Student's number

Teacher's name

2010

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 120

- Attempt questions 1-10
- All questions are of equal value

1	2	3	4	5	6	7	8	9	10	Total	Total
										/120	%

Question	1 (12 marks) Start a new sheet of writing paper.	Marks
a)	Evaluate $\frac{e^5}{(-2)^2}$ correct to 3 significant figures.	2
b)	Simplify $\frac{x-1}{1-x}$	1
c)	Solve $ 2x-1 \ge 6$ and graph your solution on a number line.	3
d)	Given $\frac{2}{\sqrt{3}-2} = a\sqrt{3} + b$, find the values of a and b.	2

e) The velocity of a particle is given by the equation $v = \frac{\log_e(t-1)}{2}$, 2 metres per second.

Find the acceleration at t = 2 seconds.

f) Factorise fully
$$x^6 - 64$$
. 2

End of Question 2

D

Questi	ion 3 (12 marks) Start a new sheet of writing paper.	Marks
	A(2,6) and $B(-3,1)$ are points on the number plane.	
a)	On your answer sheet, plot the points on a number plane (at least one-third of a page).	1
b)	Find the coordinates of C , the midpoint of AB .	1
c)	Find the gradient of the line AB.	1
d)	Show that the equation of <i>AB</i> is $y = x + 4$.	1
e)	Show that the equation of the perpendicular bisector to <i>AB</i> is $x + y - 3 = 0$.	2
f)	Show that $D(6, -3)$ lies on the perpendicular bisector.	1
g)	Find the coordinates of E such that $ADBE$ is a rhombus.	1
h)	Show that the perpendicular distance from D to AB is $\frac{13\sqrt{2}}{2}$ units.	2
i)	Find the distance AB in surd form.	1
j)	Hence, or otherwise, find the area of ADBE.	1

Questi	ion 4 (12 marks) Start a new sheet of writing paper.	Marks
a)	Solve $2\sin\theta + \sqrt{3} = 0$ for $0 \le \theta \le 2\pi$	2
b)	Find the value(s) of k in $x^2 - kx + 3k - 8 = 0$ if:	
i)	2 is a root of the quadratic.	1
ii)	The roots are equal in magnitude but opposite in sign.	1
iii)	The roots are real.	3
iv)	The roots are reciprocals of one another.	1

c)

DIAGRAM NOT DRAWN TO SCALE

In the diagram above, *AB* is parallel to *CD*. *XB* bisects $\angle ABC$ and *YC* bisects $\angle BCD$. *BX* = *CY*,

- i) Copy the diagram into your answer booklet, showing all information. 1
- ii) Prove that Z is the midpoint of BC.

3

Qu	iesti	ON 5 (12 marks) Start a new sheet of writing paper.	Marks
a)		If the sum of <i>n</i> terms of the series $15+13+11+$ is 55, find the number of terms possible in the series.	2
b)	i)	Find the sum of the series: $4+8+16++1024$	2
	ii)	Hence, or otherwise, simplify $2^4 \times 2^8 \times 2^{16} \times \times 2^{1024}$, leaving your answer in index form.	1
c)	i)	Find the vertex of the parabola with focus at $(3,2)$ and directrix at $x=5$	1
	ii)	Hence, or otherwise, state the equation of the parabola.	1
	iii)	Show that the points of intersection of the parabola and the line $2x + y - 6 = 0$ are (3,0) and (0,6).	2
	iv)	Find the area between the parabola and the line in the first quadrant.	3

Qu	iesti	ion 6 (12 marks) Start a new sheet of writing paper.	Marks
		If $f(x) = 6x^3 + 9x^2 - 3$,	
a)	i)	Show that $6x^3 + 9x^2 - 3 = 3(x+1)^2(2x-1)$	1
	ii)	Hence find the x intercepts.	2
b)		Determine the <i>y</i> intercept.	1
c)		Find the stationary point(s) and determine their nature.	4
d)		Find the point(s) of inflexion.	2
e)		On a number plane (at least one-third of a page) sketch the curve $f(x) = 6x^3 + 9x^2 - 3$	2

showing all of the above features.

