EXAM

a) ii) $\frac{d}{d x} \log _{e}(5 x-4)^{3}$

$$
\begin{aligned}
& =\frac{3(5 x-4)^{2}(5)}{(5 x-4)^{3}} \\
& =\frac{15}{(5 x-4)}
\end{aligned}
$$

DR $\frac{d}{d x} \log _{c}(5 x-4)^{3}$
$=\frac{d}{d x} 3 \log _{e}(5 x-4)$

$$
=3 \times \frac{5}{(5 x-4)}
$$

$$
=\frac{15}{(5 x-4)}
$$

b) $\int 2 e^{3 x-5} d x=\frac{2 e^{3 x-5}}{3}+c$
c) $\int_{1}^{2} \frac{3 x}{4 x^{2}-2} d x=\frac{3}{8} \int_{1}^{2} \frac{8 x}{4 x^{2}-2} d x$

$$
\begin{aligned}
& =\frac{3}{8}\left[\log _{e}\left(4 x^{2}-2\right)\right]^{2} \\
= & \frac{3}{8}\left[\log _{e} 14-\log _{e} 2\right] \\
= & \frac{3}{8} \log _{e}\left(\frac{14}{2}\right) \\
= & \frac{3}{8} \log _{e} 7
\end{aligned}
$$

d)

$$
\begin{aligned}
& \sin 495^{\circ} \tan 240^{\circ}=\frac{1}{\sqrt{2}} \times \sqrt{3} \\
&=\frac{\sqrt{3}}{\sqrt{2}} \\
& \text { or } \frac{\sqrt{6}}{2}
\end{aligned}
$$

e) $\frac{A B}{B C}=\frac{A E}{E F} \quad\left(\begin{array}{l}\text { when } 3 \text { or more lines are } \\ \text { cut by two transversals, } \\ \text { the ratio of inter opts }\end{array}\right)$ are equal.

$$
\begin{aligned}
& \frac{4}{9}=\frac{x}{11} \\
& x=\frac{44}{9}
\end{aligned}
$$

Question 3 :
a)

b) $C\left(-\frac{1}{2}, \frac{7}{2}\right)$
c)

$$
\begin{aligned}
m_{A B} & =\frac{\text { rise }}{r \cup N} \\
m_{A B} & =\frac{5}{5} \\
\therefore m_{A B} & =1
\end{aligned}
$$

d)

$$
\begin{aligned}
& y-6=1(x-2) \\
& y-6=x-2 \\
& y=x+4
\end{aligned}
$$

e) $m_{1}=-1 \quad$ (since $\left.m_{1} m_{2}=-1\right)$ $\&$ midpt $\left(-\frac{1}{2}, \frac{7}{2}\right)$
\therefore equation : $y-\frac{7}{2}=-1\left(x+\frac{1}{2}\right)$

$$
2 y-7=-2 x-1 \quad \text { Page } 2 \text { of } 11
$$

$$
\begin{aligned}
& 2 x+2 y-6=0 \\
& x+y-3=0
\end{aligned}
$$

Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2010
Course	2 unit maths	Name of task/exam	TRIAL EXAM

$$
\begin{aligned}
& f) D(6,-3) \quad x+y-3=0 \\
& \begin{aligned}
\text { LHS } & =6-3-3 \\
& =0 \\
& =\text { RHS }
\end{aligned}
\end{aligned}
$$

$\therefore(6,-3)$ lies on perpendicular bisector.
g) $(-7,10)$
b) $d_{\perp}=\frac{\left|a x_{1}+b_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$
$A B: 2-y+4 \quad \dot{D}(6,-3)$

$$
\begin{aligned}
\therefore d_{\perp} & =\left|\frac{6-(-3)+4}{\sqrt{1^{2}+(-1)^{2}}}\right| \\
& =\frac{13}{\sqrt{2}} \\
& =\frac{13}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{13 \sqrt{2}}{2} \text { units }
\end{aligned}
$$

i)

