

2014

TRIAL

HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen Black is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 100
Section I: Pages 3-6
10 marks

- Attempt questions $1-10$, using the answer sheet on page 17 .
- Allow about 15 minutes for this section

Section II: Pages 7-14

90 marks

- Attempt questions 11-16, using the lined paper provided.
- Allow about 2 hours 45 minutes for this section

Multiple Choice	11	12	13	14	15	16	Total

BLANK PAGE

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

1. What is the equation of the straight line through $(4,5)$ and parallel to $2 x-y+1=0$?
(A) $2 x-y-13=0$
(B) $2 x-y-3=0$
(C) $x+2 y-10=0$
(D) $x+2 y-7=0$
2. What are the nature of the roots of the quadratic equation $x^{2}-5 x-6=0$?
(A) Real, rational and unequal
(B) Real, irrational and unequal
(C) Unreal, rational and unequal
(D) Unreal, irrational and unequal
3. $A B C D$ is a parallelogram.

What is the value of x ?
(A) 40
(B) 45
(C) 55
(D) 60
4. What is the equation of the directrix of the parabola

$$
y^{2}=-16(x-2) ?
$$

(A) $x=-2$
(B) $\quad x=6$
(C) $y=-2$
(D) $y=6$
5. Which of the following diagrams show where $x^{2}+y^{2} \geq 4$ and $y \leq x-2$ hold simultaneously?
(A)

(C)

(B)

(D)

6. If $\log _{a} 3=-1.585$ and $\log _{a} 5=-2.322$, what is the value of $\log _{a}\left(\frac{27 a}{5}\right)$?
(A) -10.943
(B) -1.433
(C) $2.048 a$
(D) $6.143 a$
7. What is the equation of the curve that passes through $(4,5)$ if the gradient function is $\sqrt{2 x+1}$?
(A) $y=\frac{1}{3}(2 x+1)^{\frac{3}{2}}-4$
(B) $x-3 y+11=0$
(C) $3 x-y-7=0$
(D) $y=\frac{2}{3}(2 x+1)^{\frac{3}{2}}-13$
8. \quad The x values of P and Q are the solutions to which quadratic equation?

(A) $x^{2}-3 x-3=0$
(B) $x^{2}-3 x+3=0$
(C) $x^{2}+3 x-3=0$
(D) $x^{2}+3 x+3=0$
9. If $\sin x=-\frac{1}{5}$ and $\pi \leq x \leq \frac{3 \pi}{2}$, then $\cot x$ equals
(A) $-\frac{1}{2 \sqrt{6}}$
(B) $-2 \sqrt{6}$
(C) $\frac{1}{2 \sqrt{6}}$
(D) $2 \sqrt{6}$
10. A ship leaves a port, P, and sails 6 km on a bearing of 030° to position R. It then heads on a bearing of 320° until it reaches a port, Q, which is directly north of P.

Which of the following will give the value for x ?
(A) $\frac{x}{\sin 30^{\circ}}=\frac{6}{\sin 110^{\circ}}$
(B) $\frac{x}{\sin 40^{\circ}}=\frac{6}{\sin 110^{\circ}}$
(C) $\frac{x}{\sin 110^{\circ}}=\frac{6}{\sin 30^{\circ}}$
(D) $\frac{x}{\sin 110^{\circ}}=\frac{6}{\sin 40^{\circ}}$

Section II

90 marks

Attempt Questions 11-16

Allow about $\mathbf{2}$ hours $\mathbf{4 5}$ minutes for this section

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) $\quad \begin{aligned} & \text { Solve for } x: \\ & \\ & |3-2 x|=2 x\end{aligned}$
b) \quad Evaluate a and b if $\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{b}$.
c) Find $\lim _{x \rightarrow 0}\left[\frac{x^{2}-9 x}{5 x}\right]$
d) Find the domain of $y=\sqrt{3-2 x-x^{2}}$.
e) Differentiate the following with respect to x.

> (i) $\frac{e^{x^{3}}}{5 x}$
> (ii) $\quad \log _{e}\left(x^{2}+1\right)^{\frac{1}{2}}$
f) Find $\int \frac{3-x^{2}}{x} d x$
g) Show that $\int_{0}^{\log _{e} 2} \frac{2 e^{2 x}}{e^{2 x}+1} d x=\log _{e}\left(\frac{5}{2}\right)$.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) Find the shortest distance between the lines $3 x-5 y=8$ and $3 x-5 y=-1$.
b) If $f(x)=x^{3}-x+4$, find the value of $f(f(-1))$.
c) (i) Use Simpson's Rule with 3 function values to find an approximation to the area under the curve $y=\frac{1}{x}$ between $x=a$ and $x=3 a$ where a is positive.
(ii) Hence show that $\log _{e} 3 \doteqdot \frac{10}{9}$.
d) Sketch a continuous smooth curve for $x \geq 0$, where:
$f(0)=1$,
$f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ for $0<x<2$,
$f^{\prime}(2)=0$,
$f(2)=-2$
$f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$ for $x>2$.
e)

Prove $\sec \theta-\tan \theta-\frac{1}{\sec \theta-\tan \theta}=-2 \tan \theta$.
f) Find the equation of the locus of the point $P(x, y)$ such that the distance from P to the point $A(2,3)$ is twice the distance from P to the point $B(-1,4)$. Write your answer in simplest form.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) \quad Find the value(s) of p such that $x^{2}+(p-1) x-(2 p+1)>0$ for all values of x.
b)

A Ferris Wheel has a radius of 40 metres and 10 cages. A particular cage, C, starts at ground level and travels on a circular path.