Qu	esti	ON 7 (12 marks) Start a new sheet of writing paper.	Marks
a)		Find the equation of the tangent to the curve $y = x^2 + \frac{1}{x}$ at the point	3
		where $x = 1$ (answer in gradient-intercept form)	
b)		The velocity, $v m/s$, of a particle moving along a straight line is given by $v = 2 + t - 3t^2$ where t is in seconds. If the particle is initially at the origin,	
	i)	Find when the particle is at rest	2
	ii)	Sketch the velocity function from $t = 0$ to $t = 4$ seconds.	2
	iii)	Find the total distance travelled by the particle in the first 4 seconds.	3

c) The graph of y = f'(x) is given below:

DIAGRAM NOT DRAWN TO SCALE

Copy or trace the curve into your answer booklet and carefully sketch and label the graph of y = f(x) on the same set of axes. You may need to highlight your answer.

End of Question 7

2

Qu	esti	ON 8 (12 marks) Start a new sheet of writing paper.	Marks
a)	i)	Sketch $y=1-\sin 2x$ for $-\pi \le x \le \pi$	2
	ii)	Show that the equation of the tangent to the curve $y=1-\sin 2x$ at $x=0$ is $2x + y = 1$.	2
	iii)	For what range of values of <i>m</i> does the equation $1-\sin 2x = 1-mx$ have exactly 3 solutions in the domain $-\pi \le x \le \pi$.	2
b)		Find the volume generated when the area between the curve $y = \tan x$ and $x = 0$ and $x = \frac{\pi}{4}$ is rotated about the <i>x</i> -axis.	3
c)		Constance is doing yo-yo tricks. She is doing "around the world". That is, she is keeping the yo-yo at its maximum length for a complete revolution. The length of the string on the yo-yo is 0.4 metres.	
	i)	Find the distance the yo-yo travels from a point A to another point B if the angle subtended at the centre is $\frac{3\pi}{5}$ radians.	1
	ii)	Find the area of the sector that the yo-yo sweeps around from A to B.	2

Question 9 (12 marks)

a) Simplify: 1 $\tan \theta \sqrt{1-\sin^2 \theta}$ b) Evaluate $\sum_{n=0}^{4} \sin^2 \left(\frac{n\pi}{3}\right)$. 3 c) Using Simpson's Rule with 5 function values, find the area bounded by 3

Start a new sheet of writing paper.

- the curve $y = 2^x$, the x-axis, x = -1 and x = 1. Leave your answer in surd form.
- d) A radioactive element used in a hospital decays according to $y = Ae^{-kt}$, where k is a constant and t is time in years. If the element has a mass, y, of 200g in 2009, and 182g in 2010:

i) Show that
$$k = -\log_e\left(\frac{91}{100}\right)$$
 2

ii) Find its mass in 2039. Answer to 1 decimal place.

iii) Find its half-life (that is, the length of time elapsed when it has lost half 2 of its original mass).

End of Question 9

Marks

Question 10 (12 marks)Start a new sheet of writing paper.Marksa)Solve:
 $\log_e(6x+9) - \log_e(x-1) = \log_e(3x-1)$ 3

b) The general term of a geometric series is defined by $T_n = (x-2)^n$. find:

i) The value(s) of x for which the series has a limiting sum

ii) This limit in terms of x

c) A 3m vertical fence stands 2 metres from a high vertical wall. A ladder is placed from the horizontal ground to the wall, resting on the fence. The base of the ladder is *x* metres from the fence.

- i) Show that the square of the length of the ladder is given by $L^{2} = (x+2)^{2} \left(1 + \frac{9}{x^{2}}\right)$
- ii) How long is the shortest ladder that can reach from the ground outside the fence to the wall, correct to 2 decimal places? Show all working.