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-3-2)^{2}+(1-6)^{2}} \\
& =\sqrt{25+25} \\
& =5 \sqrt{2} \text { units }
\end{aligned}
$$

j) $A=\left(\frac{1}{2} \times \frac{13 \sqrt{2}}{2} \times 5 \sqrt{2}\right) \times 2$

$$
A=65 \quad \text { units }{ }^{2}
$$

Question 4 :
a)

$$
\begin{aligned}
& 2 \sin \theta+\sqrt{3}=0 \\
& \sin \theta=-\frac{\sqrt{3}}{2} \quad \frac{1}{\sqrt{2}} \\
& \theta=\pi+\frac{\pi}{3}, 2 \pi-\frac{\pi}{3} \\
& \theta=\frac{4 \pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

b) $x^{2}-k x+3 k-8=0$
i) 2 root $\Rightarrow x=2$ satisfies

$$
\begin{gathered}
2^{2}-k(2)+3 k-8=0 \\
4-2 k+3 k-8=0 \\
k-4=0 \\
k=4
\end{gathered}
$$

ii) roots equal in magnitude. opposite in sign.
\therefore Let roots be $\alpha,-\alpha$
Sum of roots: $\alpha-\alpha=-\frac{b}{a}$

$$
\begin{aligned}
& 0=\frac{-(-k)}{1} \\
& k=0
\end{aligned}
$$

iii) real roots $\Rightarrow \Delta \geqslant 0$.

$$
\begin{gathered}
b^{2}-4 a c \geqslant 0 \\
(-k)^{2}-4(1)(3 k-8) \geqslant 0 \\
k^{2}-12 k+32 \geqslant 0 \\
(k-8)(k-4) \geqslant 0 \\
k \leqslant 4, k \geqslant 8
\end{gathered}
$$

iv) reciprocal roots

Let roots be $\alpha, \frac{1}{\alpha}$
$\underbrace{\text { product of roots }} \alpha\left(\frac{1}{\alpha}\right)=\frac{c}{a}$ Page 3 of 11

$$
\begin{aligned}
& 1=3 k-8 \\
& k=3
\end{aligned}
$$

Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2010
Course	$20 n^{\prime}+$ maths	Name of task/exam	TRIAL ExAm

c) i)

ii) $\angle A B C=\angle B C D$ (alternate angles equal $A B \| C D$)
$\angle A B X=\angle X B Z \quad(X B$ bisects $\angle A B C)$
$\angle Z C Y=S Y C D \quad(C Y$ bisects $S B C D)$
$\therefore \angle A B X=\angle X B Z=\angle Z C Y=\angle Y C D$
In $\triangle B X Z$ and $\Delta C Y Z$,

$$
\begin{aligned}
& B X=C Y \quad \text { (given) } \\
& <B B Z=Z C y \quad \text { (proved above) } \\
& <B Z X=\angle C Z Y \quad \text { (vertically opposite) } \\
& \therefore \triangle B X Z \equiv \triangle C Y Z \text { (AAS) } \\
& \therefore B Z=C Z \quad \text { (corresponding sides } \\
& \therefore Z \text { is congruent triangles } \\
& \text { midpoint of } B C \text {. }
\end{aligned}
$$

Question 5:
a) $15+13+11+\ldots+\ldots$

$$
s_{n}=55
$$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$$
a=15
$$

$$
d=-2
$$

$$
55=\frac{n}{2}[30+(n-1)(-2)]
$$

$$
110=n[30-2 n+2]
$$

$$
110=n[32-2 n]
$$

$$
110=32 n-2 n^{2}
$$

$$
2 n^{2}-32 n+110=0
$$

$$
n^{2}-16 n+55=0
$$

$$
(n-11)(n-5)=0
$$

$$
\therefore n=5,11
$$

b) i) $4+8+16+\ldots+1024$

$$
\begin{aligned}
T_{n} & =\operatorname{ar}^{n-1} \\
1024 & =4(2)^{n-1} \\
256 & =2^{n-1} \\
2^{8} & =2^{n-1} \\
\therefore n & =9 \\
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
& =\frac{4\left(2^{9}-1\right)}{1} \\
& =2044
\end{aligned}
$$

ii) 2^{2044}

$$
\begin{aligned}
a & =4 \\
r & =2 \\
T_{n} & =1024
\end{aligned}
$$

Academic.Year	Yr 12	Calendar Year	2010
Course	2 unit maths	Name of task/exam	TRIAL EXAM

c) i)

$$
V(4,2)
$$

ii) eq n

$$
\begin{aligned}
& (y-2)^{2}=-4(1)(x-4) \\
& (y-2)^{2}=-4(x-4)
\end{aligned}
$$

iii)

$$
\begin{aligned}
& 2 x+y-6=0 \\
& y=-2 x+6 .
\end{aligned}
$$

subst. into parabola

$$
\left.\left.\begin{array}{c}
(y-2)^{2}=-4(x-4) \\
\therefore(-2 x+6-2)^{2}=-4 x+16 \\
(-2 x+4)^{2}=-4 x+16 \\
4 x^{2}-16 x+2=-4 x+46 \\
4 x^{2}-12 x=0 \\
4 x(x-3)=0 \\
\therefore x=0 \\
y=6
\end{array}\right\} \begin{array}{l}
x=3 \\
y=0
\end{array}\right\}
$$