(i) If the Ferris Wheel suddenly stops after cage C has moved 100 metres to a point D, through what angle has the wheel rotated?
(ii) What is the area of the sector $C O D$ where O is the centre of the Ferris Wheel, C is the starting point of cage C and D is the point where cage C stopped?
(iii) How far is cage C when it stops, in a straight line, from its
starting point at ground level? Write your answer correct to 1
(iii) How far is cage C when it stops, in a straight line, from its
starting point at ground level? Write your answer correct to 1 decimal place.
(iv) What is its height, to the nearest metre, above the ground now?
c) The region between $y=\sec x$ and the x-axis, bounded by $x=\frac{\pi}{6}$ and $x=\frac{\pi}{3}$ is rotated about the x-axis. Find the exact volume of the solid of revolution formed.

Question 13 continued

d) If the roots of the equation $x^{2}+a x+k=0$ differ by $3 a$, show
that $k=-2 a^{2}$
e) The graph of $y=f^{\prime}(x)$ is shown below.
$\ll-1$

In your answer booklet, draw $y=f(x)$, clearly showing any stationary points.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

a) A particle moving in a straight line with its velocity, $v \mathrm{~m} / \mathrm{s}$ at time t seconds is given by $v=3 \cos \left(2 t-\frac{\pi}{2}\right)$.
(i) Show that the particle is initially at rest?
(ii) What is the maximum speed of the particle?
(iii) Find the first time the velocity of the particle reaches $\frac{3 \sqrt{3}}{2} \mathrm{~m} / \mathrm{s}$.
(iv) Find the acceleration of the particle at time t.
(v) Sketch the acceleration of the particle as a function of time for $0 \leq t \leq \pi$.
(vi) If the particle is initially at the origin, find its distance travelled in the first π seconds.
b) In the diagram PQRS is a square.

(i) Prove that $\triangle X Y R \equiv \triangle Y Z S$.
(ii) Prove that $\angle X Y Z=90^{\circ}$.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.

a) The population of feral pigs is growing at a rate proportional to the current population. The population of pigs, P, at time t years is given by, $P=P_{0} e^{k t}$, where P_{0} and k are constants. In 2010, the feral pig population was first recorded. The population in 2012 was 350 and in 2014 it was 410.
(i) Find the exact value of P_{0} and k.
(ii) What is the expected population of the pigs in 2020?
(iii) In what year will the feral pig population reach 3000 ?
b) $\quad A B C$ is an isosceles triangle in which $a=b=1 \mathrm{~cm} . \angle C$ is obtuse. The perpendicular from B to $A C$ produced, meets $A C$ in D so that $B D=\frac{1}{2} A D$. Let $\angle B C D=\theta$. Show that $\sin \theta=\frac{1+\cos \theta}{2}$
c) For $y=2 x^{2} e^{x}$
(i) Find the x and y intercepts, if any.
(ii) What happens to the function as $x \rightarrow-\infty$?
(iii) Show that stationary points exist at $(0,0)$ and $\left(-2, \frac{8}{e^{2}}\right)$
(iv) Determine the nature of the stationary points.
(v) It is known that 2 points of inflexion exist on this curve at $x=-2 \pm \sqrt{2}$. Sketch the curve.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.

a) (i) Show that the equation of the normal to the parabola $x^{2}=16 y$ at the point where $x=4$ is $2 x+y-9=0$.
(ii) A line parallel to this normal is a tangent to the parabola. Find its equation and the co-ordinates of the point of contact.
b) Find the area under the curve $y=\log _{e} 2 x$, bounded by $\begin{aligned} & \text { and the } x \text {-axis. }\end{aligned}$

A tap is slowly turned on such that the volume flow rate of
water, R, varies with time according to the relation
$R=k t$, where k is a constant and $t>0$.
Calculate the total volume of water that flows from the tap in
the first 10 seconds if $k=1.3 \mathrm{~m}^{3} / \mathrm{s}^{2}$.

Question 16 continues on page 14

Question 16 continued

d)

A right circular cone is inscribed in a sphere of radius R.