End of Examination

2

1

2

Blank Page

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x, \quad x > 0$

PLC Sydney Mathematics Trial HSC, 2010

Solutions for exams				Ver I
Academic Year	Yr12	Calendar Year	2010	
Course	20 Maths	Name of task/exam	TRIAL EXAM	

.

Question 1:	$e = \frac{\log_e(t-1)}{2}$
a) $\frac{e^5}{(-2)^2} = 37.103$	$\alpha = \frac{1}{2} \left(\frac{1}{1+\frac{1}{2}} \right)$
= 37.1 (3 sig figs)	
b) $\frac{x-i}{1-x} = \frac{x-i}{-(-i+x)}$	$a = \frac{1}{2(t-i)}$
	when t= 2
$= \frac{(k-1)!}{(k-1)!}$	$\alpha = \frac{1}{2(1)}$
= - 1	$a = \frac{1}{2} m ls^2$
c) $ 2x-i \ge 6$	~
$2x - 1 \le -6$, $2x - 1 \ge 6$	f) $\chi^{6} - 64 = (\chi^{3})^{2} - 8^{2}$
2x <-5, 2x >7	$= \left(\chi^{3} - 8\right) \left(\chi^{3} + 8\right)$
$x \leq -\frac{5}{2}$, $x \geq \frac{7}{2}$	$= (\chi - 2)(\chi + 2\chi + 4)(\chi + 2)(\chi - 2\chi + 4)$
	OR
$-\frac{5}{2}$ $\frac{7}{2}$	$x^{6} - 64 = (x^{2})^{3} - 4^{3}$
d) $\frac{2}{2} = a\sqrt{3} + b$	$= (x^{2}-4)(x^{4}+4x^{2}+16)$
√3 - 2	$= (\chi - 2)(\chi + 2)(\chi^{4} + 4\chi^{2} + 16)$
LHS = $\frac{2}{\sqrt{3}-2} \times \frac{\sqrt{3}+2}{\sqrt{3}+2}$	Question 2:
$= 2\sqrt{3} + 4$ 3 - 4	a) i) $\frac{d}{dx} \left(\frac{\sin x}{x}\right)$ $u = s_{in} x$ $u = \cos x$
2 3 - 4	$= \frac{Vu - uV}{V = \chi}$
∴ -213-4 = a13+b	$\mathbf{V} = \mathbf{I}$
a=-2, b=-4	$= \frac{x \cos x - \sin x(i)}{x^2}$
L	$= \frac{Page of }{\sum (u \leq y)(u - Sin)(u)}$

x2

;

Solutions for exams a			_		Ver I
Academic Year	4-12	Calendar Year	2010		
Course	2U maths	Name of task/exam	TRIAL	EXAM	

-

$$a) ii) \frac{d}{dx} = \log_{e} (5x-4)^{3}$$

$$= \frac{3(5x-4)^{2}(5)}{(5x-4)^{3}}$$

$$= \frac{3(5x-4)^{2}(5)}{(5x-4)^{3}}$$

$$= \frac{15}{(5x-4)}$$

$$= \frac{3}{8} \left[\log_{x} (4\frac{x^{2}}{2}) \right]^{2}$$

$$= \frac{3}{8} \left[\log_{x} (4\frac{x^{2}}{2}) \right]^{2}$$

$$= \frac{3}{8} \left[\log_{x} (4\frac{x^{2}}{2}) \right]^{2}$$

$$= \frac{3}{8} \left[\log_{x} (\frac{14}{2}) \right]^{2}$$

$$= \frac{15}{(2}$$

$$= \sqrt{16} - 1 (x-2)$$

$$= \sqrt{16} - 1$$

.

.