$\therefore i v) \cdot A=\int_{0}^{6}$ parabola $-A_{\text {triangle }}$

$$
\begin{aligned}
& =\int_{0}^{6} \text { parabola }-\frac{1}{2} \times 3 \times 6 \\
& =\int_{0}^{6} \text { parabola }-9
\end{aligned}
$$

$\cdot(y-2)^{2}=-4(x-4)$
$-\frac{1}{4}(y-2)^{2}=x-4$

$$
\begin{aligned}
& x=4-\frac{1}{4}(y-2)^{2} \\
\therefore & \int_{0}^{6}\left(4-\frac{1}{4}(y-2)^{2}\right) d y-9 \\
= & {\left[4 y-\frac{1}{4} \frac{(y-2)^{3}}{1 \times 3}\right]_{0}^{6}-9 } \\
= & \left(24-\frac{1}{4}\binom{64}{3}\right)-\left(0-\frac{1}{4}\binom{-8}{3}\right)-9 \\
= & \left(24-\frac{16}{3}-\frac{2}{3}\right)-9 \\
= & 9 \text { units }^{2}
\end{aligned}
$$

Question 6 :
a) i) Show $6 x^{3}+9 x^{2}-3=3(x+1)^{2}(2 x-1)$

$$
\begin{aligned}
\text { RUS } & =3(x+1)^{2}(2 x-1) \\
& =3\left(x^{2}+2 x+1\right)(2 x-1) \\
& =\left(3 x^{2}+6 x+3\right)(2 x-1) \\
& =6 x^{3}+12 x^{2}+6 x-3 x^{2}-6 x-3 \\
& =6 x^{3}+9 x^{2}-3 \\
& =\text { LHS }
\end{aligned}
$$

\therefore shown
ii) x-intercepts \Rightarrow set $y=0$

$$
\therefore 6 x^{3}+9 x^{2}-3=0
$$

$3(x+1)^{2}(2 x-1)=0 \quad$ Page 5 of 11
$\therefore x=-1, \frac{1}{2}$

Academic Year	Yr 12	Calendar Year	2010
Course	2unit maths	Name of task/exam	TRiAL ExAm

b) y-intercept \Rightarrow set $x=0$.

$$
\begin{aligned}
\therefore y & =6(0)^{3}+9(0)^{2}-3 \\
y & =-3
\end{aligned}
$$

c)

$$
\begin{aligned}
& f(x)=6 x^{3}+9 x^{2}-3 \\
& f^{\prime}(x)=18 x^{2}+18 x
\end{aligned}
$$

for s tat. pts $f^{\prime}(x)=0$

$$
\begin{aligned}
& \therefore 18 x^{2}+18 x=0 \\
& 18 x(x+1)=0 \\
& \therefore x=0 \quad x=-1 \\
& y=-3 \quad y=0 \\
& \therefore(0,-3) \quad \&(-1,0)
\end{aligned}
$$

are stationary points

$$
f^{\prime \prime}(x)=36 x+18
$$

when $x=0$

$$
f^{\prime \prime}(0)=18
$$

\therefore concave up
$\therefore(0,-3)$ min stat. pt .
-when $x=-1$

$$
f^{\prime \prime}(-1)=-18
$$

$\because \quad \therefore$ concave down
$\therefore(-1,0)$ max stat. pt.
2) for points of inflexion

$$
\begin{gathered}
y^{\prime \prime}=0 \\
\therefore 36 x+18=0 \\
36 x=-18 \\
x=-\frac{18}{36} \\
x=-\frac{1}{2} \\
\begin{array}{c|c|c|c}
x & -3 / 4 & -\frac{1}{2} & -\frac{1}{4} \\
\hline y^{41} & -9 & 0 & 9
\end{array}
\end{gathered}
$$

\therefore concavity changes
$\therefore\left(-\frac{1}{2},-\frac{3}{2}\right)$ is point of inflexion.
e)

Academic Year	Yr 12	Calendar Year	2010
Course	2 unit maths	Name of task/exam	TRIAL ExAM

Question 7 :
a)

$$
\begin{aligned}
y & =x^{2}+\frac{1}{x} \\
y & =x^{2}+x^{-1} \\
\frac{d y}{d x} & =2 x-x^{-2} \\
\text { at } x & =1 \\
m_{\text {tang }} & =2-1^{-2} \quad \text { at } x=1 \\
& =2-1 \\
\therefore m & =1
\end{aligned} \quad \begin{aligned}
& y=1^{2}+\frac{1}{1} \\
& y=2 \\
&(1,2)
\end{aligned}
$$