(i) Show that the volume of the cone can be found by
$V=\frac{1}{3} \pi\left(2 R h-h^{2}\right) h$
(ii) Calculate the volume of the largest right circular cone inscribed in a sphere of radius R. Write your answer in terms of R.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Blank Page

Mathematics: Multiple Choice Answer Sheet

Student Number

\qquad

Completely fill the response oval representing the most correct answer.
1.
A

B

C

D
2.
A
B
C

D

3.
A \qquad
B
C \bigcirc
D
4.
A
B
C
D
5.
A
\bigcirc
B

C

D
6.
A \qquad
B

C

D
7.
A
B
C
D
8.
A
B

C \bigcirc
D

9.
A \qquad
B

C \bigcirc
D
10.
A
B
C

D

BLANK PAGE

Mathematics: Multiple Choice Answer Sheet

Student Number ANSWERS

Completely fill the response oval representing the most correct answer.
1.

B \longrightarrow
C

D

2.

B 0
C

D

3.
A

B

C

D

4.
A

B

C

D
5.

B

C
D
6.

B
C

D
7.
A

B

C

D

8.
A
B
C

D
9.
A

C

D

10.
A

B \bigcirc
C

D

Academic Year	Yr 12
Course	2 Unit

Calendar Year	2014

Course
Name of task/exam Trials

Section I

1. $(4,5)$ parallel to $2 x-y+1=0$
$y=2 x+1$
$\therefore m_{1}=2$.
$m_{2}=2$ since $m_{1}=m_{2}$ when parallel
\therefore - eq

$$
\begin{aligned}
& y-y_{1}= m\left(x-x_{1}\right) \\
& y-5= 2(x-4) \\
& y-5= 2 x-8 \\
& 2 x-y-3=0 \\
& \therefore B
\end{aligned}
$$

2. $x^{2}-5 x-6=0$
$\Delta=b^{2}-4 a c$
$=(-5)^{2}-4(1)(-6)$
$=25+24$
$=49$

$$
\therefore \Delta>0 \quad \begin{aligned}
& \text { real roots } \\
& \text { unequal. roots }
\end{aligned}
$$

$\Delta=49$ which is a perfect square \therefore rational roots
$\therefore A$
3. $\angle D C B=x+40$. (opposite angles) in parallelogram equal)
$\therefore 25+60+x+40=180$ $x=55$
(angle
$\triangle D B C$)
4. $y^{2}=-16(x-2)$
of the form

$$
(y-k)^{2}=-4 a(x-h)
$$

\therefore vertex $(2,0)$

$$
4 a=16
$$

$a=4$.
opens to left
$\therefore x=6$
$\therefore B$
5. $\quad x^{2}+y^{2} \geqslant 4$
means region outside circle
$\therefore B$ or C
$y \leqslant x-2$
Test $(0,0)$
ok - 2
(0,0) not in regin.
$\therefore c$
6. $\log _{a}\left(\frac{27 a}{5}\right)=\log _{a} 27 a-\log _{a} 5$
$=\log _{a} 27+\log _{a} a-\log _{a} 5$
$=\log _{a} 3^{3}+1-\log _{a} 5$
$=3 \log _{a} 3+1-\log _{a} 5$
$=-1.433$
$\therefore B$

Academic Year	Yr 12	Calendar Year	2014
Course	2 U	Name of task/exam	Trials

$$
\text { Q7. } \begin{aligned}
&(4,5) \quad \frac{d y}{d x}=(2 x+1)^{\frac{1}{2}} \\
& y=\int(2 x+1)^{\frac{1}{2}} d x \\
& y=\frac{(2 x+1)^{3 / 2}}{\frac{3}{2}(2)}+c \\
& y=\frac{(2 x+1)^{\frac{3}{2}}}{3}+c \\
& \text { at } \quad x=4 \quad y=5 \\
& 5=\frac{9^{\frac{3}{2}}}{3}+c \\
& 5=9+c \\
& c=-4 \\
& \therefore y=\frac{1}{3}(2 x+1)^{3 / 2}-4 \\
& \therefore A
\end{aligned}
$$

8. Parabola vertex $(0,0)$ must have eqn $y=x^{2}$ line with positive gradient and positive y-intercept must have eqn $y=3 x+3$ \therefore solutions are the points of intersection

$$
x^{2}=3 x+3
$$

$$
x^{2}-3 x-3=0
$$

(This is the quadratic eq) $\therefore A$

Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2014
Course	2 unit	Name of task/exam	Trials

Section II
Q11 $\quad|3-2 x|=2 x$

$$
\begin{array}{ll}
3-2 x=2 x & ,-3+2 x=2 x \\
3=4 x & ,-3 \pm 0 \\
x=\frac{3}{4} & , \quad \text { no solution }
\end{array}
$$