Solutions for exams	and assessment tasks		
Academic Year	Yr 12	Calendar Year	2010
Course	2 unit Maths	Name of task/exam	TRIAL EXAM

f)D(6,-3) $x+y-3=0$	Question 4:
LHS = 6 - 3 - 3	a) $2 s_{10} = +\sqrt{3} = 0$
= 0	$\sin \theta = -\frac{13}{3}$ $\frac{1}{\sqrt{1}}$
= RHS	$\overline{2}$ $\sqrt{1}$
- · (6, -3) lies on perpendicular bisector.	$\Theta = \Upsilon + \frac{\pi}{3}, 2\pi - \frac{\pi}{3}$
	$0^{-\frac{1}{2}} + \frac{5\pi}{3} + \frac{5\pi}{3}$
9) (-7,10)	b) $\chi^2 - k\chi + 3k - 8 = 0$
b) $d_1 = ax, +by, +c $	i) 2 root => x=2 satisfies
$\sqrt{a^2+b^2}$	$2^{2} - k(2) + 3k - 8 = 0$ 4 - 2k + 3k - 8 = 0
	k-4=0
AB: 2-4+4 D(6,-3)	k = 4
$d_{\perp} = \left[\frac{6 - (-3) + 4}{\sqrt{1^2 + (-1)^2}} \right]$	ii) roots equal in magnitude, opposite in sign.
12	Let roots be d, -d
$=\frac{13}{\sqrt{2}}$	Sum of mots: $d - d = -\frac{b}{a}$
$= \frac{13}{12} \times \frac{12}{12}$	O = -(-k)
12 (2	k = 0
$= \frac{13\sqrt{2}}{2} \text{units}$	") real roots => <> >> <> >>
$d = \sqrt{(n_2 - \lambda_1)^2 (y_2 - y_1)^2}$	b2-4ac >0
	$(-k)^{2} - 4(i)(3k-8) \ge 0$
$= \sqrt{(-3-2)^{2}+(1-6)^{2}}$	$k^2 - 12k + 32 > 0$ 15 21
$= \sqrt{25 + 25}$	$(k-8)(k-4) \ge 0$
= $5\sqrt{2}$ units	k < 4 , k >8
$j) A = \left(\frac{1}{2} \times \frac{13\sqrt{2}}{2} \times 5\sqrt{2}\right) \times 2$	iv) reciprocal roots
	Let roots be x, x
$A = 65 \text{ wits}^2$	product of roots $\angle(\frac{1}{2}) = \subseteq$ Page 3 of 11
	1 = 3k-8
	k = 3

Ver I

Solutions for exams	and assessment tasks		·	ver i
Academic Year	4r12	Calendar Year	2010	
Course	20 mit Maths	Name of task/exam	TRIAL EXAM	

4

c) i)	Question 5:
AB	a=15
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right] d = -2.$
X Z Y	$55 = \frac{n}{2} [30 + (n-1)(-2)]$
	110 = n [30 - 2n + 2]
C D	$10 = n \left[32 - 2n \right]$
	$110 = 32n - 2n^2$
	$2n^2 - 32n + 110 = 0$
 11) < ABC = < BCD (alternate angles	$n^2 - 16n + 55 = 0$
equal ABII (D)	(n-1)(n-5)=0
<abx (xb="" <="" <abc)<="" =="" biselts="" th="" xbz=""><th> n=5, 11</th></abx>	n=5, 11
(ZCY = <ycd (cy="" bights="" sbcd)<="" th=""><th>b) i) 4+8+16++1024</th></ycd>	b) i) 4+8+16++1024
< ABX = < YBZ = < ZCY = < YCD	$T_{n} = \alpha r^{n-1} \qquad \qquad \alpha = 4 \\ r = 2$
In ABXZ and DCYZ,	$1024 = 4(z)^{n-1}$ $T_n = 1024$
BX=CY (given)	$256 = 2^{n-1}$
< xBZ = ZCY (proved above)	$2^8 = 2^{n-1}$
< BZX = < CZY (vertically opposite)	·. ~= "9.
· · A BXZ = A CYZ (AAS)	$S_n = a(r^n-1)$
. BZ = CZ (correspondig sides in congruent triagles	
in congrisent triangles 	$= 4(2^{9}-1)$
midpoint of BC.	= 2044
	") 2 ²⁰⁴⁴
	, ["] , ²
	Page 4 of 11