\therefore egn of tangent:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =1(x-1) \\
y-2 & =x-1 \\
y & =x+1
\end{aligned}
$$

b)

$$
\begin{aligned}
& v=2+t-3 t^{2} \\
& t=0 \quad x=0
\end{aligned}
$$

i) at rest $v=0$

$$
\begin{aligned}
& 0=2+t-3 t^{2} \\
& 3 t^{2}-t-2=0 \\
& (3 t+2)(t-1)=0 \\
& t=-\frac{2}{3}, t=1
\end{aligned}
$$

since $\quad t \geqslant 0$

$$
\therefore t=1 \mathrm{sec} .
$$

\ddot{i})

iii)

$$
\begin{aligned}
& v=2+t-3 t^{2} \\
& x=\int\left(2+t-3 t^{2}\right) d t \\
& x=2 t+\frac{t^{2}}{2}-\frac{3 t^{3}}{3}+c
\end{aligned}
$$

aten $t=0 \quad x=0 \quad \therefore c=0$

$$
\therefore x=2 t+\frac{1}{2} t^{2}-t^{3}
$$

at $t=0 \quad x=0$
at $t=1 \quad x=2+\frac{1}{2}-1$

$$
=1 \frac{1}{2}
$$

at $t=4 \quad x=2(4)+\frac{1}{2}(4)^{2}-(4)^{3}$ $=-48$.

\therefore total distance travelled

$$
\begin{aligned}
& =1 \frac{1}{2}+1 \frac{1}{2}+48 \\
& =51 \mathrm{~m}
\end{aligned}
$$

Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2010
Course	2unit maths	Name of task/exam	TRIAL EXAM

c)

Question 8 :
a) i) $y=1-\sin 2 x \quad-\pi \leqslant x \leqslant \pi$
a i

$$
y=1-\sin 2 x
$$

$$
\begin{aligned}
\therefore & =\pi \int_{0}^{\pi / 4}\left(\sec ^{2} x-1\right) d x \\
& =\pi[\tan x-x]_{0}^{\pi / 4} \\
\rightarrow x & =\pi\left[\left(\tan _{n} \frac{\pi}{4}-\frac{\pi}{4}\right)-(0-0)\right] \\
& =\frac{\pi}{1}\left[1-\frac{\pi}{4}\right] \\
& =\frac{\pi}{4}(4-\pi) u^{\pi}(4)
\end{aligned}
$$

Academic Year	Yr 12	Calendar Year	2010
Course	2 unit maths	Name of task/exam	TRIAL ExAM

C) $r=0.4 \mathrm{~m}$
i)

$$
\text { i) } \begin{aligned}
l & =r \theta \\
& =0.4 \times \frac{3 \pi}{5} \\
& =0.24 \pi \mathrm{~m} \\
\text { ii) } A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2}(0.4)^{2}\left(\frac{3 \pi}{5}\right) \\
& =0.048 \pi \mathrm{~m}^{2} \\
& \text { OR } \frac{6 \pi}{125} \mathrm{~m}^{2}
\end{aligned}
$$

$$
=0.24 \pi \mathrm{~m} \text { or } \frac{6 \pi}{25} \mathrm{~m}
$$

Question 9 :
a) $\tan \theta \sqrt{1-\sin ^{2} \theta}$

$$
\begin{aligned}
& =\frac{\sin \theta}{\cos \theta} \sqrt{\cos ^{2} \theta} \\
& =\frac{\sin \theta}{\cos \theta} \times \cos \theta \\
& =\sin \theta
\end{aligned}
$$

c)

$$
\begin{aligned}
A & =\frac{h}{3}\left[y_{0}+y_{n}+4\left(y_{1}+y_{3}\right)+2\left(y_{2}\right)\right] \\
& =\frac{\frac{1}{2}}{3}\left[2^{-1}+2^{1}+4\left(2^{-\frac{1}{2}}+2^{\frac{1}{2}}\right)+2\left(2^{0}\right)\right] \\
& =\frac{1}{6}\left[\frac{9}{2}+6 \sqrt{2}\right] \\
& =\frac{3}{4}+\sqrt{2}
\end{aligned}
$$

b) $\sum_{n=0}^{4} \sin ^{2}\left(\frac{n \pi}{3}\right)$

$$
\begin{aligned}
= & \sin ^{2}(0)+\sin ^{2}\left(\frac{\pi}{3}\right)+\sin ^{2}\left(\frac{2 \pi}{3}\right) \\
& +\sin ^{2}\left(\frac{3 \pi}{3}\right)+\sin ^{2}\left(\frac{4 \pi}{3}\right) \\
= & 0+\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}+0+\left(-\frac{\sqrt{3}}{2}\right)^{2} \\
= & \frac{3}{4}+\frac{3}{4}+\frac{3}{4} \\
= & \frac{9}{4}
\end{aligned}
$$

d) i) $y=A e^{-k t}$
$2009 \quad t=0 \quad y=200$

$$
\begin{aligned}
& 200=A e^{0} \\
& A=200 \\
& y=200 e^{-k t}
\end{aligned}
$$

$2010 \quad t=1 \quad y=182$

$$
\begin{aligned}
& 182=200 e^{-k} \\
& \frac{182}{200}=e^{-k} \\
& \ln \left(\frac{182}{200}\right)=-k \\
& k=-\ln \left(\frac{91}{100}\right)
\end{aligned}
$$

ii) when $t=30 \quad y=$?

$$
y=200 e^{-\left(-\ln \frac{91}{100}\right) 30}
$$

$$
y=11.8 g
$$

Academic Year	Y 12	Calendar Year	2010
Course	Runt maths	Name of task/exam	TRIAL EXAM

iii) $t=$? $\quad y=100$

$$
\begin{aligned}
100 & =200 e^{-\left(-\ln \frac{91}{100}\right) t} \\
\frac{1}{2} & =e^{\left(\ln \frac{91}{100}\right) t} \\
\ln \left(\frac{1}{2}\right) & =\ln \left(\frac{91}{100}\right) t \\
\therefore t & =7.349 \ldots \text { yrs } \\
t & =7.3 \text { years }
\end{aligned}
$$

Question 10 :
a)

$$
\begin{gathered}
\ln (6 x+9)-\ln (x-1)=\ln \\
\therefore \ln \left(\frac{6 x+9}{x-1}\right)=\ln (3 x-1) \\
\therefore \frac{6 x+9}{x-1}=3 x-1 \\
\therefore 6 x+9=(3 x-1)(x-1) \\
6 x+9=3 x^{2}-3 x-x+1 \\
\therefore 3 x^{2}-10 x-8=0 \\
(3 x+2)(x-4)=0 \\
x=-\frac{2}{3}, x=4
\end{gathered}
$$

but $x \neq-\frac{2}{3}$ as $(x-1)>0$
$\therefore x=4$ is only sol ${ }^{2}$.

$$
\begin{aligned}
& \text { b) i) } \Gamma_{n}=(x-2)^{n} \\
& r=(x-2) \\
& \therefore \quad-1<x-2<1 \\
& 1<x<3
\end{aligned}
$$

ii)

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{x-2}{1-(x-2)} \\
& =\frac{x-2}{-x+3}
\end{aligned}
$$

$$
S_{\infty}=\frac{x-2}{3-x}
$$

c) i) $L^{2}=y^{2}+(x+2)^{2}$ (by pyth. the)

$$
L^{2}=(x+2)^{2}+y^{2}
$$

we know $\frac{3}{x}=\frac{4}{x+2}$
Similar
$\Delta s)$

$$
\begin{gather*}
\therefore y=\frac{3(x+2)}{x} \\
\therefore L^{2}=(x+2)^{2}+\left[\frac{3(x+2)}{x}\right]^{2} \\
L^{2}=(x+2)^{2}\left[1+\frac{9}{x^{2}}\right]
\end{gather*}
$$

ii)

$$
\begin{aligned}
L & =(x+2) \sqrt{1+\frac{9}{x^{2}}} \\
& =(x+2)\left(1+\frac{9}{x^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

PLC Sydney Maths Department
Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2010
Course	2 unit maths	Name of task/exam	TRIAL ExAM

$$
\begin{aligned}
& \frac{d L}{d x}=(x+2) \frac{1}{2}\left(1+\frac{9}{x^{2}}\right)^{-\frac{1}{2}}\left(-18 x^{-3}\right) \\
& +\left(1+\frac{9}{x^{2}}\right)^{\frac{1}{2}}(1) \\
& \frac{d L}{d x}=\frac{(x+2)(-18)}{2 \sqrt{1+\frac{9}{x^{2}}}\left(x^{3}\right)}+\frac{\sqrt{1+\frac{9}{x^{2}}}}{1}
\end{aligned}
$$

for $\min \frac{d L}{d x}=0$

$$
\begin{gathered}
\therefore 0=(x+2)(-18)+2 x^{3}\left(1+\frac{9}{x^{2}}\right) \\
18(x+2)=2 x^{3}\left(1+\frac{9}{x^{2}}\right) \\
18 x+36=2 x^{3}+18 x \\
x^{3}=18 \\
x=\sqrt[3]{18}
\end{gathered}
$$

