

2014 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen Black is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks – 100

Section I: Pages 3-6 10 marks

- Attempt questions 1-10, using the answer sheet on page 17.
- Allow about 15 minutes for this section

Section II: Pages 7-14 90 marks

- Attempt questions 11-16, using the lined paper provided.
- Allow about 2 hours 45 minutes for this section

Multiple Choice	11	12	13	14	15	16	Total
							%

BLANK PAGE

Section I

10 marks

Attempt Questions 1–10

Allow about 15 minutes for this section

- 1. What is the equation of the straight line through (4,5) and parallel to 2x y + 1 = 0?
 - (A) 2x y 13 = 0
 - (B) 2x y 3 = 0
 - (C) x + 2y 10 = 0
 - (D) x + 2y 7 = 0
- 2. What are the nature of the roots of the quadratic equation $x^2 5x 6 = 0$?
 - (A) Real, rational and unequal
 - (B) Real, irrational and unequal
 - (C) Unreal, rational and unequal
 - (D) Unreal, irrational and unequal
- **3.** *ABCD* is a parallelogram.

What is the value of *x*?

- (A) 40
- (B) 45
- (C) 55
- (D) 60

What is the equation of the directrix of the parabola $y^2 = -16(x-2)$?

- (A) x = -2(B) x = 6
- (C) y = -2
- (D) y = 6
- 5.

4.

Which of the following diagrams show where $x^2 + y^2 \ge 4$ and $y \le x - 2$ hold simultaneously?

6.

If $log_a 3 = -1.585$ and $log_a 5 = -2.322$, what is the value of $log_a \left(\frac{27a}{5}\right)$?

- (A) -10.943
- (B) -1.433
- (C) 2.048*a*
- (D) 6.143*a*

7. What is the equation of the curve that passes through (4, 5) if the gradient function is $\sqrt{2x+1}$?

(A)
$$y = \frac{1}{3}(2x+1)^{\frac{3}{2}} - 4$$

(B)
$$x - 3y + 11 = 0$$

(C)
$$3x - y - 7 = 0$$

(D)
$$y = \frac{2}{3}(2x+1)^{\frac{3}{2}} - 13$$

8. The x values of P and Q are the solutions to which quadratic equation?

9.

If
$$\sin x = -\frac{1}{5}$$
 and $\pi \le x \le \frac{3\pi}{2}$, then $\cot x$ equals

(A)
$$-\frac{1}{2\sqrt{6}}$$

(B) $-2\sqrt{6}$
(C) $\frac{1}{2\sqrt{6}}$
(D) $2\sqrt{6}$

A ship leaves a port, *P*, and sails 6 km on a bearing of 030° to position *R*. It then heads on a bearing of 320° until it reaches a port, *Q*, which is directly north of *P*.

Which of the following will give the value for *x*?

(A)
$$\frac{x}{\sin 30^{\circ}} = \frac{6}{\sin 110^{\circ}}$$

(B)
$$\frac{x}{\sin 40^{\circ}} = \frac{6}{\sin 110^{\circ}}$$

(C)
$$\frac{x}{\sin 110^\circ} = \frac{6}{\sin 30^\circ}$$

(D)
$$\frac{x}{\sin 110^\circ} = \frac{6}{\sin 40^\circ}$$

PLC Sydney Mathematics HSC Trial Examination 2014

Section II

90 marks

Attempt Questions 11–16

Allow about 2 hours 45 minutes for this section

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) Solve for
$$x:$$
 2
 $|3-2x| = 2x$

b) Evaluate *a* and *b* if
$$\frac{2-\sqrt{5}}{2+\sqrt{5}} = a + \sqrt{b}$$
. 2

c) Find
$$\lim_{x \to 0} \left[\frac{x^2 - 9x}{5x} \right]$$
 1

d) Find the domain of
$$y = \sqrt{3 - 2x - x^2}$$
.

e) Differentiate the following with respect to *x*.

(i)
$$\frac{e^{x^3}}{5x}$$
 2

(ii)
$$log_e(x^2+1)^{\frac{1}{2}}$$
 2

f) Find
$$\int \frac{3-x^2}{x} dx$$
 2

g) Show that
$$\int_{0}^{\log_{e}^{2}} \frac{2e^{2x}}{e^{2x}+1} dx = \log_{e}\left(\frac{5}{2}\right).$$
 2

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) Find the shortest distance between the lines 3x-5y=8 and 2 3x-5y=-1.

b) If
$$f(x) = x^3 - x + 4$$
, find the value of $f(f(-1))$. **2**

c) (i) Use Simpson's Rule with 3 function values to find an approximation to the area under the curve $y = \frac{1}{x}$ between x = a and x = 3a where *a* is positive.

(ii) Hence show that
$$log_e 3 \doteq \frac{10}{9}$$
.

d) Sketch a continuous smooth curve for
$$x \ge 0$$
, where:
 $f(0)=1$,
 $f'(x) < 0$ and $f''(x) > 0$ for $0 < x < 2$,
 $f'(2)=0$,
 $f(2)=-2$
 $f'(x) > 0$ and $f''(x) > 0$ for $x > 2$.

e) Prove
$$\sec \theta - \tan \theta - \frac{1}{\sec \theta - \tan \theta} = -2\tan \theta$$
. 3

f) Find the equation of the locus of the point P(x, y) such that the distance from *P* to the point A(2, 3) is twice the distance from *P* to the point B(-1, 4). Write your answer in simplest form.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

- a) Find the value(s) of p such that $x^2 + (p-1)x (2p+1) > 0$ for all values of x.
- **b**) A Ferris Wheel has a radius of 40 metres and 10 cages. A particular cage, *C*, starts at ground level and travels on a circular path.

- (i) If the Ferris Wheel suddenly stops after cage C has moved 1
 100 metres to a point D, through what angle has the wheel rotated?
- (ii) What is the area of the sector COD where O is the centre of the Ferris Wheel, C is the starting point of cage C and D is the point where cage C stopped?
- (iii) How far is cage C when it stops, in a straight line, from its starting point at ground level? Write your answer correct to 1 decimal place.
- (iv) What is its height, to the nearest metre, above the ground now?
- c) The region between $y = \sec x$ and the x-axis, bounded by 3 $x = \frac{\pi}{6}$ and $x = \frac{\pi}{3}$ is rotated about the x-axis. Find the exact volume of the solid of revolution formed.

Question 13 continues on page 10

2

Question 13 continued

e)

d) If the roots of the equation $x^2 + ax + k = 0$ differ by 3a, show that $k = -2a^2$

In your answer booklet, draw y = f(x), clearly showing any stationary points.

End of Question 13

2

Question 14 (15 marks) Use a SEPARATE writing booklet.

a)		A particle moving in a straight line with its velocity, <i>v m/s</i> at time <i>t seconds</i> is given by $v = 3\cos\left(2t - \frac{\pi}{2}\right)$.	
	(i)	Show that the particle is initially at rest?	1
	(ii)	What is the maximum speed of the particle?	1
	(iii)	Find the first time the velocity of the particle reaches $\frac{3\sqrt{3}}{2}$ m/s.	2
	(iv)	Find the acceleration of the particle at time t .	1
	(v)	Sketch the acceleration of the particle as a function of time for $0 \le t \le \pi$.	2
	(vi)	If the particle is initially at the origin, find its distance travelled in the first π seconds.	3

In the diagram PQRS is a square.

b)

(i) Prove that $\Delta XYR \equiv \Delta YZS$.

3 2

(ii) Prove that $\angle XYZ = 90^\circ$.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.

a)		The population of feral pigs is growing at a rate proportional to the current population. The population of pigs, <i>P</i> , at time <i>t</i> years is given by, $P = P_0 e^{kt}$, where P_0 and <i>k</i> are constants. In 2010, the feral pig population was first recorded. The population in 2012 was 350 and in 2014 it was 410.	
	(i)	Find the exact value of P_0 and k.	2
	(ii)	What is the expected population of the pigs in 2020?	1
	(iii)	In what year will the feral pig population reach 3000?	2
b)		ABC is an isosceles triangle in which $a = b = 1 cm$. $\angle C$ is	2

Abc is an isosceles thangle in which
$$u = b = 10m$$
. Zet is
obtuse. The perpendicular from B to AC produced, meets AC in
D so that $BD = \frac{1}{2}AD$. Let $\angle BCD = \theta$. Show that
 $sin \theta = \frac{1 + cos \theta}{2}$

c)

For $y = 2x^2 e^x$

(i)	Find the <i>x</i> and <i>y</i> intercepts, if any.	1
(ii)	What happens to the function as $x \rightarrow -\infty$?	1
(iii)	Show that stationary points exist at (0, 0) and $\left(-2, \frac{8}{e^2}\right)$	2
(iv)	Determine the nature of the stationary points.	2
(v)	It is known that 2 points of inflexion exist on this curve at $x = -2 \pm \sqrt{2}$. Sketch the curve.	2

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.

- a) (i) Show that the equation of the normal to the parabola $x^2 = 16y$ 2 at the point where x = 4 is 2x + y - 9 = 0.
 - (ii) A line parallel to this normal is a tangent to the parabola.Find its equation and the co-ordinates of the point of contact.
- b)
- Find the area under the curve $y = log_e 2x$, bounded by x = 4 3 and the *x*-axis.

c)

A tap is slowly turned on such that the volume flow rate of water, *R*, varies with time according to the relation R = kt, where *k* is a constant and t > 0. Calculate the total volume of water that flows from the tap in the first 10 seconds if $k = 1.3m^3 / s^2$.

Question 16 continues on page 14

3

Question 16 continued

d)

A right circular cone is inscribed in a sphere of radius *R*.

- (i) Show that the volume of the cone can be found by $V = \frac{1}{3}\pi (2Rh - h^2)h$
- (ii) Calculate the volume of the largest right circular cone inscribed in a sphere of radius R. Write your answer in terms of R.

End of Paper

2

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}}\right), \quad x > a > 0$$

$$\int \operatorname{NOTE:} \ln x = \log_{x}, \quad x > 0$$

Blank Page

Mathematics: Multiple Choice Answer Sheet

Student Number_____

Completely fill the response oval representing the most correct answer.

1.	A 🔿	B)	C 🔾	D \bigcirc
2.	A 🔿	B 🔵	C 🔾	D 🔿
3.	A 🔿	B	C 🔾	D 🔘
4.	A 🔿	B	C 🔾	D 🔿
5.	A 🔿	B 🔵	C 🔾	D 🔿
6.	A 🔿	B)	C 🔾	D 🔿
7.	A 🔿	B)	C 🔾	D 🔿
8.	A 🔿	B)	C 🔾	D 🔿
9.	A 🔿	B	C 🔾	D 🔿
10.	A 🔿	B	С 🔘	D

BLANK PAGE

Mathematics: Multiple Choice Answer Sheet

Student Number ANSWERS

Completely fill the response oval representing the most correct answer.

1.	A	B 🌑	С 🔿	D 🔿
2.	A 🌑	B 🔿	C 🔾	D 🔿
3.	A ()	B ()	C 🔘	D 🔿
4.	A ()	B 🌑	C 🔾	D 🔿
5.	A 🔿	B \bigcirc	C 🔘	D 🔿
6.	A ()	B 🌑	C 🔾	D 🔿
7.	A 🔘	B)	C 🔾	D 🔿
8.	A	B)	C \bigcirc	D 🔿
9.	A 🔿	B ()	C \bigcirc	D
10.	A 🔿	B	c 🔿	D 🌑

PLC Sydney Maths Department

Ver 1

÷

	Solutions for exams a	nd assessment tasks	Colondar Vear	2014
	Academic Year	2124	Name of task/exam	Trials
	Course			
Sec-	tion I		4. $y^2 = -16(1)$	x - 2)
1,	(4,5) parallel	6 2x-y+1=0	of the form	
	y = 2x+1		$(Y-k)^2 = -4$	a(x-h)
	· '. m,= 2 .	z as sulas cocallal	.'. Vertex	(2,0)
	$m_2 = 2$ since m_1	2 mar puritar	4a = 16	
iegr	M-N=m(x-x)) . *	a = 4	· .
	J J, (1- ×,)	opens to	lef+
	y-5=2(x-4)		·· x =6	
	y-5=22-0 2x-y-3=	0	· . B	
	····B		5. x ² +y ² ≥2	÷
2	$x^2 - 5x - 6 = 0$		means regi	ion outside circle
•	$\Delta = b^2 - 4ac$		B or	C
	= (-5) ² - 4(1)(-	6)	y ≤ x - 2	
	= 25 + 24	,	Test (0,0))
	= 49		0 \$ -2	
	i, a > 0 real	roots	(0,0) not	t in region
	A=49 which is	a perfect square	∴ с	
	: ratio	al roots	6. $\log_a\left(\frac{27a}{5}\right)$	$-) = \log_{2} 27a - \log_{2} 5$
	A			= log 27+log a -log
				ja ja 94
3.	< DCB = X+40	(opposite angle	0	$= \log_a 3 + 1 - \log_a 5$
	1. 25+60 + V	180 (ande Sum	ry I	$= 3 \log_a 3 + 1 - \log_a 5$
	x=55	a DBC)		1,433
	, C	-		•
-	• •		•••	R
				4
				Page of 12

		PLC Sydney M	aths Department		Ver 1
	Solutions for exams a	nd assessment tasks	Calendar Year	2014	
	Academic Tear	211	Name of task/exam	Trials	
Q	7. $(4,5)$ $\frac{dy}{dx}$	$= \left(2\chi + i\right)^{\frac{1}{2}}$	9. $\sin \chi = -$	<u>1</u> 5 π ζ χ ξ	37
	$y = \int (2x+i)^{\frac{1}{2}} dx$ $y = \frac{2x+i}{\frac{3}{2}(2)} + \frac{3}{2}(2)$ $y = \frac{2x+i}{\frac{3}{2}(2)} + \frac{3}{2}(2)$ $y = \frac{2x+i}{\frac{3}{2}(2)} + \frac{3}{2}(2)$ $x = 4 + y = 5$ $5 = -9^{\frac{3}{2}} + c$	с - с 5	$5^{2} - (-1)^{2} = a^{2}$ a = 124. a = 124. $a = -\sqrt{24}$. $a = -\sqrt{2}$. a =	adj opp - 124 - 1 - 1	vad
	5 = 9 + c c = -4 $y = \frac{1}{3}(2x+1)$ Δ	³ / ₂ - 4	10. bearing 3: < or is a	= 2√6 D. 20° has 180°+0 Hernate to SQPR	+ SQRP S
5	s. Parabola ver must have eqn line with positi and positive y. must have eqn solutions are intersection $\chi^2 = 3\chi + 3$ 2	tex $(0,0)$ $y = x^2$ ve gradient -interupt y = 3x + 3 the points of	$\frac{a}{s_{in}^{2}A}$	$RP = 320 - 180 = 110^{\circ}$ = $\frac{b}{\sin 8}$ = $\frac{6}{\sin 40}$	- 30
	$1^{2} - 31 - 3 = 0$ (This is the $\therefore A$	quadratic eqn)		Page 2. 01	f 12

ي هو ب

÷

PLC Sydney Maths Departme

Ver 1

-~<u>.</u>≩ę:

ŧ

Solutions for exams a	nd assessment tasks		Vel I
Academic Year	Yr 12	Calendar Year	2014
Course	2 Unit	Name of task/exam	Trials
Section II QII 9 3-2x	= 2 x	c lim x x >0	$\frac{2^{2}-9\chi}{5\chi}$
$3 - 2 \chi = 2 \chi$	-3+2x = 2x	$x \rightarrow 0$	$\frac{\chi(1-4)}{5\chi}$
$3 = 4 \times ,$	-3 +0	= -9 5	
4 ,	no Solution	$d_{y=\sqrt{3-2\lambda-1^2}}$	
LH S = $ 3 - 2/\frac{3}{4}$)	domain :	$3-2\lambda-\lambda^2 \ge 0$
$= \left 3 - \frac{3}{2} \right $			$\chi^2 + 2\chi - 3 \leq 0$
$=\frac{3}{2}$			$(x-1)(x+3) \leq 0$
$RHS = 2\left(\frac{3}{4}\right)$ $= 3$		++++++	
· LHS = RHS		- 3 ,<	1 (X S I
$\therefore \chi = \frac{3}{4}$	is solution	e i d	× 3
$\frac{b}{2} - \frac{1}{5} = 0$	x+56	dx =	5x
$(2 - \sqrt{5})$ $(2 - \sqrt{5})$		= 5x	$\frac{(3\chi^2e^{\chi^2})-e^{\chi^2}(5)}{(5)}$
(2+15) (2-15)	$=\frac{4-415+5}{4-5}$		(5x) ²
= 9	- 45s	$\frac{d}{dx} ln($	$\left(\chi^{2}+1\right)^{\frac{1}{2}}$ OR $\frac{\frac{1}{2}\left(\chi^{1}+1\right)}{\chi^{2}}$
4	ls -9	$=\frac{d}{d\chi}$ $\frac{1}{2}$	$\ln\left(\chi^{2}+1\right) \qquad \left(\chi^{2}+1\right)$
$4\sqrt{5} - 9 = c$	a + Vb	$= \frac{1}{2} \frac{2x}{x^2 + 1}$	
a = -q	- 8-	$= \frac{\chi}{\chi^2 + 1}$	
6 = 16×5	- 80		Page 3 of 12

PLC Sydney Maths Department					
	Solutions for exams a	nd assessment tasks	Calendar Vear	2014	
	Academic Year	2 1	Name of task/exam	Trials	
	$(3 - \chi^2)$		Q 12		
/		A.	$\begin{array}{c} a \\ 3x - 5y \\ 3x - 5y \end{array}$	= 8 = -1	
	$=\int\left(\frac{3}{\pi}-x\right)$	tre	the shortest	distance is th	e
	$=\int \frac{3}{n} dn -$	J x. dr	perpendicular A point on	distance. He line 3x-54=	8
	= 3 kn x -	$\frac{x^2}{x}$ + c	is (1,-1)	
9	RTS	2	to the other	- line is:	point
	$\int_{0}^{\ln 2} \frac{2e^{2\chi}}{e^{2\chi}+1}$	$dn = ln\left(\frac{5}{2}\right)$	$d_{\perp} = \int \frac{a_{\lambda}}{\sqrt{a}}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	
	$HS = \int \frac{\ln^2 2e^{2x}}{e^{2x}} +$	dri	$= \int 3(1)$) - 5(-1) + 1	
	since $\int \frac{f'(x)}{f(x)}$	$\frac{1}{2}$ dn = ln f(x)	= 3	$\frac{+5+1}{-5}$	
	tlen			V 34 1	
	$= \left[ln \left(e^{2\chi} \right) \right]$	(1)	- 95	$\overline{34}$ $\overline{34}$ $\overline{34}$	
	$= \ln \left(e^{2\ln 2} \right)$	+i) - ln(e+i)	3	4	
	= ln (e ^{ch 4} +	-h(2)	$ \begin{array}{c} \downarrow & \downarrow \\ \downarrow \\$	$\chi^{3} - \chi + 4$ = $f((-1)^{3} - (-1))$	+ 4)
	- ln (4 +	$-l_{2}$		$= f\left(-1+1+4\right)$	
	= ln 5 - li	~ 2		= f (4)	
	$= \ln\left(\frac{s}{2}\right)$			= 4 ^s -4+4 = 64	-
				Page 4 of	12

:

	PLC Sydney I	Maths Department		Ver 1
Solutions for exams		Calendar Year	2014	
Course	2 401	Name of task/exam	Trials	
$C \perp A = \frac{h}{3} \left[Y \right]$	$\circ + y_n + 4 y_n$		ΛY	
$h = \frac{3a - a}{2}$ $\therefore A = \frac{a}{3} \begin{bmatrix} 1 \\ a \end{bmatrix}$	$= \alpha$ $+ \frac{1}{3a} + 4 \times \frac{1}{2a}$]	2	× x
$= \frac{a}{3} \left[\frac{1}{a} \right]$	$+ \frac{1}{3a} + \frac{2}{a}$	e RTP	1	
$=\frac{a}{3}\left[\frac{3}{3}\right]$	$\frac{1+6}{3a}$	Sec o - tan	0 - <u>1</u> 810-tai	= - 2 tan 0
$=$ $\frac{\alpha}{3}$	$\left(\frac{10}{3}\frac{1}{3}\right)$	LHS = Selb.	seco.	
$=\frac{10}{9}$		= (Seco	tano)2 - 1	
ij Ja du	$= \int \left(n \right) \frac{7^{3\alpha}}{7^{3\alpha}}$	se o	$c \circ - tan o$	
a = 0		= <u>sec</u> 9	-2 seco tano: + seco - tano.	tan 2 -1
) = ($\ln \frac{3a}{a}$	$=$ $ta^2 \theta$ +	1 - 2 sec 0 tano	+ tano - 1
:. ih 3 =	$\frac{10}{9}$	=2 tano (-	taro RID)	(USi-9 iden +a ² 0+1=5
d f(0)=1, f	2 (2) = - 2 f'	(2)=0	(0-tano)	
$ \begin{array}{c c} f'(x) < 0 & f_{1} \\ f'(x) < 0 & f_{2} \\ f'(x) & f_{2$	$br o < \chi < \frac{1}{2}$	decreasing = 2	tano 2 Ho	
f''(x) > 0 f''(x) = 0	or it > 2 increa Gr 0 < y < 0	i con came up	Cu 3	
f "(x)>0	for $x > 2$ a	on care up	Page 5	of 12
L	·			

Ż

:

PLC Sydney Maths Departr	ment
--------------------------	------

Solutions for exams a	nd assessment tasks	-		Ver I
Academic Year	Yr 12	Calendar Year	2014	
Course	2 unit	Name of task/exam	Trials	
f dpA = 2 dpB	<u> </u>	biler	9-	
$\sqrt{(x-2)^2+(y-3)^2} =$	$2\sqrt{(1+1)^{2}+(y-4)^{2}}$	100 = 40	<u>e</u>	
square both	sides	ά Δ.	$=\frac{1}{40}=\frac{1}{4}$	$=\frac{S}{2}$ rade
$\left(\chi-2\right)^{2}+\left(\gamma-3\right)^{2}=$	$4\left[(1+1)^{2}+(y-4)\right]$		$\frac{1}{2} \left(\frac{4}{40} \right)^2 \left(\frac{5}{5} \right)$	
$\chi^2 - 4\chi + 4 + \gamma^2 - 6\gamma + 4$	$7 = 4 \left[x^2 + 2x + 1 + y^2 \right]$	-84+16	$2 \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$	
$\Rightarrow \chi^2 - 4\chi ty^2 - 6yt13$	$= 4x^2 + 8x + 4 + 4x$	1-32y III		· · · · · · · · · · · · · · · · · · ·
3x2+12x+3y2-	+64 -26y+55=0	Lug Martin	0	calculation radia
Q 13		$\chi^{2} = 40^{2}$	+ 43 ² - 2x 40 x 40 ($\cos\left(\frac{5}{2}\right)$
$a x^2 + (p-1)x$	-(2p+i)>0	$\chi = 75$	·9 m (13	Lp)
a=1 a>0		IV NOT	0	
$\Delta = (p-1)^2 - 4(1)$)(-2p-))	$\Delta = \frac{\pi - \sigma}{2}$	$= \frac{5}{2}$	0.32
$= \rho^{2} - 2\rho + 1 - 2$ $= \rho^{2} - 2\rho + 1 + 8$	$\left(-2p-1\right)$	$\frac{1}{2}$ $\frac{1}{2}$ $-$ 0	.32 = 1.25	
$= p^{2} + 6p + 5$		i. sin l	$.25 = \frac{k}{x}$	
tor pos. def	d <0	<i>μ</i> = :	x siz 1.25	
(p+1)(p+5)		=	75.9 × Sin 1.25	
-5 < p < -1	-5	= 7	2.0 m.	
		= 7	2 m (nrst met	re).
			Page 6 c	of 12

	PLC Sydney Maths Department					
	Solutions for exams a	Mc 1 2	Calendar Year	2014		
	Course	2 unit	Name of task/exam	Trials		
c/	$V = Tr \int_{\pi}^{\frac{T}{3}} (set)$	$(x)^2 dx$	·· « A	= k and		
	$= \overline{1} \int_{\overline{1}}^{\overline{4}} Sec^{2}$	x h	×β =	$a\left(-2a\right)$		
	ε = Tr [tan χ		e	1¥;'		
	$= T \left[tan \frac{T}{3} \right]$	$- ta_n \frac{11}{6}$		3	x	
	= 1 [3 -	<u></u>				
	$= 11 \left[\frac{1}{\sqrt{3}} \right]$ $= 2^{-11} $	- -		1 1		
	Ý3 = 2√3π	rs its ³			1.	
d	$\frac{-3}{3}$			3	/>x	
-	if roots diff	er by 3a	wler y	 =0 (at x=1)	
Let Sun	roots be d,	β and $\alpha - \beta = 3$	Ba <u>x 0-</u> <u>y'</u> -	$\left \begin{array}{c} 0 \\ 0 \end{array} \right ^{-1}$		
Pro	$\alpha + \beta = -$ duct of roots	a ()	-1.	 -	1 -	
als		(2) (3)	$\frac{1}{y'} = \frac{3}{2}$	=0 (at $x=1$) =1	3)	
S	olve () and $2\alpha = 2\alpha$	3	··· mi,	~ Page 7 o	f 12.	
L	$\frac{\lambda = \alpha}{\beta = -2\alpha}$:		

din di secondo di seco

		PLC Sydney M	aths Department		Ver I
Solutions to	r exams and ass		Calendar Year	2014].
Course	2	<u>-12</u> Unit	Name of task/exam	Trials	
Q 14			in a = -6	$5\sin(2t-\frac{\pi}{2})$	S
$a_{1} V = 3 \cos s$	(2t-T)			-s -c
i if inite when t	ally at re	ot then	y an		
Show $t = 0$	1	•			,
V = 3 co	$\int \left(0 - \frac{\pi}{2} \right)$)	0 24		E
= 3 a	$\operatorname{ps}\left(\frac{-\pi}{2}\right)$		-6 -	\checkmark	
- 3 (o = 0)				
· initially	y at res.	+ <u>.</u>	VI = 0 X	.= O	
11 max s	speed is	wlen	V = 3 cos ((2t - 5z)	
V = .	3.		$\chi = \frac{3 \sin 2}{2}$	<u>(zt-</u> 逻)+(
Note: cos	(2t - T)	is I	when t=0	y τ= 0	
. as	its maxim	um, & -1	$D = \frac{3}{2} s_1$	$in\left(0-\frac{\pi}{2}\right)+c$	
as	its minimu	\sim	0 = - <u>3</u> 2	+ C	
$\frac{3\sqrt{3}}{2} =$	$3\cos(2t)$	- 15)	C =	3	
$\frac{\sqrt{3}}{2} =$	605 (2t	- 4)	$\therefore X = \frac{3}{2}s$ between $t = 1$	$(2t - \frac{\pi}{2}) + \frac{\pi}{2}$	<u>3</u> , 2
$-\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}$	$\frac{5\pi}{6}$)	= 2t - T	particle turns	around at t=	A.
$\frac{2\pi}{6}, \frac{4\pi}{6}, \frac{8}{6}$		= 2 €	t=Tz x	= 3	
$t=\frac{\pi}{6},$	$\frac{2\pi}{6}$,		t = T x - x	= 0	
first +	ine V=3F	is at	first the set	conds is 6 me	in tres.
t = T	2			Page 8 of	12

Ę	Quilitations for oxome	PLC Sydney M	aths Department	Ve
[Academic Year	Y _c 12	Calendar Year 2014	
-	Course	244	Name of task/exam Trials	
b,	Q	Р	QIS	
/	F	4	i a kt	
		Ţ,	$a_1 r = P_0 e^{-1}$	
		/ 2		
			cords commences	
	×		t: 2012 => t=2 P=350	
	=		t: 2014 => t=4 P=41	
	, <u>b</u>	⇒́++д<		
		, 3	: 350 - P K+2	
(,, , e	
トナノ	with and	DYES	410 = P e kx4	
<	XRY = < YSZ	(all angles)		
	1	in Square = 90		
×	R = YS (give	n	$r_{0} = r_{0} e^{-r_{0}}$	
P.	1+46 - 76+-	D Call sides	$4_{10} = P_{0}e^{4t}$ (2)	
~		in square are e	(1) (1) (1) (2) (1)	
S	ince YS=PZ	(given)	350	
	RV - ZC		× 2 °	
			4_{1} $4_{k} - 2_{k}$	
•	$\Delta \times YR \equiv \Delta Yz$	es (sac)	$\frac{1}{3c} = e$	
•			$\frac{41}{22} = \frac{2k}{2}$	
1	Let $\langle X Y R = :$	Ľ	32	
	:< Y7 5= x	(in congrigat	$Q_{1}\left(\frac{41}{2}\right) = 2k$	
		triangles correspo	35)	
		angles are equal)	1	
•	. < 245 = 90-3	K (angle sum	2~1(33)	
		AZYS)	· 350 0 /2 (4) x2	
•			$P_{o} e^{-33}$	
	$1 = 160 - \chi$	- (90-x)	P _ 350 x 35 - 1225	a
		(angle sum of	41 41	-
		straight line)	$\begin{array}{ccc} 11 & t & 2020 \implies t = 10 \end{array}$	
•	CX V7 - 10		P= 298 78 26 (41) x10	
	N 12 - 180 -	X-90+X		
	= 90		$\mu = 65q$	
			1 · iii 1 · · · · · · · · · · · · · · ·	(4)
	\cdot	0	$= 3000 = 298.78 e^{-1}$	-9.
	/ / 0	•	$\frac{3000}{298,78} = e^{im(\frac{35}{35})t}$	
			$\begin{array}{c} 2 & 10 & 10 \\ \hline & 2 & 3002 \\ \hline & & 1 & 1 & 10 \\ \hline & & & 2 & 0 \\ \hline & & & & 1 & 1 \\ \hline & & & & & 1 \\ \hline & & & & & & 1 \\ \hline & & & & & & & 1 \\ \hline & & & & & & & 1 \\ \hline & & & & & & & & 1 \\ \hline & & & & & & & & & 1 \\ \hline & & & & & & & & & & 1 \\ \hline & & & & & & & & & & & & \\ \hline & & & &$	
			$\left \frac{(1+1)^{2}}{(298.78)} \right = \frac{1}{2} \ln \left(\frac{41}{37} \right) \frac{1}{2}$	
			1 20 2 2014	

	PLC Sydney	Maths Department		Ver l
Solutions for ex	ams and assessment tasks	Calendar Year	2014	
Course	2 Unit	Name of task/exam	Trials	
þ		for y-in	tercept: set x	-0
B		··· y -	= De [°]	
		· . (a	بعد من (مرم	y intercepts
×		ij as x-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Let $BC = y$ $\therefore CA = y$		y→	$\frac{21^2}{e^{\chi}} \rightarrow 0^+$	
$\therefore S_{1}^{\prime} = \frac{BD}{BC}$		y ->	0	
$sin \phi = \frac{x_{12}}{y}$		$\frac{dy}{dx} = 0v$	+ × u × × (1)	$u = 2\chi^2$ $u' = 4\chi$
$y = \frac{x}{2 s_{1}} e$	$\frac{x}{y} = 2s$	$=e^{\chi}(z)$	$\frac{1}{2} + \frac{2}{2} + \frac{4}{2}$	/= e ¹ /'=e ¹
$\cos \theta = \frac{DC}{BC}$		for stat pt	$s \frac{dy}{dx} = 0$	
= <u>x-y</u> y	+	$e^{\chi}(2\chi^2 t)$	4 x) = 0	
$cos = \frac{x}{y}$	I	no sol	$2x^{2}+4x = 0$ 2x(x+2) = 0	
9/25 = 9200	-1		., K=0, X=	-2
-'. Si, 0 =	$\frac{2}{2}$.: Stat pts	at (0,0),	$\left(-2,\frac{\overline{r}}{e^2}\right)$
$\leq y = 2\chi^2 e^{\chi}$		iv x - 1/2 dy -0.9	$\begin{array}{c c} 0 & \frac{1}{2} \\ \hline 0 & 4 \cdot 1 \end{array}$	\/+
1 for X-inter	cepts: set y=0			: min(0, 0)
$\therefore 0 = 21^2 $	2^{χ} $e^{\kappa} \neq 0$		0 -0.9 +/~	
· x=0			Page to 0	^{of} '2

•••• •

^t Solutions for exami	PLC Sydney s and assessment tasks	Maths Department		Ver 1
Academic Year	4112	Calendar Year	2014	
Course	2 unit	Name of task/exam	Trials	
$\begin{pmatrix} -2 & \frac{8}{2} \end{pmatrix}$	1	$\frac{11}{12} y = x$	-	
(-2- f2) (-2 + f2)	/ >x	$\frac{dy}{dx} = $	$\frac{2x}{16} = \frac{x}{8}$	
~1 ~1	>) >	if parallel	to normal m=	-2
		$\frac{\chi}{8} = -$	2	
16		X = -16	2	
$x^{2} = 16y$		at X = -16		
		y= 16		
$y = \frac{f}{16}$		· . (-16, 16) are the co	ordinates
$\frac{dy}{dL} = \frac{2x}{16}$		of the point	t f contact.	
at $x = 4$		The equation	is :	
M targent =	$\frac{8}{16} = \frac{1}{2}$.	y - 16 =	= -2(x+16)	
at x = 4 y	= 4 ²	9-16	= -2x - 32	
(4)	$\overline{16} = 1$.	22+4	+16 =0	
iegn normal		$ A = \int_{a}^{b} $	y dr	y=6n -
y - 1 = -2	(x - 4)	$=\int_{a}^{4}$	Ln 2x dr.	X۵
y - 1 = -2	X + 8	= recta	$ngle - \int x$	dy
2x+y-9	= O	= 4 × ln	$8 - \int_{0}^{1} \frac{1}{2} e^{7} e^{7}$	ly
is e	gn of normal	$=4\ln 2^{3}-[$	z e y] m e	
		$= 12 \ln 2 - (\pm 1) = 12 \ln 2 - (-1) \ln 2 - (-1$	ene_ze) A-1) Page 110	f 12
<u> </u>		= 12 12 2	_ 1	

PLC Sydı	ney Maths	Department
----------	-----------	------------

Ver 1

	Colutions for example	PLC Sydney M	auis Department		Ver 1
	Academic Year	Mr 12	Calendar Year	2014]
	Course	2001	Name of task/exam	Trials	
c,	$\frac{dV}{dt} = kt$		$V = \frac{2}{3}$	$\pi h^2 R - \frac{1}{3}\pi h$	3
	$V = \int k t dt$	-	$\frac{dV}{dL} = \frac{4}{3}$	πRL -πL ²	
	$\frac{1}{2}$ when $t=0$	V=0 .c=0	for ma	$\times / \min \frac{dV}{dL} =$	0
		2	h=0	4 <u>3</u> π R - π L) = 4 π R - π	- 0
	when k = 1.3	, t = 10		, <u>3</u> , " <u>4</u> , R_4	~ ~ U
	$V = \frac{1}{2} \times 1$	3 x 10		s = 4R	"\ `
	V = 05 h		$d^2 V$ a	3	
d d	$1 V_{cone} = \frac{1}{3}$	$s \pi r^2 L$	JL2 3	π R - 2π L	
	radius of c found using R	one, r is	$\frac{d^2 V}{dh^2} = \frac{d^2 V}{dh^2}$	$rac{1}{3}\pi R$	· · min
	$r^{2} = R^{2} - R^{2}$	(h-R) ²	when h=	4 R 3	
	$r^2 = R^2 -$	$h^2 + 2hR - R^2$	$\frac{d^2 V}{dh^2} = \frac{4}{3}$	$\pi R - 2\pi \frac{4R}{3}$	
	· = 26K		=	$\frac{4\pi R}{3}$	
	60m 311	(~nK-h)h	. Largest Ko	one is when	
	il largest cons hers radius	e when sphere	$V = \frac{2}{3}\pi$	$\left(\frac{4R}{3}\right)^2 R - \frac{1}{3} Tr($	$\left(\frac{4}{2}\right)^3$
	. R is	constart	$V = \frac{2}{3} T R$	$\left(\frac{16R^2}{q}\right) - \frac{1}{3}\pi\left(\frac{1}{2}\right)$	$\left(\frac{4}{27}\right)$
	h is	variable	$V = \frac{32\pi R^3}{81}$	Page 12 of	12