Student's number

Teacher's name

2011

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 120

- Attempt questions 1-10
- All questions are of equal value

1	2	3	4	5	6	7	8	9	10	Total	Total
										/120	%

Question	1 (12 marks) Start a new sheet of writing paper.	Marks
a)	Find a correct to 3 significant figures, if	2
	$\frac{a}{\sin 130^\circ} = \frac{5}{\sin 22^\circ}$	
b)	A round clock face has a diameter of 25 <i>cm</i> . Find the distance the tip of the big hand moves in 25 minutes. Give your answer to the nearest <i>mm</i> .	2
c)	Factorise completely:	2
	$8x^3 - 64$	
d)	Solve $ 2x+3 < 9$	2
e)	Find the values of <i>a</i> and <i>b</i> if $\frac{2}{3-\sqrt{5}} = a + b\sqrt{5}$	2

f) Adult tickets to the PLC Production of 'A Mid-Summer Night's Dream' cost \$32 in 2011. Last year, the adult ticket price for 'A Chorus Line' was \$30. Find the percentage increase in price for an adult ticket?

End of Question 1

Question 2 (12 marks) Start a new sheet of writing paper. Marks

a) Differentiate, with respect to *x* :

i)
$$\frac{e^{2x}}{2x}$$
 2

ii)
$$2\log_e \sqrt{x}$$
 2

iii)
$$\sin^2 3x$$
 2

b) Show that
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \tan x \, dx = \frac{1}{2} \log_e \frac{3}{2}$$
 3

c) Find
$$\int 3e^{1-x} dx$$
 1

d) Show that
$$x^2 + kx + (k-1) = 0$$
 has real roots for all values of k. 2

End of Question 2

Question 3 (12 marks) Marks Start a new sheet of writing paper. a) i) Show that the equation of the locus of the point P(x, y) that moves such 2 that it is equidistant from A(3,-1) and B(-4,2) is 7x-3y+5=0. ii) Describe this locus geometrically. 1 Show that $C(2, 6\frac{1}{3})$ lies on 7x - 3y + 5 = 0. 1 iii) iv) 1 Find the co-ordinates of D such that ABDC is a parallelogram. 3 Show that the perpendicular distance from C to AB is $\frac{145}{3\sqrt{58}}$ units. v)

vi) The distance of AB is $\sqrt{58}$ units, find the area of ABDC in exact form. 1

b) If α and β are the roots of $4kx^2 + 3(k-1)x - 1 = 0$, find the value of k if:

i)	3 is a root.	1

ii) The roots are reciprocals of each other. 2

End of Question 3

Question 4 (12 marks) Start a new sheet of writing paper. Marks

- a) Find the equation of the normal to the curve $y = (x^2 2)^3$ at the point (1,-1). Write your answer in general form. 3
- b) In the diagram below,

AB = BC = BE = CD, $FE \parallel AC$ and $\angle BAC + \angle CDE = 90^{\circ}$.

- i) Copy or trace the diagram onto your answer sheet.
- ii) By letting $\angle BAC = x$

prove that $BE \perp ED$, showing all working.

c) i) On the same set of axes, sketch the graph of $y = 3\sin\frac{x}{2}$ and y = 1.5 for $0 \le x \le 4\pi$.

ii) Show that
$$x = \frac{\pi}{3}$$
 and $x = \frac{5\pi}{3}$ are two of the solutions of $3\sin\frac{x}{2} = 1.5$ 1

iii) Hence, find the area enclosed entirely between $y = 3\sin\frac{x}{2}$ and y = 1.5in the first quadrant.

End of Question 4

Question 5 (12 marks) Start a new sheet of writing paper.

Given $f(x) = \frac{x^2}{1-x^4}$

a)	Find where the graph of the function cuts the <i>x</i> and <i>y</i> axes.	1
b)	Show that the function is even.	2
c)	Find all vertical asymptotes.	2
d)	Find the stationary point(s) and determine their nature.	4
e)	As x becomes very large, describe what will happen to $f(x)$.	1

On a number plane (at least one-third of a page) sketch the curve f) 2 $f(x) = \frac{x^2}{1 - x^4}$ showing all of the above features.

End of Question 5

Marks

PLC Sydney Mathematics Trial HSC, 2011

i)

ii)

iii)

1

2

2

c) Solve
$$3\tan^2 2\theta = 1$$
 for $-\pi \le \theta \le \pi$

Find this volume

Write down the equation of the curve.

Find the size of the area being rotated.

The volume generated when an area under a certain curve is rotated d) about the x-axis is given by $V = \pi \int_{\frac{1}{2}}^{4} x \, dx$.

End of Question 6

$$s(t)$$
0544855The distance travelled by the cyclist in the first 2 hours is

0

^

 $\int_0^2 s(t) dt.$

1

1.5

Use the Trapezoidal Rule with these 5 function values to estimate the distance travelled.

t

- (1)

The speed of a cyclist in a road race was recorded every half hour. The b) table below gives the time in hours and the speed in km/h.

0.5

= A

Simplify $\frac{|1-x|}{x-1}$ a)

2

60

2

2

If the population of Sydney is going to double in 15 years time, find how long it will take for the population of Sydney to triple?

b) Simplify
$$(1 - \cos^2 x + \sin^2 x) \cot^2 x$$

Question 7 (12 marks)

a)

c) The diagram below shows the parallelogram *ABCD* with *M* the midpoint of *BC*. The intervals *AM* and *DC* are produced to meet at *P*.

Start a new sheet of writing paper.

Assume that the population, P, of people in Sydney has been growing at

a rate proportional to *P*. That is, $\frac{dP}{dt} = kP$, where *k* is a positive constant.

i) Prove that
$$\triangle ABM \equiv \triangle PCM$$

ii) Hence prove that *ABPC* is a parallelogram.

d) The line
$$y = mx + \frac{25}{4}$$
 is a tangent to $x^2 + y^2 = 25$, find the value of m.

End of Question 7

3

2

2

Question 8 (12 marks) Start a new sheet of writing paper.

a) A farmer wishes to fence some of her land as shown in the diagram below. Fences are to be erected at FC, CD and BE. The side FD is a river and no fence is needed there. CD is twice the length of BE. $\angle FBE = \angle FCD = 90^{\circ}$

i)	If FB= x metres and BE= y metres prove by similar triangles that BC= x .	2
ii)	Write an expression, in terms of x and y for the:	
	(1) Area of ΔFCD	1
	(2) Length, L , of fencing the farmer would need.	1
iii)	If the total area of land to be enclosed is 1200 m^2 , show that the length of fencing L is given by $L = 2x + \frac{1800}{x}$ metres	2
iv)	Hence, find the values of x and y for which the length of fencing required will be a minimum.	3
	•	
	For the parabola $y^2 = 12(x-2)$, find the coordinates of the vertex, the	3

End of Question 8

coordinates of the focus and the equation of the directrix.

b)

Qu	iesti	ON 9 (12 marks) Start a new sheet of writing paper.	Marks
a)		Given that $\frac{dy}{dx} = \frac{x}{x^2 - 4}$	
	i)	Find y in terms of x, given that $y=0$ when $x=3$	3
	ii)	State the set of <i>x</i> values for which <i>y</i> exists.	2
b)		When a tap is open, water flows into a large tank that is initially empty. The volume V litres, of water in the tank increases at the rate $\frac{dV}{dt} = 2e^{t} + 2e^{-t}$ where t is measured in hours from the time the tap is opened.	
	i)	At what rate does the water enter the tank initially?	1
	ii)	Find an expression for <i>V</i> in terms of <i>t</i>	2
	iii)	Show that $2e^{2t} - 3e^t - 2 = 0$ when $V=3$	2
	iv)	Find the exact value of t when $V=3$	2

End of Question 9

Qu	iesti	ion 10 (12 marks) Start a new sheet of	writing paper.	Marks
a)		A ball falls from rest with acceleration given by where <i>x</i> metres is the distance below the origin	$\ddot{x} = 10 e^{-\frac{1}{3}t} cm/s^2,$ at time <i>t</i> seconds.	
	i)	Find the velocity-time function for the motion of	f the ball.	2
	ii)	Sketch the velocity-time function for the motion	of the ball.	1
	iii)	What is the limiting velocity of the ball?		1
	iv)	How far does the ball travel in the first 3 second	ls?	3

Question 10 continues on the next page

Question 10 continued

velocity for a further 5 minutes.

b)

A train is travelling at a constant velocity of 80 km/h as it passes through Croydon railway station. At the same time, a second train commences its journey from rest at Croydon station, travelling in the same direction as the first train. The second train accelerated for 15 minutes at a constant rate until it reaches 100 km/h and maintains this

At this time each of the trains then begin to slow down at a constant rate, arriving at the next station, X, at the same time.

i) The graph of velocity versus time for the first train has been drawn below:

Copy or trace this diagram on your answer sheet.

ii)	On the same sketch as in part i) draw in the velocity/time graph for the second train.	1
iii)	Calculate the time taken for the trains to travel between the two stations.	3
iv)	How far apart are the two stations?	1

End of Examination

STANDARD INTEGRALS

$$x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x, \quad x > 0$

PLC Sydney Mathematics Trial HSC, 2011