.:

PLC Sydney Maths Department

4

Solutions for exams and assessment tasks	Ver I
Academic Year Yr 12	Calendar Year 2010
Course 2 2 unit maths	Name of task/exam TRIAL EXAM
c) i) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$(y-2)^2 = -4(1-4)$
3 4 2 2	$-\frac{1}{4}(\gamma-2)^{2} = \chi - 4$
V (4,2)	$\chi = 4 - \frac{1}{4} \left(\gamma - 2 \right)^2.$
ii) eqn	$\int_{0}^{6} (4 - \frac{1}{4}(y-2))^{2} dy - 9$
$(y-2)^{2} = -4(1)(x-4)$	$= \left[4y - \frac{1}{4} \left(\frac{y-2}{y-2} \right) \right]^{6} - 9$
$(y-2)^2 = -4(x-4)$	
= 2x + y - 6 = 0	$= \left(24 - \frac{1}{4} \begin{pmatrix} 64\\ \overline{3} \end{pmatrix}\right) - \left(0 - \frac{1}{4} \begin{pmatrix} -8\\ 3 \end{pmatrix}\right) - 9$
y = -2x+6. subst. into parabola	$=\left(24 - \frac{16}{3} - \frac{2}{3}\right) - 9$
$(y-2)^2 = -4(x-4)$	$= 9 \text{ units}^2$
$(-2)(+6-2)^2 = -4x+16$	Question 6:
$(-2\chi + 4)^2 = -4\chi + 1b$	(a) i) Show $(x^3, 0)^2 = -(x^3)^2$
$4\chi^2 - 16\chi + 16 = -4\chi + 16$	a) i) show $6x^{3} + 9x^{2} - 3 = 3(x+i)^{2}(2x-i)$ $8+6 = 3(x+i)^{2}(2x-i)$
$4\chi^2 - 12\chi = 0$	$R \# S = 3 (\chi + 1)^{2} (2\chi - 1)$ = 3 ($\chi^{2} + 2\chi + 1$)(2 $\chi - 1$)
4x (x-3)=0 -: x=07 x=37	$= (3x^{2} + 6x + 3)(2x - 1)$
y = 6 $y = 0$	$= 6x^{3} + 12x^{2} + 6x - 3x^{2} - 6x - 3$
. iv) A = 56 parabola - A triangle	$= 6x^{3} + 9x^{2} - 3$
$= \int_{0}^{b} parabola - \frac{1}{2} \times 3 \times 6$	= LHS shown
	ii) X-intercepts => set y=0
= So parabola - 9	$\therefore 6x^3 + 9x^2 - 3 = 0$
	$3(x+i)^{2}(2x-i) = 0$ Page 5 of 11
	$\therefore x = -1, \frac{1}{2}$

Solutions for exame	s and assessment tasks	1		Ver
Academic Year	Yr 12	Calendar Year	2010	
Course	2 unit maths	Name of task/exam	TRIAL EXAM	

4

b) y-intercept => set x=0.	d) for points of inflexion
$-y = 6(0)^{3} + 9(0)^{2} - 3$	y" = 0
Y = - 3	362 + 18 = 0
c) $f(x) = 6x^{3} + 9x^{2} - 3$	36x = -18 $x = -\frac{18}{36}$
$f'(x) = 18x^2 + 18x$	2 = - L 2
for stat. $pts f'(x) = 0$	
$18x^2 + 18x = 0$	$\frac{x}{y''} = \frac{-\frac{3}{4}}{-\frac{9}{4}} = \frac{-\frac{1}{2}}{-\frac{1}{4}}$
18x(x+1)=0	. concavity changes
· 1=0 1=-1,	$\therefore \left(-\frac{1}{2}, -\frac{3}{2}\right) is$
y=-3 y=0	point of inflexion.
·· (0,-3) & (-1,0)	e)
are stationary points	e) h. (n/(kex)03) h. (-2' -
f''(x) = 36x + 18	pt. (-2, 2)
wlen x = 0	$\langle \rangle / \rangle$
f''(0) = 18	max(-1,0)
· Concave up	
(0,-3) min stat. pt.	-3 (min (0, -3)
when $x = -1$	
f''(-1) = -18	
· Concave down	
-: (-1,0) max stat. pt.	
	Page 6 of 11

