

PRESBYTERIAN LADIES' COLLEGE SYDNEY

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

1	2	3	4	5	6	7	8	9	10	Total	Total

Question 1 (12 marks) Start a new sheet of writing paper.

$$
\text { a) } \begin{aligned}
& \text { Find } a \text { correct to } 3 \mathrm{~s} \\
& \\
& \frac{a}{\sin 130^{\circ}}=\frac{5}{\sin 22^{\circ}}
\end{aligned}
$$

b) A round clock face has a diameter of 25 cm . Find the distance the tip of the big hand moves in 25 minutes. Give your answer to the nearest mm.
$\begin{array}{ll}\text { c) Factorise completely: } & \mathbf{2} \\ & 8 x^{3}-64 \\ \text { d) } & \text { Solve }|2 x+3|<9\end{array}$
e) \quad Find the values of a and b if $\frac{2}{3-\sqrt{5}}=a+b \sqrt{5}$
f) Adult tickets to the PLC Production of 'A Mid-Summer Night's 'A Chorus Line' was $\$ 30$. Find the percentage increase in price for an adult ticket?

End of Question 1

Question 2 (12 marks) Start a new sheet of writing paper.

a) Differentiate, with respect to x :
i) $\quad \frac{e^{2 x}}{2 x}$
ii) $2 \log _{e} \sqrt{x} \longrightarrow 2$
iii) $\sin ^{2} 3 x$
b) \quad Show that $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \tan x d x=\frac{1}{2} \log _{e} \frac{3}{2}$
c) Find $\int 3 e^{1-x} d x$
d) Show that $x^{2}+k x+(k-1)=0$ has real roots for all values of k.

End of Question 2

Question 3 (12 marks) \quad Start a new sheet of writing paper.

a) i) Show that the equation of the locus of the point $P(x, y)$ that moves such that it is equidistant from $A(3,-1)$ and $B(-4,2)$ is $7 x-3 y+5=0$.
ii) Describe this locus geometrically.
iii) Show that $C\left(2,6 \frac{1}{3}\right)$ lies on $7 x-3 y+5=0$.
iv) Find the co-ordinates of D such that $A B D C$ is a parallelogram.
v) Show that the perpendicular distance from C to $A B$ is $\frac{145}{3 \sqrt{58}}$ units.
vi) The distance of $A B$ is $\sqrt{58}$ units, find the area of $A B D C$ in exact form.
b) If α and β are the roots of $4 k x^{2}+3(k-1) x-1=0$, find the value of k if:
i) 3 is a root. 1
ii) The roots are reciprocals of each other.

End of Question 3

Question 4 (12 marks) Start a new sheet of writing paper.

a) Find the equation of the normal to the curve $y=\left(x^{2}-2\right)^{3}$ at the point $(1,-1)$. Write your answer in general form.
b) In the diagram below,
$A B=B C=B E=C D, \quad F E \| A C$ and $\angle B A C+\angle C D E=90^{\circ}$.
i) Copy or trace the diagram onto your answer sheet.
ii) By letting $\angle B A C=x$
prove that $B E \perp E D$, showing all working.

NOT TO
SCALE
c) i) On the same set of axes, sketch the graph of $y=3 \sin \frac{x}{2}$ and $y=1.5$ for $0 \leq x \leq 4 \pi$.
ii) Show that $x=\frac{\pi}{3}$ and $x=\frac{5 \pi}{3}$ are two of the solutions of $3 \sin \frac{x}{2}=1.5$
iii) Hence, find the area enclosed entirely between $y=3 \sin \frac{x}{2}$ and $y=1.5$ in the first quadrant.

End of Question 4

Question 5 (12 marks) Start a new sheet of writing paper.

Given $f(x)=\frac{x^{2}}{1-x^{4}}$
a) Find where the graph of the function cuts the x and y axes.
b) Show that the function is even.
c) Find all vertical asymptotes.
d) Find the stationary point(s) and determine their nature.
e) As x becomes very large, describe what will happen to $f(x)$.
f) On a number plane (at least one-third of a page) sketch the curve
$f(x)=\frac{x^{2}}{1-x^{4}}$ showing all of the above features.

End of Question 5

Question 6 (12 marks) Start a new sheet of writing paper.

a) \quad Simplify $\frac{|1-x|}{x-1}$
b) The speed of a cyclist in a road race was recorded every half hour. The table below gives the time in hours and the speed in km / h.

t	0	0.5	1	1.5	2
$s(t)$	0	54	48	55	60

The distance travelled by the cyclist in the first 2 hours is $\int_{0}^{2} s(t) d t$.
Use the Trapezoidal Rule with these 5 function values to estimate the distance travelled.
c) \quad Solve $3 \tan ^{2} 2 \theta=1$ for $-\pi \leq \theta \leq \pi$
d) The volume generated when an area under a certain curve is rotated about the x-axis is given by $V=\pi \int_{\frac{1}{4}}^{4} x d x$.
i) Find this volume
ii) Write down the equation of the curve.
iii) Find the size of the area being rotated.

End of Question 6

Question 7 (12 marks) Start a new sheet of writing paper.

a) Assume that the population, P, of people in Sydney has been growing at a rate proportional to P. That is, $\frac{d P}{d t}=k P$, where k is a positive constant. If the population of Sydney is going to double in 15 years time, find how long it will take for the population of Sydney to triple?
b) \quad Simplify $\left(1-\cos ^{2} x+\sin ^{2} x\right) \cot ^{2} x$
c) The diagram below shows the parallelogram $A B C D$ with M the midpoint of $B C$. The intervals $A M$ and $D C$ are produced to meet at P.

i) Prove that $\triangle A B M \equiv \triangle P C M$
ii) Hence prove that $A B P C$ is a parallelogram.
d) The line $y=m x+\frac{25}{4}$ is a tangent to $x^{2}+y^{2}=25$, find the value of m.

End of Question 7

Question 8 (12 marks) Start a new sheet of writing paper.

a) A farmer wishes to fence some of her land as shown in the diagram below. Fences are to be erected at FC, CD and BE. The side FD is a river and no fence is needed there. CD is twice the length of BE .
$\angle F B E=\angle F C D=90^{\circ}$

i) If $\mathrm{FB}=x$ metres and $\mathrm{BE}=y$ metres prove by similar triangles that $\mathrm{BC}=x$.
ii) Write an expression, in terms of x and y for the:
(1) Area of $\triangle F C D$
(2) Length, L, of fencing the farmer would need.
iii) If the total area of land to be enclosed is $1200 \mathrm{~m}^{2}$, show that the length of fencing L is given by $L=2 x+\frac{1800}{x}$ metres
iv) Hence, find the values of x and y for which the length of fencing required will be a minimum.
b) For the parabola $y^{2}=12(x-2)$, find the coordinates of the vertex, the coordinates of the focus and the equation of the directrix.

End of Question 8

Question 9 (12 marks) Start a new sheet of writing paper.

a) Given that $\frac{d y}{d x}=\frac{x}{x^{2}-4}$
i) Find y in terms of x, given that $y=0$ when $x=3$
ii) State the set of x values for which y exists.
b) When a tap is open, water flows into a large tank that is initially empty. The volume V litres, of water in the tank increases at the rate $\frac{d V}{d t}=2 e^{t}+2 e^{-t}$ where t is measured in hours from the time the tap is opened.
i) At what rate does the water enter the tank initially?

1
ii) Find an expression for V in terms of t
iii) Show that $2 e^{2 t}-3 e^{t}-2=0$ when $V=3$
iv) Find the exact value of t when $V=3$

End of Question 9

Question 10 (12 marks) Start a new sheet of writing paper.

a) A ball falls from rest with acceleration given by $\ddot{x}=10 e^{-\frac{1}{3} t} \mathrm{~cm} / \mathrm{s}^{2}$, where x metres is the distance below the origin at time t seconds.

i) Find the velocity-time function for the motion of the ball.
ii) Sketch the velocity-time function for the motion of the ball.
iii) What is the limiting velocity of the ball?
iv) How far does the ball travel in the first 3 seconds?

Question 10 continues on the next page

Question 10 continued

b) A train is travelling at a constant velocity of $80 \mathrm{~km} / \mathrm{h}$ as it passes through Croydon railway station. At the same time, a second train commences its journey from rest at Croydon station, travelling in the same direction as the first train. The second train accelerated for 15 minutes at a constant rate until it reaches $100 \mathrm{~km} / \mathrm{h}$ and maintains this velocity for a further 5 minutes.

At this time each of the trains then begin to slow down at a constant rate, arriving at the next station, X, at the same time.
i) The graph of velocity versus time for the first train has been drawn below:

Copy or trace this diagram on your answer sheet.
ii) On the same sketch as in part i) draw in the velocity/time graph for the second train.
iii) Calculate the time taken for the trains to travel between the two stations.
iv) How far apart are the two stations?

End of Examination

STANDARD INTEGRALS

$$
\mathrm{NOTE}: \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