Check $x=\frac{3}{4}$

$$
\begin{aligned}
\text { LH } & =\left|3-2\left(\frac{3}{4}\right)\right| \\
& =\left|3-\frac{3}{2}\right| \\
& =\frac{3}{2} \\
\text { RHS } & =2\left(\frac{3}{4}\right) \\
& =\frac{3}{2} \\
\therefore \text { CHS } & =\text { RHS } \\
& \therefore x=\frac{3}{4} \text { is solution }
\end{aligned}
$$

b $\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{b}$

$$
\begin{aligned}
\frac{(2-\sqrt{5})}{(2+\sqrt{5})} \times \frac{(2-\sqrt{5})}{(2-\sqrt{5})} & =\frac{4-4 \sqrt{5}+5}{4-5} \\
& =\frac{9-4 \sqrt{5}}{-1} \\
& =4 \sqrt{5}-9 \\
\therefore 4 \sqrt{5}-9 & =a+\sqrt{b}
\end{aligned}
$$

equating:

$$
\begin{aligned}
& a=-9 \\
& b=16 \times 5=80
\end{aligned}
$$

c. $\lim _{x \rightarrow 0} \frac{x^{2}-9 x}{5 x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x(x-9)}{5 x} \\
& =\frac{-9}{5}
\end{aligned}
$$

$d y=\sqrt{3-2 x-x^{2}}$
domain: $\quad 3-2 x-x^{2} \geqslant 0$

$$
\begin{aligned}
& x^{2}+2 x-3 \leqslant 0 \\
& (x-1)(x+3) \leqslant 0
\end{aligned}
$$

$-3 \leqslant x \leqslant 1$
$\begin{array}{rl}e & i \\ & \frac{d}{d x} \frac{e^{x^{3}}}{5 x} \\ & =\frac{5 x\left(3 x^{2} e^{x^{3}}\right)-e^{x^{3}}(5)}{(5 x)^{2}}\end{array}$

$$
\text { ii } \begin{aligned}
& \frac{d}{d x} \ln \left(x^{2}+1\right)^{\frac{1}{2}} \\
= & \frac{d}{d x} \frac{1}{2} \ln \left(x^{2}+1\right) \\
= & \frac{1}{2} \frac{2 x}{x^{2}+1} \\
= & \frac{x}{x^{2}+1}
\end{aligned}
$$

Page 3 of 12

Solutions for exams and assessment tasks

Academic Year	4,12	Calendar Year	2014
Course	2 unit	Name of task/exam	Trial s

$f \int \frac{3-x^{2}}{x} d x$

$$
\begin{aligned}
& =\int\left(\frac{3}{x}-x\right) d x \\
& =\int \frac{3}{x} d x-\int x \cdot d x \\
& =3 \ln x-\frac{x^{2}}{2}+c
\end{aligned}
$$

g RTS

$$
\int_{0}^{\ln 2} \frac{2 e^{2 x}}{e^{2 x}+1} d x=\ln \left(\frac{5}{2}\right)
$$

$$
\text { LHS }=\int_{0}^{\ln 2} \frac{2 e^{2 x}}{e^{2 x}+1} d x
$$

since $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln f(x)$
then

$$
\begin{aligned}
& =\left[\ln \left(e^{2 x}+1\right)\right]_{0}^{\ln 2} \\
& =\ln \left(e^{2 \ln 2}+1\right)-\ln \left(e^{0}+1\right) \\
& =\ln \left(e^{\ln 4}+1\right)-\ln (2) \\
& =\ln (4+1)-\ln 2 \\
& =\ln 5-\ln 2 \\
& =\ln \left(\frac{5}{2}\right)
\end{aligned}
$$

Q 12.
a) $3 x-5 y=8$

$$
3 x-5 y=-1
$$

the shortest distance is the perpendicular distance.

A point on the line $3 x-5 y=8$ is $(1,-1)$
\therefore perp. distance from this point to the otter line is:

$$
\begin{aligned}
d_{1} & =\frac{\left|a x_{1}+b_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|3(1)-5(-1)+1|}{\sqrt{3^{2}+(-5)^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\frac{3+5+1}{\sqrt{34}}\right| \\
& =\frac{9}{\sqrt{34}} \\
& =\frac{9 \sqrt{34}}{34} \text { units }
\end{aligned}
$$

b

$$
\begin{aligned}
f(x) & =x^{3}-x+4 \\
f(f-1)) & =f\left((-1)^{3}-(-1)+4\right) \\
& =f(-1+1+4) \\
& =f(4) \\
& =4^{3}-4+4 \\
& =64
\end{aligned}
$$

Page 4 of 12

Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2014
Course	2 unit	Name of task/exam	Trials

$$
\begin{aligned}
c \perp A & \doteq \frac{h}{3}\left[40+y_{n}+4 y_{1}\right] \\
h & =\frac{3 a-a}{2}=a \\
\therefore A & =\frac{a}{3}\left[\frac{1}{a}+\frac{1}{3 a}+4 \times \frac{1}{2 a}\right] \\
& =\frac{a}{3}\left[\frac{1}{a}+\frac{1}{3 a}+\frac{2}{a}\right] \\
& =\frac{a}{3}\left[\frac{3+1+6}{3 a}\right] \\
& =\frac{d}{3}\left(\frac{10}{3 q}\right) \\
& =\frac{10}{9}
\end{aligned}
$$

ii, $\int_{a}^{3 a} \frac{1}{x} d x=[\ln x]_{a}^{3 a}$

$$
=\ln 3 a-\ln a
$$

$$
=\ln \left(\frac{3 d}{d}\right)
$$

$$
=\ln 3
$$

$$
\therefore \ln 3 \div \frac{10}{9}
$$

$d f(0)=1, f(2)=-2 \quad f^{\prime}(2)=0$
$f^{\prime}(x)<0$ for $0<x<2$ decreasing $f^{\prime}(x)>_{0}$ for $x>2$ increasing
$f^{\prime \prime}(x)>0$ for $0<x<2$. con came up
$f^{\prime \prime}(x)>_{0}$ for $x>2$ concave up

e RTP

$$
\begin{aligned}
& \sec \theta-\tan \theta-\frac{1}{\sec \theta-\tan \theta}=-2 \tan \theta \\
&=\frac{\sec \theta-\tan \theta}{1}-\frac{1}{\sec \theta-\tan \theta} \\
&=\frac{(\sec \theta-\tan \theta)^{2}-1}{\sec \theta-\tan \theta} \\
&=\frac{\sec ^{2} \theta-2 \sec \theta \tan \theta+\tan ^{2} \theta-1}{\sec \theta-\tan \theta} \\
&=\frac{\tan ^{2} \theta+1-2 \sec \theta \tan \theta+\tan ^{2} \theta-1}{\sec \theta-\tan \theta} \\
&=\frac{2 \tan \theta(\tan \theta-\sec \theta)}{(\sec \theta-\tan \theta)} \\
&=-2 \tan \theta \\
&=R H S
\end{aligned}
$$

Academic Year	Yr 12	Calendar Year	2014
Course	2 unit	Name of task/exam	Trials

$$
\begin{aligned}
& \text { f) } \quad d_{P A}=2 d_{P B} \\
& \sqrt{(x-2)^{2}+(y-3)^{2}}=2 \sqrt{(x+1)^{2}+(y-4)^{2}}
\end{aligned}
$$

square both sides

$$
(x-2)^{2}+(y-3)^{2}=4\left[(x+1)^{2}+(y-4)^{2}\right]
$$

$$
x^{2}-4 x+4+y^{2}-6 y+9=4\left[x^{2}+2 x+1+y^{2}-8 y+16\right]
$$

$$
\begin{aligned}
& \Rightarrow x^{2}-4 x+y^{2}-6 y+13=4 x^{2}+8 x \\
&+4+4 y^{2}= \\
&+64 \\
& 3 x^{2}+12 x+3 y^{2}-26 y+55=0
\end{aligned}
$$

Q13
a $\quad x^{2}+(p-1) x-(2 p+1)>0$
\therefore positive def.

$$
\begin{aligned}
a & =1 \quad a>0 \\
\Delta & =(p-1)^{2}-4(1)(-2 p-1) \\
& =p^{2}-2 p+1-4(-2 p-1) \\
& =p^{2}-2 p+1+8 p+4 \\
& =p^{2}+6 p+5
\end{aligned}
$$

for pos. def $\Delta<0$

$$
\begin{aligned}
\therefore & p^{2}+6 p+5<0 \\
& (p+1)(p+5)<0 \\
-5 & <p<-1
\end{aligned}
$$

b $i l=r_{\theta}$
$100=40 \quad a$

$$
\theta=\frac{100}{40}=\frac{10}{4}=\frac{5}{2} \text { radians }
$$

ii) $A=\frac{1}{2} r^{2} \theta$

$$
\begin{gathered}
=\frac{1}{2}(40)^{2}\left(\frac{5}{2}\right) \\
=2000 \mathrm{~m}^{2}
\end{gathered}
$$

iii

$$
x^{2}=40^{2}+40^{2}-2 \times 40 \times 40 \cos \left(\frac{5}{2}\right)
$$

$$
x=75.9 \quad m \quad(1 d p)
$$

iv

$$
\begin{aligned}
& \alpha=\frac{\pi-\theta}{2}=\frac{\pi-\frac{5}{2}}{2} \doteq 0.32 \mathrm{rads} \\
& \therefore \frac{\pi}{2}-0.32 \ldots=1.25
\end{aligned}
$$

$\therefore \sin 1.25=\frac{h}{x}$

$$
\begin{aligned}
h & =x \sin 1.25 \\
& =75.9 \times \sin 1.25 \\
& =72.0 \mathrm{~m} \\
& =72 \mathrm{~m} \text { (erst metre). }
\end{aligned}
$$

Page 6 of 12

Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2014
Course	2 Unit	Name of task/exam	Trials

$c V=\pi \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}(\sec x)^{2} d x$

$=\pi\left[\sqrt{3}-\frac{1}{\sqrt{3}}\right]$

$$
=\frac{2 \sqrt{3} \pi}{3} \text { units }^{3}
$$

d $\quad x^{2}+a x+k=0$
if roots differ by $3 a$
Let roots be α, β and $\alpha-\beta=3 a$
Sum of roots

$$
\begin{equation*}
\alpha+\beta=-a \tag{1}
\end{equation*}
$$

Product of roots

$$
\begin{equation*}
\alpha \beta=k \tag{2}
\end{equation*}
$$

also

$$
\begin{equation*}
\alpha-\beta=3 a \tag{3}
\end{equation*}
$$

Solve (1) and (3)

$$
\begin{aligned}
2 \alpha & =2 a \\
\alpha & =a \\
\therefore \beta & =-2 a
\end{aligned}
$$

$$
\begin{aligned}
\therefore \alpha \beta & =k \text { and } \\
& \alpha \beta=a(-2 a) \\
\therefore k & =-2 a^{2}
\end{aligned}
$$

e

when $y^{\prime}=0 \quad($ at $x=1)$

x	0^{-}	0	0^{+}
y^{1}	-	0	-

-Lo
when $y^{\prime}=0 \quad($ at $x=3$)

x	3^{-}	3	3^{+}
y^{\prime}	-	0	+

Page 7 of 12

Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2014
Course	2 unit	Name of task/exam	Trials

QI
a $\quad v=3 \cos \left(2 t-\frac{\pi}{2}\right)$
i) if initally at rest then when $t=0, \quad v=0$.

Show $t=0$

$$
\begin{aligned}
v & =3 \cos \left(0-\frac{\pi}{2}\right) \\
& =3 \cos \left(-\frac{\pi}{2}\right) \\
& =3(0) \\
& =0
\end{aligned}
$$

\therefore initially at rest.
ii max speed is when

$$
v=3 .
$$

Note: $\cos \left(2 t-\frac{\pi}{2}\right)$ is 1 as its maximum, \& -1 a_{s} its minimum
iii) $\frac{3 \sqrt{3}}{2}=3 \cos \left(2 t-\frac{\pi}{2}\right)$

$$
\frac{\sqrt{3}}{2}=\cos \left(2 t-\frac{\pi}{2}\right)
$$

$-\frac{\pi}{6}, \frac{\pi}{6}, \frac{5 \pi}{6}, \ldots=2 t-\frac{\pi}{2}$

$$
\begin{aligned}
& \frac{2 \pi}{6}, \frac{4 \pi}{6}, \frac{8 \pi}{6}, \cdots \\
& t=\frac{\pi}{6}, \frac{2 \pi}{6}, \cdots
\end{aligned}
$$

\therefore first tine $v=\frac{3 \sqrt{3}}{2}$ is at $t=\frac{\pi}{6}$.
iv $\quad a=-6 \sin \left(2 t-\frac{\pi}{2}\right)$

$$
\begin{gathered}
5 \\
d^{5} \\
-5 \\
-6
\end{gathered}
$$

v

vi $\quad t=0 \quad x=0$

$$
\begin{aligned}
& v=3 \cos \left(2 t-\frac{\pi}{2}\right) \\
& x=\frac{3 \sin \left(2 t-\frac{\pi}{2}\right)}{2}+C
\end{aligned}
$$

when $t=0 \quad x=0$

$$
\begin{aligned}
0 & =\frac{3}{2} \sin \left(0-\frac{\pi}{2}\right)+c \\
0 & =-\frac{3}{2}+c \\
c & =\frac{3}{2} \\
\therefore x & =\frac{3}{2} \sin \left(2 t-\frac{\pi}{2}\right)+\frac{3}{2}
\end{aligned}
$$

between $t=0$ and $t=\pi$ particle turns around at $t=\frac{\pi}{2}$.

$$
\begin{array}{rl}
\therefore t=0 & x=0 \\
t=\frac{\pi}{2} & x=3 \\
t=\pi & x=0
\end{array}
$$

\therefore total distance travelled in first π seconds is 6 metres.

Page 8 of 12

Academic Year	Yr.12	Calendar Year	2014
Course	2 unit	Name of task/exam	Trials

b

i In $\triangle X Y R$ and $\triangle y z S$
$<X R Y=\angle Y S Z$ (all angles
in square $=90^{\circ}$)
$X R=45$ (given)
$R Y+Y S=Z S+Z P \quad$ (all sides \quad in square are equal)
since $Y S=P Z$ (given)
$R Y=Z S$
$\therefore \triangle X Y R \equiv \triangle Y Z S$ (LAS)

$$
\frac{41}{35}=e^{4 k-2 k}
$$

ii Let $\langle x Y R=x$

$$
\frac{41}{35}=e^{2 k}
$$

$$
\begin{aligned}
& \therefore<y z S=x \quad \begin{array}{l}
\text { (in congruent } \\
\text { triangles corries po dy } \\
\text { angles are equal) }
\end{array} \\
& \therefore<z y s=a_{0} \quad 1
\end{aligned}
$$

$\therefore \angle z y s=90-x$ (angle sum
$\Delta z y s$).

$$
\begin{aligned}
\therefore<x y z=180-x & -(90-x) \\
& \text { (angle sum of } \\
& \text { straight line) }
\end{aligned}
$$

$$
\begin{aligned}
\therefore<x y z & =180-x-90+x \\
& =90
\end{aligned}
$$

Q15

$\underline{a} i p=p_{0} e^{k t}$
2010 records commences
$t: 2012 \Rightarrow t=2 \quad P=350$
$t: 2014 \Rightarrow t=4 \quad P=4 \mathrm{ko}$
$\therefore 350=P_{0} e^{k \times 2}$
$4_{10}=P_{0} e^{k \times 4}$

$$
\begin{align*}
\therefore 350 & =P_{0} e^{2 k} \tag{1}\\
410 & =P_{0} e^{4 k} \tag{2}\\
\frac{41 \phi}{35 \phi} & =\frac{P_{0} e^{4 k}}{X_{0} e^{2 k}} \quad \text { (2) } \div(1)
\end{align*}
$$

$$
\ln \left(\frac{41}{35}\right)=2 k
$$

$$
k=\frac{1}{2} \ln \left(\frac{41}{35}\right)
$$

$$
\therefore 350=P_{0} e^{\frac{1}{2} \ln \left(\frac{41}{35}\right) \times 2}
$$

$$
P_{0}=\frac{350 \times 35}{41}=\frac{12250}{41}
$$

$$
\text { ii } t: 2020 \Rightarrow t=10
$$

$$
\begin{aligned}
& P=298.78 \ldots e^{\frac{1}{2} \ln \left(\frac{41}{35}\right) \times 10} \\
& P=659
\end{aligned}
$$

$$
\therefore<x y z=90^{\circ}
$$

iii
$3000=1298.78 e^{\frac{1}{2} \ln \left(\frac{41}{35}\right)} t t$
$\frac{3000}{298.78 \ldots}=e^{\frac{1}{2} \ln \left(\frac{41}{35}\right) t}$
$\left(\frac{3000}{298.78 \ldots}\right)=\frac{1}{2} \ln \left(\frac{41}{35}\right) t$

$$
\therefore t=29.2 \quad \therefore 2040
$$

Solutions for exams and assessment tasks

Academic Year	Yr.12	Calendar Year	2014
Course	2 unit	Name of task/exam	Trials

b

Let $B C=y$

$$
\therefore C A=y
$$

$$
\therefore \sin \theta=\frac{B D}{B C}
$$

$$
\sin \theta=\frac{x / 2}{y}
$$

$$
\therefore y=\frac{x}{2 \sin \theta} . \quad \therefore \quad \frac{x}{y}=2 \sin \theta
$$

$$
\cos \theta=\frac{D C}{B C}
$$

$$
=\frac{x-y}{y}
$$

$\cos \theta=\frac{x}{y}-1$
$\cos \theta=2 \sin \theta-1$

$$
\therefore \sin \theta=\frac{\cos \theta+1}{2}
$$

c $y=2 x^{2} e^{x}$
i for x-intercepts : set $y=0$

$$
\begin{aligned}
& \therefore 0=2 x^{2} e^{x} \\
& \therefore x=0, e^{x} \neq 0 \\
& \therefore x=0
\end{aligned}
$$

for y-intercept : set $x=0$

$$
\begin{aligned}
\therefore y & =0 e^{0} \\
y & =0
\end{aligned}
$$

$\therefore(0,0)$ is $x \& y$ intercepts
ii) on $x \rightarrow-\infty$

$$
\begin{aligned}
& y \rightarrow \frac{2 x^{2}}{e^{x}} \rightarrow 0^{+} \\
& y \rightarrow 0
\end{aligned}
$$

iii

$$
\begin{aligned}
\frac{d y}{d x}=u v^{\prime}+v u^{\prime} & u=2 x^{2} \\
=2 x^{2} e^{x}+e^{x}(4 x) & u^{\prime}=4 x \\
=e^{x}\left(2 x^{2}+4 x\right) & v e^{\prime}=e^{x}
\end{aligned}
$$

for stat pts $\frac{d y}{d x}=0$

$$
\begin{aligned}
& e^{x}\left(2 x^{2}+4 x\right)=0 \\
& \therefore \underbrace{e^{x}=0 \quad 2 x^{2}+4 x=0}_{\text {no sol }} \begin{aligned}
& 2 x(x+2)=0 \\
& \therefore x=0, \quad x=-2
\end{aligned}
\end{aligned}
$$

\therefore Stat pts at $(0,0),\left(-2, \frac{8}{e^{2}}\right)$
iv

x	$-\frac{1}{2}$	0	$\frac{1}{2}$
$\frac{d y}{d x}$	-0.9	0	4.1

$$
+L_{0}+
$$

$$
\therefore \min (0,0)
$$

Solutions for exams and assessment tasks

Academic Year	Yr. 12	Calendar Year	2014
Course	2 unit	Name of task/exam	Trials

v

Q16

$$
\therefore x=-16
$$

a $1 \quad x^{2}=16 y$

$$
y=\frac{x^{2}}{16}
$$

$$
\frac{d y}{d x}=\frac{2 x}{16}
$$

at $x=4$
$m_{\text {tangent }}=\frac{8}{16}=\frac{1}{2}$.
$\therefore m$ norm $=-2$
at $x=4: y=\frac{4^{2}}{16}=1$.
$\therefore(4,1)$ is point
\therefore eqn normal is

$$
\begin{aligned}
& y-1=-2(x-4) \\
& y-1=-2 x+8 \\
& 2 x+y-9=0
\end{aligned}
$$

is eqn of normal.
ii $y=\frac{x^{2}}{16}$

$$
\frac{d y}{d x}=\frac{2 x}{16}=\frac{x}{8}
$$

if parallel to normal $m=-2$

$$
\frac{x}{8}=-2
$$

at $x=-16$

$$
y=16
$$

$\therefore(-16,16)$ are the coordinates of the point of contact.

The equation is:

$$
\begin{aligned}
& y-16=-2(x+16) \\
& y-16=-2 x-32 \\
& 2 x+y+16=0
\end{aligned}
$$

b

$$
\begin{aligned}
A & =\int_{a}^{b} y d x \\
& =\int_{a}^{4} \ln 2 x d x \\
& =\text { rectangle }-\int_{0}^{\ln 8} x d y \\
& =4 x \ln 8-\int_{0}^{\ln 8} \frac{1}{2} e^{y} d y \\
& =4 \ln 2^{3}-\left[\frac{1}{2} e^{y}\right]_{0}^{\ln 8} \\
& =12 \ln 2-\left(\frac{1}{2} e^{\ln 8}-\frac{1}{2} e^{0}\right) \\
& =12 \ln 2-\left(4-\frac{1}{2}\right) \\
& =12 \ln 2-\frac{7}{2}
\end{aligned}
$$

Academic Year	Yr 12	Calendar Year	2014
Course	2 unit	Name of task/exam	Trials

c

$$
\begin{aligned}
\frac{d V}{d t} & =k t \\
V & =\int k t d t \\
V & =\frac{k t^{2}}{2}+c
\end{aligned}
$$

when $t=0 \quad V=0 \quad \therefore c=0$

$$
\therefore v=\frac{1}{2} k t^{2}
$$

when $k=1.3, t=10$

$$
\begin{aligned}
& V=\frac{1}{2} \times 1.3 \times 10^{2} \\
& V=65 \mathrm{~m}^{3}
\end{aligned}
$$

$d \perp V_{\text {cone }}=\frac{1}{3} \pi r^{2} L$
radius of cone, r, is found using

$$
\begin{aligned}
r^{2} & =R^{2}-(h-R)^{2} \\
r^{2} & =R^{2}-h^{2}+2 h R-R^{2} \\
r^{2} & =2 h R-h^{2} \\
\therefore V_{\text {con }} & =\frac{1}{3} \pi\left(2 h R-h^{2}\right) h
\end{aligned}
$$

il largest cone when sphere has radius R.
$\therefore R$ is constant h is variable

$$
\begin{aligned}
& V=\frac{2}{3} \pi h^{2} R-\frac{1}{3} \pi h^{3} \\
& \frac{d V}{d h}=\frac{4}{3} \pi R h-\pi h^{2}
\end{aligned}
$$

for $\max / \min \frac{d V}{d h}=0$

$$
\begin{array}{r}
\therefore h\left(\frac{4}{3} \pi R-\pi h\right)=0 \\
h=0, \quad \frac{4}{3} \pi R-\pi h=0 \\
\frac{4}{3} \pi R=\frac{1}{\pi} h \\
h=\frac{4 R}{3}
\end{array}
$$

$$
\frac{d^{2} v}{d h^{2}}=\frac{4}{3} \pi R-2 \pi h
$$

ween $h=0$

$$
\begin{gathered}
\frac{d^{2} v}{d h^{2}}=\frac{4}{3} \pi R \\
>0
\end{gathered}
$$

when $h=\frac{4 R}{3}$

$$
\begin{aligned}
\frac{d^{2} V}{d h^{2}} & =\frac{4}{3} \pi R-2 \pi \frac{4 R}{3} \\
& =-\frac{4 \pi R}{3} \\
& <_{0} \cap
\end{aligned}
$$

$\cap \therefore \max$
\therefore Largest cone is when

$$
\begin{aligned}
& V=\frac{2}{3} \pi\left(\frac{4 R}{3}\right)^{2} R-\frac{1}{3} \pi\left(\frac{4 R}{3}\right)^{3} \\
& V=\frac{2}{3} \pi R\left(\frac{16 R^{2}}{9}\right)-\frac{1}{3} \pi\left(\frac{64 R^{3}}{27}\right) \\
& V=\frac{32 \pi R^{3}}{81} \text { units Page } 12 \text { of } 12
\end{aligned}
$$