;

Ver 1

t=-23, t=1

since t>0

t=1 sec.

t=4 t=0 t=1 t=0 t=0 $t=1\frac{1}{2}$ t=0 $t=1\frac{1}{2}$ $t=1\frac{1}{2}$ $t=1\frac{1}{2}$ $t=1\frac{1}{2}$ $t=1\frac{1}{2}$ $t=1\frac{1}{2}$ $t=1\frac{1}{2}$ $t=1\frac{1}{2}$ $t=1\frac{1}{2}$ $t=1\frac{1}{2}$

3

Page 7 of 11

Solutions for exam	s and assessment tasks			veri
Academic Year	Yr 12	Calendar Year	2010	
Course	20nit maths	Name of task/exam	TRIAL EXAM	

.7

Ver 1

Solutions for exams a	and assessment tasks			Ver I
Academic Year	Yr12	Calendar Year	2010	
Course	2 unit Maths	Name of task/exam	TRIAL EXI	AM
c) $\Gamma = 0.4$ m		$b) \stackrel{4}{\underset{n=0}{\overset{4}{\underset{n=0}{\overset{1}{\underset{n}}{\underset{n}}{\underset{n}}{\overset{1}{\underset{n}}{\underset{n}}{\underset{n}}}}}}}}}}}}}}}}}}}}}$	$\left(\frac{n}{3}\right)$	
i) $L = ro$		$= s'^{2}/s$	$\left(1 + \frac{2}{\pi}\right)$	
= 0.4 x <u>3</u>	<u>n</u> 5			$+\dot{S_{12}}^{2}\left(\frac{2\pi}{3}\right)$
	m or $\frac{6\pi}{25}$ n	+	$S_{1n}^{\prime 2} \left(\frac{3\pi}{3} \right)$	$+ S_{1}^{2} \left(\frac{4\pi}{3} \right)$
$H = \frac{1}{2}r^{2} \sigma$		$= 0 + 1/\frac{3}{2}$	$\left(\frac{13}{2}\right)^2 + \left(\frac{13}{2}\right)^2$	$^{2} + 0 + \left(-\frac{\sqrt{3}}{2}\right)^{2}$
$=\frac{1}{2}\left(0\cdot4\right)^{2}$		$= \frac{3}{4} + \frac{3}{4} +$		
= 0.048 or $\frac{6\pi}{125}$		$= \frac{q}{4}$	4	
Question 9:	ŷ	4	- b+	
a) tan $o\sqrt{1-s_{1}^{2}o}$		d);) $y = A$		
$= \frac{Sin \Theta}{\cos 2} \sqrt{\cos^2 \Theta}$		$\frac{2009}{200} = A$	9	
		A = 200		
$= \frac{\sin \theta}{\cos \theta} \times \frac{\cos \theta}{\cos \theta}$	-	y = 200		
= Sino		$\frac{2010}{182} = \frac{1}{20}$	-	
$A = \frac{h}{3} \left[y_0 + y_0 \right]$	- <u>-</u>			
3 [10 ' 1.	$\mp (\gamma_{1} + \gamma_{3}) + 2(\gamma_{2})$			
$=\frac{1}{3}\left[2^{-1}+2^{+1}\right]$	$-4\left(2^{-\frac{1}{2}}+2^{\frac{1}{2}}\right)+2\left(2^{\frac{1}{2}}\right)$			
$\frac{1}{6} \left[\frac{q}{2} + 6 \right]$	12]		$ln\left(\frac{91}{100}\right)$	
$=\frac{3}{4}+\sqrt{2}$		ii) when $t = y = 200e$		~
т		y = 11.8	:	Page 9 of 11

