Student's number

2013 TRIAL

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen Black is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks – 100

Section I: Pages 3-5 10 marks

- Attempt questions 1-10, using the answer sheet on page 15.
- Allow about 15 minutes for this section

Section II: Pages 6-11 90 marks

- Attempt questions 11-16, using the booklets provided.
- Allow about 2 hours 45 minutes for this section

Multiple Choice	11	12	13	14	15	16	Total
							%

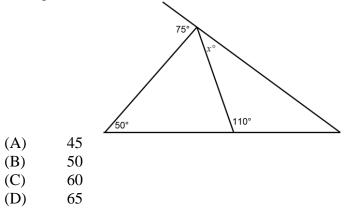
Blank Page

Section I

10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section


1.	What is $\frac{4}{e}$	correct to 3 significant figures?
	(A)	1.47
	(B)	1.470
	(C)	1.471
	(D)	1.472

2. What is the gradient of any line perpendicular to the line 3x - 2y + 12 = 0?

(A) $-\frac{3}{2}$ (B) $-\frac{2}{3}$ (C) $\frac{2}{3}$ (D) $\frac{3}{2}$

3. What is the value of y if
$$\frac{1}{3-\sqrt{2}} = x + y\sqrt{2}$$

- (A) -1(B) $-\frac{1}{7}$ (C) $\frac{1}{7}$ (D) 1
- 4. In the diagram, what is the value of *x*?

5. Which diagram below represents the following statements?

(C)
$$x = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}$$

(D) $x = \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12}$

- 7. The number of ants in my Ant Farm after *t* days is given by $A = A_0 e^{kt}$, where *k* is a positive constant. Initially there are 50 ants and after 4 days the number has increased to 90. How many days, correct to 3 decimal places, will it take for the number of ants to reach 180?
 - (A) 0.147
 - (B) 0.545

6.

- (C) 8.000
- (D) 8.717

- 8. A circular pizza with diameter of 28 centimetres is to be cut up into 12 equal sectors. What is the area of one sector, in square centimetres?
 - (A) $\frac{49}{3}(\pi 3)$ (B) $\frac{49\pi}{3}$ (C) 294 (D) 2891

9. For the curve $y = x^3 - x^2 - x + 1$ Which of the following statements are true?

- I: Stationary points occur at $x = \frac{-1}{3}$ and x = 1II: The curve is concave down for $x < \frac{1}{3}$
- (A) **I** only
- (B) **II** only
- (C) Both I and II
- (D) Neither I nor II
- 10. Consider the function $y = (4 x^2)^{\frac{1}{2}}$.

Use the **trapezoidal rule** with 3 function values to find the approximate area under the curve $y = (4 - x^2)^{\frac{1}{2}}$ for $0 \le x \le 2$, correct to 2 decimal places. What is this approximate area, in square units?

(A)	1.24
(B)	1.87
(C)	2.73
(D)	3.14

End of Section I

Section II

90 marks

Attempt Questions 11–16

Allow about 2 hours 45 minutes for this section

Question 11:

15 Marks

a)		Differentiate with respect to <i>x</i> :	
	(i)	$\frac{\log_e x}{x}$	2

(ii)
$$x\sin(3x-1)$$
 2

b) Evaluate
$$\int_{1}^{e^{3}} 4x^{-1} dx$$
 2

c) ABC is a triangle, right-angled at A. AD is perpendicular to BC. 3
P is a point on the interval BD such that
$$CP=CA$$
. If
 $\angle APC = 80^{\circ}$, show that PA bisects $\angle BAD$, with reasons.

d) Prove the following

$$(\sec \theta + \tan \theta)^2 = \frac{1 + \sin \theta}{1 - \sin \theta}$$
2

- e) Solve for x: |2x-5| = 4x-1 2
- f) The vertex of a parabola $y = x^2 + bx + c$ is (-4, -18). 2 Find the values of *b* and *c*.

Question 12:

a)	(i)	Sketch the curve $y = \sqrt{3} \tan x$ for $-\pi \le x \le \pi$.	1
	(ii)	Hence, or otherwise, solve $\sqrt{3} \tan x > 1$ in this domain.	2
b)		For the parabola $x^2 = 16y$	
	(i)	Find the co-ordinates of the focus, <i>S</i> .	1
	(ii)	Show that the equation of the tangent to this parabola at the point $P(4,1)$ is $x-2y-2=0$.	2
	(iii)	The straight line joining <i>P</i> to the focus, <i>S</i> , intersects the parabola again at <i>R</i> . Show that the co-ordinates of <i>R</i> are $(-16,16)$.	3
	(iv)	The equation of the tangent at <i>R</i> is $2x + y + 16 = 0$. Show that the tangents at <i>P</i> and <i>R</i> intersect at T on the directrix.	2
	(v)	Find the distance <i>PT</i> .	1
	(vi)	Find the perpendicular distance from <i>R</i> to <i>PT</i> .	2
	(vii)	Hence find the exact area of ΔTRP .	1

Question 13:

a)		Sketch on a Cartesian plane the region where $x^2 + y^2 \ge 9$ and $y \ge x - 3$ hold simultaneously.	2
b)		Give the exact solution of $2e^{-2x} - 5e^{-x} + 2 = 0$.	2
c)	(i)	Sketch the line $2x - 3y = 6$, showing x and y intercepts.	1
	(ii)	Find the co-ordinates of the point on the straight line $2x-3y=6$ which is closest to the origin.	3
d)		For the quadratic $kx^2 - (2k+1)x + 2 = 0$, find k if:	
	(i)	x = 1 is a root of the quadratic	1
	(ii)	Roots are real	3
	(iii)	Roots are equal in magnitude but opposite in sign	2
	(iv)	One root is the reciprocal of the other	1

15 Marks

2

Diagram NOT

drawn to scale

a) Find
$$\int e^{5x+2} dx$$
 1

b) The curve
$$y = x^3$$
 is rotated around the *y*-axis
from $y = -1$ to $y = 1$.
Find the volume of the solid of revolution.

c) Sketch
$$y = 1 - \cos \frac{2x}{3}$$
 for $0 \le x \le 3\pi$.

d) If
$$y = \frac{x}{\sin x}$$
, show that $\sin x \frac{dy}{dx} + y \cos x = 1$.

e) Two circles, with centres at A and B, intersect at C and D as shown in the diagram below. The radius of the circle centred at A is 2 metres,
$$CA \perp CB$$
 and $AB=4$ metres.

(i) Copy or trace the diagram into your answer booklet.

(ii) Prove
$$\triangle ABC \equiv \triangle ABD$$
. 2

(iii) Given the arc length CXD is
$$\frac{2\pi}{3}$$
 metres, show that 1
 $\angle CAB = \frac{\pi}{6}$.

3

Question 15:

15 Marks

a)		A variable line with gradient <i>m</i> passes through the point $(1,2)$ and intersects the <i>x</i> -axis at $A(a,0)$ and the <i>y</i> -axis at $B(0,b)$, where both <i>a</i> and <i>b</i> are positive.	
	(i)	Show that the equation of <i>AB</i> is $y = mx + 2 - m$	1
	(ii)	Show that the area of triangle $\triangle AOB$ is given by $Area = \frac{4m - m^2 - 4}{2m}$	2
	(iii)	Find the smallest possible area of $\triangle AOB$.	2
b)		The displacement, x metres, of a particle moving along the x-axis is given at time t seconds by the equation $x = 12e^{-2t} - 12 + 24t$.	
	(i)	Show the particle is initially at rest.	1
	(ii)	Find the velocity when $t = \log_e\left(\frac{4}{3}\right)$ seconds.	2
	(iii)	What is the limit approached by the velocity as <i>t</i> increases?	1
	(iv)	Sketch the velocity-time graph for $0 \le t \le 3$. On your sketch clearly show the velocity at <i>t</i> =1.5.	2
	(v)	Using Simpson's Rule with 3 function values, find the distance travelled in the first 3 seconds. Write your answer correct to 1 decimal place.	2
	(vi)	Prove that the acceleration is $48-2v$, where <i>v</i> is velocity.	2

15 Marks

2

Question 16

a)

Find the values of A and B if $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot x \, dx = A \log_e B$ 2

b)

For the curve
$$y = f(x)$$
 where $f(x) = \frac{\sec^2 x}{1 + \tan x}$ for $0 \le x \le \pi$,

(i) Find the *y*-intercept and $f(\pi)$.

(ii) Show that
$$\frac{dy}{dx} = \frac{\sec^2 x (\tan^2 x + 2\tan x - 1)}{(1 + \tan x)^2}$$
 3

(iii) There are two stationary points on the curve $y = \frac{\sec^2 x}{1 + \tan x}$ in the interval $0 \le x \le \pi$. Given (0.39, 0.83) is a minimum stationary point, find the other stationary point and determine its nature.

Do not try to find the points of inflexion.

(iv) Show there are vertical asymptotes at
$$x = \frac{\pi}{2}$$
 and $x = \frac{3\pi}{4}$

(v) Sketch the curve in the interval $0 \le x \le \pi$, clearly showing all 2 the above information.

(vi) Find the exact area under the curve
$$f(x) = \frac{\sec^2 x}{1 + \tan x}$$
 bounded
by the *x*-axis, the *y*-axis and $x = \frac{\pi}{3}$ in exact form.

End of Paper

Blank Page

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

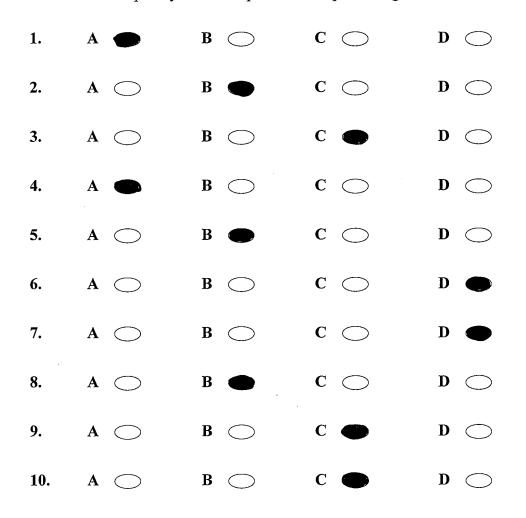
PLC Sydney Mathematics HSC Trial Examination 2013

Blank Page

Mathematics: Multiple Choice Answer Sheet

Student Number_____

Completely fill the response oval representing the most correct answer.


1.	A 🔿	B)	С	D 🔿
2.	A 🔿	B	С	D 🔿
3.	A 🔿	B	С 🔾	D 🔿
4.	A 🔿	B	С	D 🔿
5.	A 🔿	B	С	D 🔿
6.	A 🔿	B	С 🔾	D 🔿
7.	A 🔿	B	С 🔾	D 🔿
8.	A 🔿	B	С	D 🔿
9.	A 🔿	B 🔿	С 🔾	D 🔿
10.	A 🔿	B)	С	D 🔿

Blank Page

Mathematics: Multiple Choice Answer Sheet

Student Number_ANSWERS

Completely fill the response oval representing the most correct answer.

Solutions for exams and assessment tasks	Ver 1
Course	Name of task/exam
Academic Year CourseQuestion 11:Q = dd $d_x \left(\frac{\log x}{x}\right)$ quotient rule $= V u' - u V'$ $u = \ln x$ $= V u' - u V'$ $u' = \frac{1}{x}$ $V = x$ $V' = 1$ $= \frac{x(\frac{1}{2}) - \ln x(1)}{x^2}$ $V = x$ $= \frac{1 - \ln x}{x^2}$ $u = x$ $= UV' + Vu'$ $u' = 1$	Calendar Year Name of task/exam C = B A C $T_n \ \Delta PCA : PC = CA (given)$ C = CA (given) C = CA (given)
- 4 [1 - 3 0]	$(\operatorname{sec} \phi + \operatorname{tan} \phi)^2 = 1 + \sin \phi$
$= 4 \left[\ln e^{2} - \ln i \right]$	
= 4 [3 knee - 0]	LHS = $\left(\Re (\theta + tan \theta)^{2} \right)$
= 4 (3)	= sec ² + 2 sec + tano + tan ² o
= 12	Page of

PLC Sydney Maths Department

		ths Department	Ver I
Solutions for exams and assessmen	t tasks		
Academic Year Course		Calendar Year Name of task/exam	
Comse			۱. · · · · · · · · · · · · · · · · · · ·
$L \# S = \frac{1}{\cos^2 \Theta} + \frac{2 \times 1}{\cos \Theta} \times \frac{5 \sin \Theta}{\cos \Theta}$	$+ \frac{\sin^2 \alpha}{\cos^2 \alpha}$	<u>or</u> - (2	(x-5) = 4x - 1
$= 1 + 2si_{1} + si_{2} + si_{2} + si_{3}$			x + 5 = 4x - 1
$= \frac{1+2\sin\varphi+\sin\varphi}{\cos^2\varphi}$			X = 1,
$= \left(1 + s_{1}^{\prime} e^{-1} \right)^{2}$		LHS = 2	(1)-51
$\left(1-S_{12}^{2}B\right)$		= -	3
$= (1 + s_{1}, e)(1 + s_{1}, e)$		= 3 RHS = 4	
(1- sine) (1+ 5.00)			3
= 1 + Sinter		LHS =	. <u>.</u>
I - Sirt = RHS		·: x =	is solution.
- R HS		$f y = x^2 +$	
2x-5 = 4x-1	- -	Vertex :	$DC = -\frac{b}{2(1)}$
2x - 5 = 4x - 1			$-4 = -\frac{b}{2}$
-2x = 4			-8 = -b .'. b = 8
$\chi = -2$			
Check LHS = 2(-2)-5 = -9			atisfies egn. of parabola
= 9'	•	$-18 = (-4)^2$	+ 8 (-4) + C
$R_{US} = 4(-2) - 1$		-18 = 16	
LHS Z RHS		- 18 = -16	+ C
inot a solution		C = -2	
		· b=8	C=-2
			, Page of

.

.

	Folutions for exams and asses	LC Sydney Maths Department sment tasks	Ver I
	Academic Year Course	Calendar Year Name of task/exam	
	······································		
Quest	in 12 :	i, eqn tangent	:
, L		$y - y_{,} = m$ $y - 1 = \frac{1}{2}$	
		→x 2y-2 =	
		0 =	x - 2y - 4 + 2
		·: x - 2y -	2 = 0
<u>نا</u>	solve 13 tan x = 1	iii equation	of line joining P and s
	$\tan x = \frac{1}{r_3}$	$\frac{1}{1} \qquad m = \frac{4}{0-1}$	(41) (84)
	X= = ,-		•
	· <u>5</u> √ x < - ፵ , 7	= <u>3</u> -4	
	6 2 6	eqn: y	$-4 = -\frac{3}{4}(x-0)$
6	x=16y vertex	(0,0) 44	-16 = -3x
1	4a = 16	32	+ 4y-16=0.
	a = 4	To find R:	solve simult eqns
-	· s (o , 4)	$\chi^2 = 16$	
ij,	$u - r^2$	3x + 4y - 16	
	$y = \frac{x^2}{16}$	(1) y = 2	2
d	$\frac{\gamma}{\kappa} = \frac{2\kappa}{16}$		
	-	$3x + 4\left(\frac{3}{4}\right)$	$\frac{\chi^2}{16}$ - 16 = 0
9	$\frac{y}{x} = \frac{x}{8}$	$3x + \frac{x^2}{4}$	= 16
a	+ P(4, 1)	$\chi^2 + 12\chi$	- 64 = 0
	$m_{targ} = \frac{4}{8}$	(x - 4)	(x + 16) = 0
	$m = \frac{1}{2}$		$\mathbf{x} = -16.$
	2	(4, 1) (-	Page of Page of

PLC Sydney Maths Department

 $x = ln\left(\frac{1}{2}\right)$

PLC Sydney Mat Solutions for exams and assessment tasks	ns Department	Ver 1
	Calendar Year	
	Name of task/exam	· .
	Name of task/exam $d_{\perp} = \left \frac{-16 - 32 - 2}{\sqrt{5}} \right $ $= \frac{50}{\sqrt{5}}$ $= 10\sqrt{5} \text{ units}$ $\frac{\sqrt{11}}{4} = \frac{1}{2} \text{ b h}$ $= \frac{1}{2} (5\sqrt{5}) (10\sqrt{5}).$ $= 125 \text{ units}^{2}$ $\frac{\text{Question 13}}{3}$	±-3
$d_{PT} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(46)^2 + (14)^2}$ $= \sqrt{100 + 25}$ $= \sqrt{125}$ $= 5\sqrt{5} \sqrt{145}$	$x^{2} + y^{2} \ge 9$ $y \ge x - 3$ $Test (3)$ $y \ge 0$ $True$	
$v_{1} = R(-16, 16)$ eqn PT is eqn of tangent at P $x - 2y - 2 = 0$ $d_{1} = \int \frac{ax_{1} + by_{1} + C}{\sqrt{a^{2} + b^{2}}}$ $= \left[\frac{1(-16) - 2(16) - 2}{\sqrt{1^{2} + (-2)^{2}}} \right]$	$b 2e^{-21} - 5e^{-1} = 0$ Let $u = e^{-1}$ $2u^{2} - 5u + 2 = 0$ $(2u - 1)(u - 2) = 0$ $u = \frac{1}{2} u = 2$ $e^{-1} = \frac{1}{2} e^{-1} = 2$ $-x = \ln(\frac{1}{2}) -x = \ln 2$ $x = -\ln(\frac{1}{2}) x = -\ln 2$ Page	2 .

or

 $\mathcal{X} = \ln 2$.

Sudney Mathe De DT

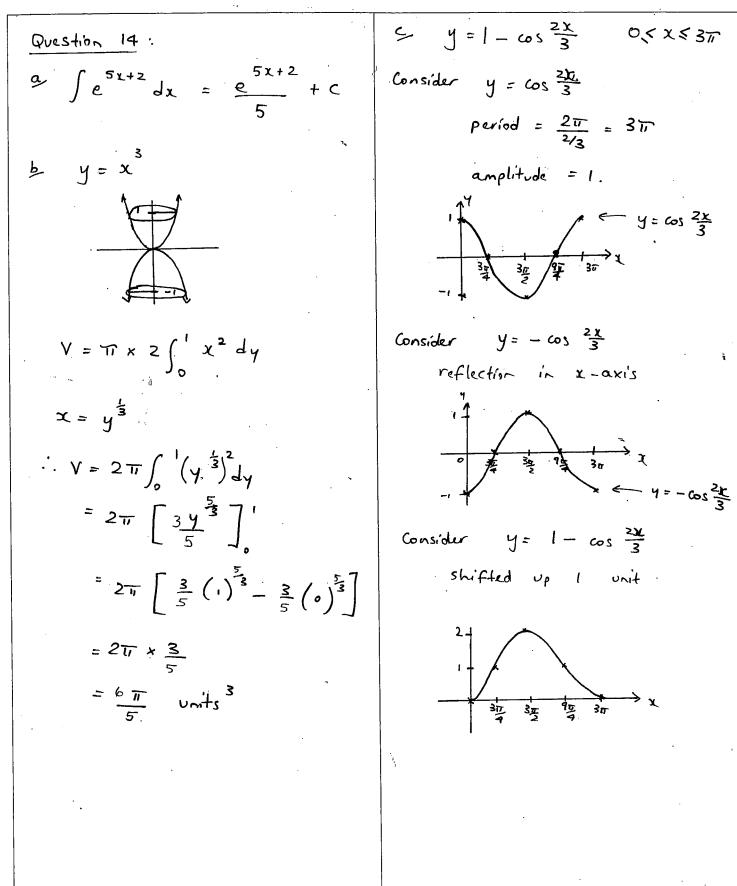
PLC Sydney Mat	
Solutions for exams and assessment tasks	Ver I
	Calendar Year
Course	Name of task/exam
A 4	$d kx^2 - (2k+1)x + 2 = 0$
<u><u><u></u></u></u>	-
	j x=1 is root
	it satisfies quadratic
	$k(1)^{2} - (2k+1)(1) + 2 = 0$
- 6	k - 2k - 1 + 2 = 0
22-37 -3	- K +1=0
2z - 3y = 6	k = 1
x - intercept : set y = 0	is for real roots $\Delta \ge 0$
2x = b	$b^2 - 4ac \ge 0$
x = 3	$\left[-(2k+i)\right]^{2} - 4(k)(2) \ge 0$
y-intercept: set $y = 0-3y = 6$	[-(22+1)] = +(2)(2) = 0
y = -2	$4k^{2} + 4k + 1 - 8k \ge 0$
is Closest to origin	$4k^2 - 4k + 1 > 0$
we need to find egn of line passing	$(2k-i)^2 \ge 0$
-through origin and perpendicular to 2x-3y=	6. for real roots all k satisfy.
$m_{1m} = \frac{2}{3}$	ill Let roots be x, -x
$m_{\perp} = -\frac{3}{2} (0,0)$	Sum of roots:
$y - 0 = -\frac{3}{2}(x - 0)$	$d + - d = -\frac{b}{a}$
2y = -3x	$0 = \frac{2k+1}{k}$
Need to solve 2x-3y=6 D	2k+1 = 0
3x + 2y = 0 (2)	$k = \frac{-L}{2}$
6x-9y=18 0×3	iv let roots be d, to

6x - 4y = 18 (1) 6x + 4y = 0 (2) × 2 -13y = 18 (1) - (2) y = -18/13 $x = \frac{12}{13}$

product of roots: $\begin{pmatrix} \bot \\ \checkmark \end{pmatrix} = \frac{\zeta}{\alpha}$ $l = \frac{2}{k}$

Page

of


 $-\frac{18}{13}$ 12/13

. . pt is

PLC Sydney N	Maths Department
--------------	------------------

Solutions for exams and assessment tasks

Academic Year	Calendar Year	
Course	Name of task/exam	

Page

of

Ver l

	essment tasks Ver I
Academic Year	Calendar Year
Course	Name of task/exam
-,	•
$y = \frac{x}{1}$	<u>e</u> 1
$y = \frac{1}{Sin x}$	
$\underline{-9}_{2}$	u' = 1
dx v2	$V = Sin \chi$
	$V' = \cos x'$
dy = sin x(i) - x(i)	
$\frac{dy}{dx} = \frac{\sin x (i) - x (\cos x)}{(\sin x)^2}$	
(Sin X)	
= sinx - x cos x	
$= \frac{Sin X - X \cos X}{Sin^2 X}$	In ABC and SABD
SIN X.	$A_{C} = A_{C} + A_{C$
· ·	AC = AD (equal radii)
TS sin X dy + y co	BC = BD (equal rodii)
	A B common
L4S = SINX SINX-XCO	x = x + x + x + x + x + x + x + x + x +
$LHS = SINX \left[\frac{SINX - XCO}{SIN^2 X} \right]$	$\frac{s x}{s \ln x} + \frac{\lambda}{s \ln x} \left(\frac{\cos x}{s \ln x} \right) \qquad \Delta ABC \equiv \Delta ABD (SSS)$
- 1	iii l=ro
= SI'nx - X LOS X	+ 1651 27 - 20
Sinx	$\frac{1}{5inx} = \frac{2\pi}{3} = 20$
	$\Theta = \frac{1}{2}$
= 51-74	. 3
Sint	\therefore < cAD = $\frac{T}{3}$
= 1	$< CAB = \frac{1}{2} < CAD$
= RHS	Tsing con-
	Since < CAB = < DAB
	corresponding angles in congruent
	triangles are equal]
	$< CAB = \frac{T}{6}$
· .	6

Page of

PLC Sydney Maths Department Solutions for exams and assessment tasks

Academic Year	Calendar Year	
Course	Name of task/exam	

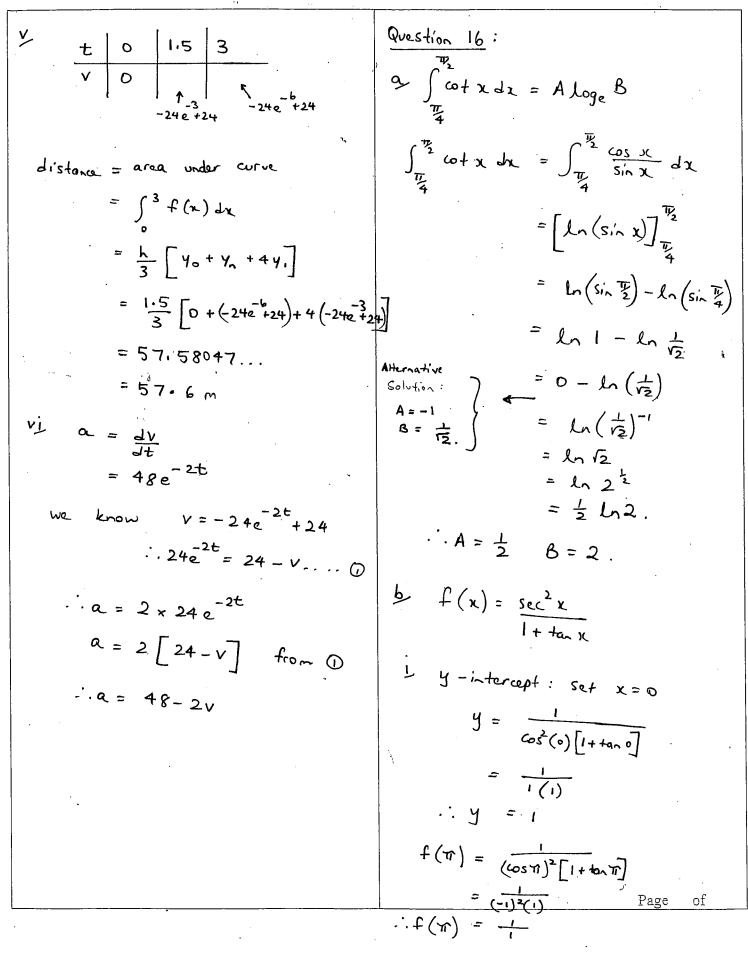
Ver l

··	<u></u>
15 In SACB	1 egn of AB
CA=2m, AB=4m	y = mx + b.
	we know (1,2) lies on lie
CALCB	with gradient m
right angled triangle.	2 = m + b
$4^2 = 2^2 + (CB)^2$	b = 2 - m
$16 = 4 + (CB)^2$	eqn of AB is
$CB = \sqrt{12}$	
$cB = 2\sqrt{3}$	y = mx + 2 - m
Using circle Centre A	$\overset{`'}{\perp} A = \frac{1}{2} b h$
A segment = $\frac{1}{2} 2^2 \left(\frac{11}{3} - \sin \frac{11}{3} \right)$	$= \frac{1}{2} \times a \times b$
$= 2\left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right)$	for the line y=mx+2-m
	(a, o) satisfies
Using circle centre B	0= ma+2-m
A segrent = $\frac{1}{2} \left(\frac{2\sqrt{3}}{3} \right)^2 \left(\frac{2\pi}{3} - s_1 \right)^2$	m-2 = ma
	a = m - 2
$=\frac{1}{2}(12)\left(\frac{2\pi}{3}-\frac{\sqrt{3}}{2}\right)$	for the line y= mx+2-m
$A_{\text{shaded}} = \begin{pmatrix} 2\pi & -\sqrt{3} \\ 3 & -\sqrt{3} \end{pmatrix} + 6 \begin{pmatrix} 2\pi & -\pi \\ 3 & -\frac{\pi}{2} \end{pmatrix}$	(o,b) satisficis
$= \frac{14\pi}{2} - 4\sqrt{3} \text{units}^2$	b = 2-m.
5	$A = \frac{1}{2} \left(\frac{m-2}{m} \right) \left(2 - m \right)$
Question 15:	
a yrab	$= (\underline{m-2})(\underline{2-m})$
(1,2) X	$= 2m - m^2 - 4 + 2m$
° a	$\frac{2m-m^2-4+2m}{2m}$
	$= 4m - m^2 - 4$
	2 ∼ Page of

PI C Sudney	Maths Department
I DO DYdnoy	reaction Doparation

Solutions for exams and assessment tasks

Academic Year	Calendar Year	
Course	Name of task/exam	•


Ver I

$\frac{11}{dm} \frac{dA}{dm} = \frac{Vu' - uv'}{v^2} \qquad u = 4m - \frac{2}{m^2 - 4}$	$b = 12e^{-2t} - 12 + 24t$
u = T - 2m	1 initially t=0
$= \frac{2m(4-2m) - (4m-m^2-4)(2)}{(2m)^2} V = 2m$	$V = -24e^{-2t} + 24$
$(2m)^2$ V=2	$V = -24e^{\circ} + 24$ = -24+24
$= 8m - 4m^2 - 8m + 2m^2 + 8$	V = 0
$(2m)^2$	initially at rest.
	$V = -24e^{-2t} + 24$
$= -\frac{2m^2 + 8}{(n-1)^2}$	when $t = ln\left(\frac{4}{3}\right)$
$(2m)^2$	
for maximin $\frac{dA}{dm} = 0$	$V = -24e^{-2\ln\frac{4}{3}} + 24$
-2m + 8 = 0	$= -24 e^{\ln(\frac{4}{3})^{-2}} + 24$
$2m^2 = 8$	$= -24 e^{\ln \left(\frac{3}{4}\right)^2} + 24$
$m^2 = 4$	$= -24 e^{1/2} + 24$
$m = \pm 2$	$= -24\left(\frac{9}{16}\right) + 24$
Since a and b both positive	$V = 10\frac{1}{2}$ m/s.
line AB is decreasing i. m=-2.	iii as $t \rightarrow \infty v \rightarrow 24$
m -3 -21-1	/ → 24
$\frac{dA}{dm} = \frac{1-10}{36} = 0 + \frac{6}{4}$	
L' i min .	
min Area = $4(-2) - (-2)^2 - 4$	24
2(-2)	$-24\overline{e}^{3}_{+24}$ (1.5, $-24\overline{e}^{3}_{+24}$)
8-4-4 4	1 115 2 3 t
= 4 units 2	
L	Page of

Solutions for exams and assessment tasks

Academic Year	Calendar Year	
Course	Name of task/exam	

Ver I

		Maths Department
Solutions for exams and	assessment tasks	Calendar Year
		Name of task/exam
$\frac{dy}{dx} = \frac{yu' - uv'}{v^2}$	$h = \operatorname{Sec}^2 \chi$ $h' = 2 \operatorname{Sec} \chi (\operatorname{Sec} \chi + d)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	u = 2 sec x tank	m)(
$(1 + 4a_{\lambda})^{2}$	V'- 5012 ~	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$= \frac{2 \sec^2 x \tan x + 2 \sec^2 x \tan^2 x}{(1 + \tan x)^2}$	-sec ⁴ x	max (1.96, -4.83)
$= \frac{\sec^2 x \left(2 \tan x + 2 \tan x\right)}{\left(1 + \tan x\right)^2}$	$\frac{1}{x-se^2x}$	iv Vertical asymptotes where den =0.
$= \frac{Sec^2 x (2 \tan x + 2 \tan^2)}{2}$	$x - (1 + t_{\infty}^{2} x)$	ten y n - 1 VI
$(1 + t_{\alpha_{n}} \chi)^{2}$		$Also \cos^2 x = 0$
$= \frac{\sec^2 x (2 \tan x + 2 \tan x)}{(1 + \tan x)^2}$	$\frac{2}{x}$ - 1 - $+\frac{2}{2}$)()	$X = \overline{V_2}$
$= \frac{\operatorname{Sel}^{2} x \left(\tan^{2} x + 2 \tan^{2} x \right)^{2}}{\left(1 + \tan^{2} x \right)^{2}}$	(-x-i)	2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
iii For stationary point sec ² x (tan x + 2 tan x	$\frac{dy}{dx} = 0$	$\begin{array}{c c} 0 & 0.39^{\frac{1}{2}} & \overline{U} & 3\overline{U} & T \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & &$
2	$\frac{b+\sqrt{b^2-4ac}}{2a}$	$v_{\perp} A = \int y dx$
=-2	$\frac{\pm\sqrt{4+4}}{2}$	$= \int_{0}^{\frac{\pi}{3}} \frac{\sec^{2} x}{ + \tan x } dx$
tomic = .	$\frac{-2 \pm 2}{2}$	$= \left[l_{n} \left(1 + t_{n-1} \right) \right]_{0}^{T_{3}}$
··· X = 0;	39), 1·96 7 3 5 -4·83 5	$= \ln \left(1 + \sqrt{3} \right) - \ln \left(1 \right)$
(0.39,0.83) (1.96		= Ln (1+13) units? Page of