3

Ċ

Solutions for exams a	nd assessment tasks	*		Ver 1
Academic Year	Yr12	Calendar Year	2010	
Course	2011 Haths	Name of task/exam	TRIAL EXAM	

1

(iii) t = ? y = 100	$(b)_{i} = (x-2)^{n}$
$100 = 200 e^{-(-\ln \frac{91}{100})t}$	$\Gamma = (\chi - 2)$
$\frac{1}{2} = e^{(L_n \frac{q_1}{100})^{\ddagger}}$	-1 < x - 2 < 1
	1 < 2 <3
$\ln\left(\frac{1}{2}\right) = \ln\left(\frac{91}{100}\right)t$	$S_{\infty} = \frac{\alpha}{1-r}$
.t = 7.349 yrs	
t = 7.3 years	$= \frac{\chi - 2}{1 - (\chi - 2)}$
Question 10:	$= \frac{x-2}{-x+3}$
a) $\ln(6x+9) - \ln(x-1) = \ln(3x-1)$	$S_{\infty} = \frac{x-2}{3-x}$
$\int \ln \left(\frac{6\chi + q}{\chi - 1} \right) = \ln \left(3\chi - 1 \right)$	c) i) $L^{2} = y^{2} + (x+2)^{2}$ (by pyth. then)
$\frac{6\pi+9}{\pi} = 3\pi-1$	$L^{2} = (x+2)^{2} + y^{2}$
	We know $\frac{3}{x} = \frac{y}{x+2}$ (Similar $\frac{3}{2}$)
6x+9 = (3x-1)(x-1)	y = 3(x+2)
$6x+9 = 3x^2 - 3x - x + 1$, ∞
$\cdot \cdot 3x^2 - 10x - 8 = 0$	$\therefore L^{2} = (X+2)^{2} + \left[\frac{3(1+2)}{x}\right]^{2}$
(3x+2)(x-4)=0	$L^{2} = \left(\chi + 2\right)^{2} \left[1 + \frac{9}{\chi^{2}}\right]$
$L = -\frac{2}{3}, X = 4$	
but $x \neq -\frac{2}{3}$ as $(x-i)$ to	. 1
rix=4 is only sol?	$= \left(\chi_{+2}\right) \left(1 + \frac{q}{\chi^2}\right)^{\frac{1}{2}}$
	Page 10 of 11

:

PLC Sydney Maths Department

Solutions for exams	and assessment-tasks		
Academic Year	4r 12	Calendar Year	2010
Course	2 unit maths	Name of task/exam	TRIAL EXAM

.

$\frac{dL}{d\chi} = (\chi + 2) \frac{1}{2} \left(1 + \frac{q}{\chi^2} \right)^{-\frac{1}{2}} \left(-18\chi^{-3} \right)$	•
$+\left(1+\frac{q}{x^{2}}\right)^{\frac{1}{2}}\left(1\right)$	
$\frac{dL}{dx} = \frac{(x+2)(-18)}{2\sqrt{1+\frac{q}{x^2}}(x^3)} + \frac{\sqrt{1+\frac{q}{x^2}}}{1}$	
for min $\frac{dL}{dx} = 0$	
$\therefore 0 = (\chi + 2)(-18) + 2\chi^3 \left(1 + \frac{9}{\chi^2}\right)$	
$18(\chi+2) = 2\chi^3\left(1+\frac{q}{\chi^2}\right)$	
$72x + 36 = 2x^3 + 18x$	
$x^3 = 18$	
$\chi = \sqrt[3]{18}$	
$\frac{dL}{dx} = \frac{3\sqrt{18}}{0} + \frac{3\sqrt{18}}{18}$	
-\/+	
· min ·	
$\therefore L = \left(\sqrt[3]{18} + 2 \right) \sqrt{1 + \left(\sqrt[3]{18} \right)^2}$	
L = 7.02 m (2dp)	

<u>,</u>: Page II of 11

: