2015
 TRIAL
 HIGHER SCHOOL CERTIFICATE
 EXAMINATION

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen Black is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 100
Section I: Pages 3-6
10 marks

- Attempt questions 1-10, using the answer sheet on page 23.
- Allow about 15 minutes for this section

Section II: Pages 7-19
90 marks

- Attempt questions 11-16, using the Answer Booklets provided.
- Allow about 2 hours 45 minutes for this section.

Multiple Choice	11	12	13	14	15	16	Total	
								$\%$

BLANK PAGE

Section I

10 marks
Attempt Questions 1 - 10.
Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1. $\left(\frac{2 a}{3 b}\right)^{-5}=$?
(A) $\frac{2 a^{5}}{3 b^{5}}$
(B) $\frac{3 b^{5}}{2 a^{5}}$
(C) $\frac{243 b^{5}}{32 a^{5}}$
(D) $\frac{1}{243 b^{5}}$
2. Let α and β be the solutions of $2 x^{2}-5 x-9=0$. Which value is the answer to $\frac{1}{\alpha}+\frac{1}{\beta}$?
(A) $-\frac{9}{2}$
(B) $-\frac{9}{5}$
(C) $-\frac{5}{9}$
(D) $\frac{5}{2}$
3. Which expression (value) is equal to $\lim _{x \rightarrow \infty} \frac{3 x^{2}}{x^{3}-x}$?
(A) $\frac{3 x}{x^{2}-1}$
(B) 3
(C) $\frac{3}{x-1}$
(D) 0
4. The period and amplitude of $y=3 \cos 2 x$ is:
(A) \quad Amplitude $=2 \quad$ Period $=\frac{2 \pi}{3}$
(B) \quad Amplitude $=3 \quad$ Period $=\pi$
(C) \quad Amplitude $=\pi \quad$ Period $=3$
(D) \quad Amplitude $=\frac{2 \pi}{3} \quad$ Period $=2$
5. What is the value of x in the equation $\log _{a} 12-2 \log _{a} 2=\log _{a} x$?
(A) 6
(B) $\frac{1}{3}$
(C) 3
(D) $\frac{1}{6}$
6. Which expression shows $\cos ^{2}\left(\frac{\pi}{2}-\theta\right) \cot \theta$ simplified fully ?
(A) $\cos ^{2} \theta \cot \theta$
(B) $\sin \theta \cos \theta$
(C) $\frac{\sin ^{3} \theta}{\cos \theta}$
(D) $\sin ^{2} \theta \cot \theta$
7. Which expression is equal to $\int_{2}^{7} \frac{5}{x} d x$?
(A) $5\left(\log _{e} 7-\log _{e} 2\right)$
(B) $\frac{1}{5}\left(\log _{e} 7-\log _{e} 2\right)$
(C) $\frac{5}{49}-\frac{5}{4}$
(D) 0
8. Which expression is the equation of the normal to the curve $x^{2}=4 y$ at the point where $x=2$?
(A) $y=1$
(B) $x-y-1=0$
(C) $y=-1$
(D) $x+y-3=0$
9. The function of $g(x)$ is given by

$$
g(x)= \begin{cases}x^{2}-4 & \text { for } x>0 \\ (X) & \text { for } \quad(Y)\end{cases}
$$

Which expressions for (X) and (Y) are correct, if $g(x)$ is an odd function?
(A) $\quad(X): 4-x^{2},(Y): x<0$
(B) $\quad(X):-x^{2}-4,(Y): x<0$
(C) $\quad(X): 4-x^{2},(Y): x>0$
(D) $\quad(X):-x^{2}-4,(Y): x>0$
10. A particle moves along a straight line. Initially it is at rest at the origin. The graph shows the acceleration, a, of the particle as a function of time t seconds for $0 \leq t \leq 10$.

At what time during the interval $0 \leq t \leq 10$ is the particle furthest from the origin?
(A) 3 seconds
(B) 6 seconds
(C) 7 seconds
(D) 8 seconds

End of Section I

Section II

90 marks

Attempt Questions 11 - 16.
Allow about 2 hours and 45 minutes for this section.

Answer each question in a new writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a new writing booklet for Question 11.
(a) Solve $x^{2}-2 x-7=0$, expressing your answer in simplest surd form.
(b) Find $\int \frac{3 x}{x^{2}+1} d x$.
(c) Simplify fully :

$$
\frac{2}{\sqrt{7}+3}-\frac{3 \sqrt{7}}{\sqrt{7}-3}
$$

(d) Find the value of x (correct to the nearest mm).

(e) Find the coordinates of the vertex and focus of the parabola $x^{2}-5 y+5=0$.

Question 11 (continued)

(f) Water flows into an empty container, so that after t minutes the volume V of water in litres is given by

$$
V=\frac{12 t^{2}}{t+4} \text { for } t \geq 0
$$

What is the rate at which the water is flowing into the container at 1 minute?
(g) Evaluate $\int_{0}^{\ln 6} e^{x} d x$.
(h) Differentiate $y=\sin 4 x$

Question 12 (15 marks) Use a new writing booklet for Question 12.
(a) Differentiate:
(i) $y=x^{3} e^{3 x}$. 2
(ii) $y=\frac{e^{x}}{(x+3)^{2}}$. (Full simplification of your answer is not required.)
(b) Solve $\sqrt{3} \cos x=\sin x$ for $0 \leq x \leq 2 \pi$. 2
(c) Use Simpson's Rule with five function values (x is in radians) to find an approximation for

$$
\int_{0}^{1} \tan x d x .
$$

(d) Evaluate
(e) Use the graphs below to answer (i) and (ii).

(i) Solve the inequality $4-x^{2} \leq x+2$.
(ii) Calculate the area between the curve $y=4-x^{2}$ and the line $y=x+2$.
(f) Find the values of A, B and C if $3 x^{2}+x+1 \equiv A(x-1)(x+2)+B(x+1)+C$.

End of Question 12

Question 13 (15 marks) Use a new writing booklet for Question 13.
(a) The diagram shows $\triangle A B D$ and $\triangle A C E$, where $B D$ is parallel to $C E$, $A B=A D=x \mathrm{~cm}, B C=D E=2 \mathrm{~cm}$ and $A D: A E=3: 4$. Triangle $A C E$ and arc $C E$ form a sector in a circle of radius $(x+2) \mathrm{cm}$. The angle of the sector is θ radians and arc $C E=18 \mathrm{~cm}$.

NOT TO
SCALE
(i) Find the value of θ. $\mathbf{2}$
(ii) Calculate the area of the segment cut off by $C E$.
(b) In the diagram below, $O A=O B=O C$. Show that $\angle O B C=65^{\circ}$. Give reasons.

Question 13 continues on page 12

Question 13 (continued)

(c) For the domain $0 \leq x \leq 6$, a function $y=f(x)$ satisfies $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$.

Sketch a possible graph of $y=f(x)$ in this domain.
(d) The points $A(\pi, 1), B(5 \pi, 3)$ and $C(\pi, 5)$ form an isosceles triangle, with $A B=B C$.

(i) Find the midpoint of $A B$.
(ii) Show that the equation of the line which is perpendicular to $A B$ and which passes through point C is:

$$
y+2 \pi x-5-2 \pi^{2}=0
$$

(iii) Calculate the distance AB .
(iv) Using the distances $A B, B C$ and $A C$, or otherwise, find $\angle C A B$ to the nearest degree.

End of Question 13

Question 14 (15 marks) Use a new writing booklet for Question 14.
(a) The part of the curve $\frac{x^{2}}{2}+y^{2}=8$ that lies in the first quadrant is drawn below.

This part of the curve is rotated about the \boldsymbol{x}-axis to form a solid. Find the exact volume of this solid of revolution.
(b) For the curve $y=x^{3}(3-x)$
(i) Find all stationary points and determine their nature.
(ii) Draw a sketch of the curve showing the stationary points, inflexion points and intercepts on the axes.
(c) The displacement of a particle moving along the x-axis is given by

$$
x=5 \sin \frac{\pi}{2} t
$$

where x is the displacement from the origin in metres, t is the time in minutes and $t \geq 0$.
(i) What is the furthest distance the particle moves away from the origin?
(ii) When does the particle first return to its starting position?
(iii) Find the acceleration of the particle when $t=3 \mathrm{~min}$.

Question 14 (continued)

(d) In the quadrilateral $A E C D, \angle D A E=90^{\circ}, \angle A E C=40^{\circ}, \angle B A E=24^{\circ}$ and $\angle B C E=50^{\circ}$. In quadrilateral $A B C D, A B$ is parallel to $D C$ and $\angle A B C=\alpha$ as shown in the diagram.

(i) Explain why $\alpha=114^{\circ}$.
(ii) Prove that ABCD is a parallelogram.

End of Question 14

Question 15 (15 marks) Use a new writing booklet for Question 15.
(a) Greg has a one hectare block of land $\left(10000 m^{2}=1\right.$ hectare (ha)). He is going to fence off three identical rectangular plots within his block for his three children. Each plot will measure $x \mathrm{~m}$ by $y \mathrm{~m}$ as shown in the diagram below. He will retain the remainder of the block for himself and his wife. Greg can only afford 300 m of fencing to go around the children's plots.

(i) Show that $y=75-\frac{3 x}{2}$.
(ii) Find the value of x for which the area of the children's plots will be a maximum.
(iii) Find the maximum area of one of the children's blocks.
(iv) How much of Greg's 1 hectare block is left for him and his wife?

Question 15 continues on page 16

Question 15 (continued)

(b) The acceleration, after t seconds, of a particle moving in a straight line is given by $\ddot{x}=-\frac{14}{(t+4)^{3}}$.
Initially the particle is located $\frac{3}{4} \mathrm{~m}$ to the left of the origin and the initial velocity is $\frac{7}{16} \mathrm{~m} / \mathrm{s}$.
(i) Find the velocity v and the displacement x at any time t.
(ii) What is the velocity of the particle when it passes through the origin?
(iii) Sketch a graph of the displacement as a function of time.
(c) A curve is given by the equation $y=2 x^{\frac{5}{2}}-x^{3}$, where $x \geq 0$.
(i) Show that $\frac{d^{2} y}{d x^{2}}=\frac{15}{2} \sqrt{x}-6 x$.
(ii) For what value(s) of x is the curve $y=2 x^{\frac{5}{2}}-x^{3}$ concave up?

End of Question 15

Question 16 (15 marks) Use a new writing booklet for Question 16.
(a) Connor buys a new car, which begins to depreciate immediately. The value $(\$ V)$ of the car after t years is given by $V=A e^{-k t}$
Where:
A is the initial value
k is the constant of depreciation
$t \quad$ is the time in years

The car is worth $\$ 30000$ after 5 years and $\$ 18000$ after 10 years.
(i) Find the constant of depreciation k.3
(ii) Find the initial value of the car. 1
(iii) How many whole years will it take before the car's value falls below $\$ 1000$?

Question 16 continues on page 18

(b) A plane leaves an airport (A) and travels due north $190 \sqrt{3}$ kilometres to a point K and then turns due west and travels a further 190 kilometres until it reaches a point P. Due to storms the plane is then diverted to a new airport (B) which is 200 kilometres on a bearing of 280° from A.

(i) Draw the diagram in your answer booklet and label it to show the information.
(ii) Show that $\angle K A P=30^{\circ}$.
(iii) Show that the plane needs to travel 294 kilometres from P to the new airport (B).
(iv) Hence or otherwise find the bearing (to the nearest degree) on which the plane flies from P to B.

Question 16 continues on page 19

(c) The diagram shows a shaded region which is bounded by the curve $y=\log _{e}(2 x-5)$, the x axis and the line $x=6$.

The curve $y=\log _{e}(2 x-5)$ intersects the x axis at A and the line $x=6$ at B.

(i) Show that the coordinates of points A and B are $(3,0)$ and $\left(6, \log _{e} 7\right)$ respectively.
(ii) Show that if $y=\log _{e}(2 x-5)$, then $x=\frac{e^{y}+5}{2}$.
(iii) Hence find the exact area of the shaded region.

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

BLANK PAGE

Mathematics: Multiple Choice Answer Sheet

Student Number \qquad

Completely fill the response oval representing the most correct answer.
1.
.

B

C

D

2.
A
B

C

D

3.

A

B

C

D

4.

B

C

D

5. $\quad \mathbf{A} \bigcirc$

B \bigcirc
C \bigcirc
D \bigcirc
6.
A
B

C

D

7.

B

C

D

8.

B

C

D

9.
A

B \bigcirc
C \bigcirc
D \bigcirc
10.

B \qquad
C

D

BLANK PAGE

Solutions for exams and assessment tasks

Academic Year	ia Trial	Calendar Year	$20 / 5$
Course	Quad Mat as	Name of task/exam	Trial $1 / 5 \mathrm{C}$

Multiple choice

1. $\left(\frac{2 a}{3 b}\right)^{-5}=\left(\frac{3 b}{2 a}\right)^{5}=\frac{243 b^{5}}{32 a^{5}}$
(c)

2: $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{5 / 2}{-9 / 2}=\frac{-5}{9}$
3. $\lim _{x \rightarrow \infty} \frac{3 x^{2}}{x^{3}-x}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{3}}}{\frac{x^{3}}{x^{3}}-\frac{x}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{3}{1-\frac{1}{x^{2}}}=0$ (
4.
5.

$$
\begin{align*}
\log _{a} 12=\log _{a} 2^{2} & =\log _{a}\left(\frac{12}{4}\right) \tag{B}\\
& =\log _{a} 3 \\
& =\log _{a} x \\
\therefore x & =3
\end{align*}
$$

6. $\cos ^{2}\left(\frac{\pi}{2}-\theta\right) \times \frac{\cos \theta}{\sin \theta}=\sin ^{2} \theta \times \frac{\cos \theta}{\sin \theta}=\sin \theta \cos \theta$
7. $\left.\int_{2}^{7} \frac{5}{x} d x=5 \ln x\right]_{2}^{7}$.

$$
\begin{equation*}
=5 \ln 7-5 \ln 2 \tag{A}
\end{equation*}
$$

Solutions for exams and assessment tasks

Academic Year	12 Trial	Calendar Year	2015
Course	$2_{i n}$ M Maths	Name of task/exam	Trial HSC

$$
\begin{align*}
& \text { 8. } y=\frac{x^{2}}{4} \\
& \frac{d y}{d x}=\frac{x}{2} \\
& \text { at } x=2 \\
& m_{T}=1 \quad m_{N}=-1 \tag{D}\\
& y-1=-(x-2) \\
& y-1=-x+2 \\
& x+y-3=0
\end{align*}
$$

9. .dd when $f(x)=-f(-x)$

$$
\begin{aligned}
g(x) & =x^{2}-4 \\
-g(-x) & =-\left(x^{2}-4\right) \\
& =-x^{2}+4
\end{aligned}
$$

10. (D) Area under graphs above and below axes are equal.

Academic Year	12 Tmil	Calendar Year	$20 / 5$
Course	Runt mat ar	Name of task/exam	Ina HSC

Question 11

$$
\text { a. } \begin{aligned}
& x^{2}-2 x-7=0 \\
& =\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-7)}}{2} \\
& =\frac{2 \pm \sqrt{32}}{2} \\
& =\frac{2 \pm 4 \sqrt{2}}{2} \\
& =1 \pm 2 \sqrt{2}
\end{aligned}
$$

b.

$$
\begin{aligned}
\int \frac{3 x}{x^{2}+1} d x & =\frac{3}{2} \int \frac{2 x}{x^{2}+1} d x \\
& =\frac{3}{2} \ln \left(x^{2}+1\right)+c
\end{aligned}
$$

c.

$$
\begin{aligned}
\frac{2(\sqrt{7}-3)-3 \sqrt{7}(\sqrt{7}+3)}{7-9} & =\frac{2 \sqrt{7}-6-21-9 \sqrt{7}}{-2} \\
& =\frac{-7 \sqrt{7}-27}{-2} \\
& =\frac{7 \sqrt{7}+27}{2}
\end{aligned}
$$

d. $\quad \frac{x}{4.2}=\frac{5.6}{2.6}$

$$
\begin{aligned}
x & =\frac{5.6}{2.6} \times 4.2 \\
x & =9.04 \ldots \mathrm{~cm} \\
& =90 \mathrm{~mm}
\end{aligned}
$$

Page 3 of 120

Solutions for exams and assessment tasks

Academic Year	T2 Aral	Calendar Year	2015
Course	2 Mn to wat A_{1}	Name of task/exam	Tr=1 HSC

$$
\text { Q. } \begin{aligned}
x^{2}-5 y+5 & =0 \\
5 y & =x^{2}+5 \\
x^{2} & =5 y-5 \\
x^{2} & =5(y-1) \\
{\left[x^{2}\right.} & =4 a(y-k)] \\
5 & =4 a \\
a & =\frac{5}{4} .
\end{aligned}
$$

\therefore vertex $(0,1)$
Focus $\left(0,2 \frac{1}{4}\right)$

f. $\quad V=\frac{12 t^{2}}{t+4} \quad t \geqslant 0$ \qquad

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{24 t(t+4)-12 t^{2}}{(t+4)^{2}} \\
& =\frac{24 t^{2}+96 t-12 t^{2}}{(t+4)^{2}}
\end{aligned}
$$

at $t=1$

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{24+96-12}{5^{2}} \\
&=\frac{108}{25}=4.32 \cdot \ln / \mathrm{min} \\
& \ln 6 \\
& \int_{0} e^{x} d x\left.=e^{x}\right]_{0}^{\ln 6} \\
&=6-1 \\
&=5
\end{aligned}
$$

h. $\frac{d y}{d x}=4 \cos 4 x$

Academic Year	12 Trial	Calendar Year	2015
Course	2 unit Maths	Name of task/exam	Tridel HSC

Question 12
a (i) $y=x^{3} e^{3 x}$

$$
\begin{array}{rl}
u=x^{3} & v=e^{3 x} \\
u^{\prime}=3 x^{2} & v^{\prime}=3 e^{3 x}
\end{array}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =3 x^{2} e^{3 x}+3 x^{3} e^{3 x} \\
& =3 x^{2} e^{3 x}(1+x)
\end{aligned}
$$

(ii) $y=\frac{e^{x}}{(x+3)^{2}}$

$$
\begin{array}{rlrl}
u & =e^{x} & v & =(x+3)^{2} \\
u^{\prime} & =e^{x} & v^{\prime} & =2(x+3) \\
& =2 x+6
\end{array}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{e^{x}(x+3)^{2}-2 e^{x}(x+3)}{(x+3)^{4}} \\
& =\frac{e^{x}(x+3)(x+3-2)}{(x+3)^{4}} \\
& =\frac{e^{x}(x+3)(x+1)}{(x+3)^{4}} \\
& =\frac{e^{x}(x+1)}{(x+3)^{3}}
\end{aligned}
$$

b.

$$
\begin{gathered}
\sqrt{3} \cos x=\sin x \quad(\div \cos x) \\
\tan x=\sqrt{3} \\
x=\frac{\pi}{3}, \frac{4 \pi}{3}
\end{gathered}
$$

c.

0	$1 / 4$	$2 / 4$	$3 / 4$	1
0	$\tan \frac{1}{4}$	$\tan ^{2} / 4$	$\tan ^{3} 14$	$\tan 1$
y_{0}	y_{1}	y_{2}	y_{3}	y_{m}

$$
\begin{aligned}
A= & \frac{1}{4}\left[0+\tan 1+4\left(\tan \frac{1}{4}+\tan \frac{3}{4}\right)\right. \\
& +2\left(\tan \frac{1}{2}\right) \\
= & \frac{1}{12}[7.3977 \ldots] \\
= & 0.6164805 \ldots . \\
& =0.62(2 . d p)
\end{aligned}
$$

Solutions for exams and assessment tasks

12 Trial	Calendar Year	2015
2unit Mates	Name of task/exam	Trial FeSS

d.

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sec ^{2} 3 x d x & \left.=\frac{1}{3} \tan 3 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{3} \tan \frac{3 \pi}{2}-\frac{1}{3} \tan 0 \\
& =\frac{1}{3} \tan \frac{3 \pi}{2} \\
& =\text { undefined. }
\end{aligned}
$$

e. (i) $x \leqslant-2, x \geqslant 1$
(ii)

$$
\begin{aligned}
\int_{-2}^{1} 4-x^{2}-(x+2) d x & =\int_{-2}^{1} 4-x^{2}-x-2 d x \\
& =\int_{-2}^{1} 2-x-x^{2} d x \\
& =2 x-\frac{x^{2}}{2}-\frac{x^{3}}{3} J_{-2}^{1} \\
& =\left(2(1)-\frac{1}{2}-\frac{1}{3}\right)-\left(2(-2)-\frac{4}{2}-\frac{(-2)^{3}}{3}\right] \\
& =\frac{7}{6}--\frac{10}{3} \\
& =\frac{9}{2} \text { units }^{2}
\end{aligned}
$$

f.

$$
\begin{align*}
3 x^{2}+x+1 & \equiv A\left(x^{2}+x-2\right)+B x+B+C \\
& \equiv A x^{2}+(A+B) x-2 A+B+C \\
\therefore \quad A & =3 \quad A+B=1 \quad-2 A+B+C=1 \tag{2}
\end{align*}
$$

(1)

$$
\begin{array}{r}
A+B=1 \\
3+B=1 \\
B=-2
\end{array}
$$

(2)

$$
\begin{array}{r}
-2 A+B+C=1 \\
-2(3)-2+C=1 \\
-8+C=1 \\
C=9
\end{array}
$$

$$
\therefore A=3 \quad B=-2 \quad C=9 .
$$

Page 6 of 20

Academic Year	12 Trad	Calendar Year	201 P
Course	$2 l$ rit maths	Name of task/exam	Troll HSC

Question 13
(1) (1)
(I)

$$
\begin{aligned}
& l=r \theta \\
& 18=r \times \theta
\end{aligned}
$$

since $x=6$
(2)

$$
\frac{A D}{A E}=\frac{3}{4}
$$

$$
\frac{x}{x+2}=\frac{3}{4}
$$

$$
\begin{array}{rlrl}
r & =8 & 4 x=3(x+2) \\
\therefore \quad 18 & =8 \times \theta & x=6 . \mathrm{cm} . \\
\theta & =\frac{18}{8}=\frac{9}{4} & \\
\text { (ii) } \quad A & =\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& =\frac{1}{2} \times 8^{2}\left(\frac{9}{4}-\sin \frac{9}{4}\right) \\
& & 8\left(\frac{9}{4}-\sin \frac{9}{4}\right) \doteq 47.1 \mathrm{~cm}^{2}
\end{array}
$$

b.

$O A=O B=O C$ (equal gwen)
$\triangle A O B$ is on yoosceles \triangle.

$$
\begin{aligned}
& \therefore \angle O A B=\angle O B A=25^{\circ} \text { (base angles) } \\
& \angle B O C=50^{\circ} \text { (equest extensor angle of } \Delta \text {) } \\
& \angle O B C=\frac{180-50}{2} \quad \begin{array}{c}
\text { (angle sum of } \triangle \text {) } \\
\left(\begin{array}{l}
\text { base angles equal } \\
\text { in isosceles } \Delta)
\end{array}\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\angle O B C & =\frac{130}{2} \\
& =65^{\circ}
\end{aligned}
$$

PLC Sydney Maths Department

Academic Year	12 Trial	Calendar Year	2015
Course	2 uni mates	Name of task/exam	Trial 415 C.

$$
\begin{aligned}
\text { d. in midpoint } A B & =\left(\frac{\pi+5 \pi}{2}, \frac{1+3}{2}\right) & \\
& =(3 \pi, 2) & A(\pi, 1) \\
\text { (ii) } m_{A B}=\frac{3-1}{5 \pi-\pi} & =\frac{2}{4 \pi}=\frac{1}{2 \pi} . & B(5 \pi, 3)
\end{aligned}
$$

I to $A B: \quad m_{\perp}=-2 \pi$.

$$
\begin{aligned}
m & =-2 \pi \quad c(\pi, 5) \\
y-5 & =-2 \pi(x-\pi) \\
y & =-2 \pi x+2 \pi^{2}+5 \\
y+2 \pi & x-5-2 \pi^{2}=0
\end{aligned}
$$

(iii)

$$
\begin{aligned}
d_{A B} & =\sqrt{(5 \pi-\pi)^{2}+(3-1)^{2}} \\
& =\sqrt{16 \pi^{2}+4} \\
& =\sqrt{4\left(4 \pi^{2}+1\right)} \\
& =2 \sqrt{4 \pi^{2}+1}
\end{aligned}
$$

(iv) $\triangle A B C$ is an isosceles \triangle

$$
\begin{aligned}
& \therefore A B=B C=2 \sqrt{4 \pi^{2}+1}, A C=4 \\
& \cos \angle C A B=\frac{4^{2}+\left(2 \sqrt{4 \pi^{2}+1}\right)^{2}-\left(2 \sqrt{4 \pi^{2}+1}\right)^{2}}{2 \times 4 \times 2 \sqrt{4 \pi^{2}+1}} \\
&=\frac{16+4\left(4 \pi^{2}+1\right)-4\left(4 \pi^{2}+1\right)}{16 \sqrt{4 \pi^{2}+1}} \\
&=\frac{16}{16 \sqrt{4 \pi^{2}+1}} \\
&=\cos ^{-1}\left(\frac{1}{\sqrt{4 \pi^{2}+}}\right)
\end{aligned}
$$

$$
\therefore 81 \% \text { (inearart deeper) }
$$

Academic Year	$12 母$ Trad	Calendar Year	2015
Course	unit Moved	Name of task/exam	Trad HIC

Question 14 at $y=0$.
a.

$$
\begin{aligned}
\frac{x^{2}}{2}+y^{2} & =8 \\
y^{2} & =8-\frac{x^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 0=8-\frac{x^{2}}{2} \\
& \frac{x^{2}}{2}=8 \\
& x= \pm 4
\end{aligned}
$$

$$
\begin{aligned}
\therefore & =\pi \int_{4}^{4} y^{2} d x \\
& =\pi \int_{0}^{4} 8-\frac{x^{2}}{2} d x \\
& =\pi\left[8 x-\frac{x^{3}}{6}\right]_{0}^{4} \\
& =\pi\left[\left(32-\frac{64}{6}\right)-(0)\right] \\
& =\frac{64 \pi}{3} \text { unis }^{3}
\end{aligned}
$$

b. $y=x^{3}(3-x)=3 x^{3}-x^{4}$
(i)

$$
\begin{aligned}
\frac{d y}{d x} & =9 x^{2}-4 x^{3} \\
\frac{d^{2} y}{d x^{2}} & =18 x-12 x^{2}
\end{aligned}
$$

$\frac{d y}{d x}=9 x^{2}-4 x^{3}=0$ for stat points.

$$
=x^{2}(9-4 x)
$$

$$
=0
$$

$$
\therefore \quad x=0 \quad 9-4 x=0
$$

Page 9 of 20

PLC Sydney Maths Department

at $x=0 \quad \frac{d^{2} y}{d x^{2}}=18(0)-72(0)$
\therefore possible point y inflexion at $x=0$.
at $x=\frac{9}{4} \quad \frac{d^{2} y}{d x^{2}}=18\left(\frac{9}{4}\right)-12\left(\frac{9}{4}\right)^{2}$

$$
=-\frac{81}{4}<0 \quad \therefore \max .
$$

at $x=0:$

$y^{\prime \prime}$| -30 | 0 | 0 |
| :---: | :---: | :---: |

\therefore point of inflexion (oncavity $\left.\begin{array}{c}\text { change }\end{array}\right)$
\therefore horizontal point of inflexion

$$
\text { since } \quad \frac{d y}{d x}=0 \text { AND } \frac{d^{2} y}{d x^{2}}=0
$$

at $x=0 ; \quad y=0$

at $x=\frac{9}{4}: \quad y=\left(\frac{9}{4}\right)^{3}\left(3-\frac{9}{4}\right)$

$$
=\frac{2187}{256} \div 8.543\left(\frac{9}{4}, 8.543\right) \mathrm{max} .
$$

(ii) at $x=0 \quad y=0 . \quad(0,0)$.
inflexions: $18 x-12 x^{2}=0$
$6 x(3-2 x)=0$

$$
x=0 \quad x=\frac{3}{2}
$$

Page 10 of 20

PLC Sydney Maths Department
Solutions for exams and assessment tasks

Academic Year	12	Calendar Year	2015
Course	20 Mt Mash	Name of task/exam	Thral 1 SC

at $x=\frac{3}{2}$

x	i	1.5	2
$0^{\prime \prime}$	6	0	-12°
	7		2

-i change in concavity
., point of inflexion at $\left(\frac{3}{2}, 5.0625\right)$

at $y=0$

$$
\begin{aligned}
& \quad x^{3}(3-x)=0 \\
& \therefore \quad x=0 \quad x=3 \quad(0,0) \quad(3,0)
\end{aligned}
$$

c. $\quad x=5 \sin \frac{\pi}{2} t$
(i) 5 metres

(ii) From graph: after 2 minutes

OR

$$
\begin{aligned}
& x=0 \quad \therefore \quad 5 \sin \frac{\pi}{2} t=0 \\
& \quad \sin \frac{\pi}{2} t=0 \\
& \quad \frac{\pi}{2} t=0, \pi, 2 \pi, \ldots \\
& t=0,2,4, \ldots \\
& \therefore \text { after } 2 \text { minute... Page } 11 \text { of } 20
\end{aligned}
$$

Academic Year	12	Calendar Year	2015
Course	$20 ; 4+$ Ins	Name of task/exam	In is 1 is k

(iii)

$$
\begin{aligned}
& x=5 \sin \frac{\pi}{2} t \\
& \dot{x}=\frac{5 \pi}{2} \cos \frac{\pi}{2} t \\
& \ddot{x}=-5\left(\frac{\pi}{2}\right)^{2} \sin \frac{\pi}{2} t
\end{aligned}
$$

at $t=3$

$$
\begin{aligned}
x & =-5\left(\frac{\pi}{2}\right)^{2} \sin \frac{3 \pi}{2} \\
& =-5 \frac{\pi^{2}}{4}=-1 \\
& =\frac{5 \pi^{2}}{4}
\end{aligned}
$$

d. (i) reflex $\angle A B C=360-(24+50+40)=246^{\circ}$

$$
\alpha=360-246=114^{\circ}
$$

(ii) $\operatorname{since} \alpha=114^{\circ}$

$$
\begin{aligned}
\angle B C D & =180-114 \quad \text { (cointerior angles are } \\
& =66^{\circ} \quad \text { supplementary on parallel limes) } \\
\therefore \angle E C D & =66+50 \\
& =116^{\circ} \\
\angle A D C & =360-116-90-40 \text { (angle sun of quadricatval) } \\
& =114^{\circ} \\
\angle B A D & =40-24^{\circ} \quad \text { (gwen) } \\
& =66^{\circ} \\
\angle A D C & \angle B C D
\end{aligned}
$$

$\therefore B C \| A D$ (winters angled exist)
\therefore Since opposite angles ave egmel.
and opposite sides are parallel
Page $/ 2$ of 20 Then $A B C D$ is a parallelogram.

Academic Year	12	Calendar Year	2015
Course	unit whet h	Name of task/exam	Trad H5C

Question 15
(i)

$$
\begin{aligned}
6 x+4 y & =300 \\
4 y & =300-6 x \\
y & =\frac{300-6 x}{4} \\
y & =\frac{300}{4}-\frac{6 x}{4} \\
y & =75-\frac{3 x}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { i) } & =3 x y \\
A & =3 x\left(75-\frac{3 x}{2}\right) \\
\frac{d A}{d x} & =3 x\left(-\frac{3}{2}\right)+\left(75-\frac{3 x}{2}\right) \times 3 \\
& =-\frac{9 x}{2}+225-\frac{9 x}{2} \\
& =-\frac{18 x}{2}+225 \\
\frac{d^{2} A}{d x^{2}} & =-\frac{18}{2}<0 \quad v=75-1=-\frac{3}{2}
\end{aligned}
$$

$\frac{d A}{d x}=0$ for stat \quad pt.

$$
\begin{aligned}
\frac{-18 x}{2}+225 & =0 \\
x & =\frac{225}{9}
\end{aligned}
$$

\therefore at $x=\frac{225}{9}$ maximum area

$$
x=25
$$

Solutions for exams and assessment tasks

Academic Year	12	Calendar Year	2015
Course	2 unit Maths	Name of tasklexam	Trial masc

ri maximum area of ane of the dirldreas

$$
\text { blocks: } \begin{aligned}
& A=x y \\
& a+\quad x=25 \quad y \\
&=75-\frac{3}{2}(25) \\
&=\frac{75}{2} \\
& \therefore \text { Area }=25 \times \frac{75}{2} \\
&=937.5 \mathrm{~m}^{2}
\end{aligned}
$$

(iv) Area remaining $=10000-3 \times 937.5$

$$
=7187.5 \mathrm{~m}^{2}
$$

Academic Year	12	Calendar Year	2015
Course	2 unit math	Name of task/exam	Trial HSC

Question 15 contrived
b. $\quad \ddot{x}=-\frac{14}{(t+4)^{3}}$
at $t=0 \quad x=-\frac{3}{4} \quad \dot{x}^{\prime}=\frac{7}{16} \mathrm{~m} / \mathrm{s}$.
(i)

$$
\begin{aligned}
\dot{x} & =-14 \int \frac{1}{(t+4)^{3}} d t \\
& =-14 \int(t+4)^{-3} d t \\
& =-14\left[\frac{(t+4)^{-2}}{-2}\right]+c \\
& =7(t+4)^{-2}+c
\end{aligned}
$$

at $\quad t=0 \quad \dot{x}=\frac{7}{16}$.

$$
\begin{gathered}
\frac{7}{16}=7(0+4)^{-2}+c \\
\frac{7}{16}=\frac{7}{16}+c \\
\therefore-c=0 \\
x=\frac{7}{(t+4)^{2}} \\
x=7 \int(t+4)^{-2} d t \\
x=\frac{7(t+4)^{-1}+c}{-1}
\end{gathered}
$$

at $t=0 \quad x=-\frac{3}{4}$

Solutions for exams and assessment tasks

$$
\begin{aligned}
& -\frac{3}{4}=-7(4)^{-1}+C \\
& C=-\frac{3}{4}+\frac{7}{4}=\frac{1}{t+4}+1
\end{aligned}
$$

(ii) at $x=0$
(iii)

$$
\begin{aligned}
0 & =\frac{-7+1}{t+4} \\
0 & =-7+t+4 \\
t & =3 \\
& =\left(\frac{7+4}{x}\right. \\
& =\frac{1}{2} \\
& =\frac{1}{x}
\end{aligned}
$$

$$
x=-\frac{7}{t+4}+1
$$

Solutions for exams and assessment tasks

Academic Year	12	Calendar Year	2015
Course	$22 n+1$ Manas	Name of task/exam	Tidal fisc

c: $y=2 x^{\frac{5}{2}}-x^{3}$
(i) $\frac{d y}{d x}=5 x^{\frac{3}{2}}-3 x^{2}$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{15 x^{\frac{1}{2}}-6 x}{2} \\
& =\frac{15 \sqrt{x}}{2}-6 x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{d^{2} 4}{d x^{2}}>0 \\
& \frac{15 \cdot x^{\frac{1}{2}}-6 x>0}{3 x^{\frac{1}{2}}\left(\frac{5}{2}-2 \sqrt{x}\right)>0} \\
& \frac{1+(4)<1}{16} \\
& \therefore \quad 0<x<\frac{25}{16}
\end{aligned}
$$

method 2:

$$
\begin{gathered}
\frac{15 \sqrt{x}}{2}-6 x>0 \\
\frac{15 \sqrt{x}}{2}>6 x
\end{gathered}
$$

since $\sqrt{x}>0$ and $x>0$ (length)
then

$$
\begin{aligned}
& \frac{225 x}{4}>36 x^{2} \quad \text { (square boteside) } \\
& 225 x>144 x^{2} \\
& 144 x^{2}-225 x<0 \\
& x(144 x-225)<0 \\
& 144 x=225 \\
& x=\frac{25}{16} . \\
& 0 \leq x \leq \frac{25}{16} . \quad \text { Page } 17 \text { of } 20
\end{aligned}
$$

Academic Year	12	Calendar Year	2015
Course	2 net Malls	Name of task/exam	Tina fiSC

Question 16.
a. $V=A e^{-k t}$

$$
\begin{aligned}
& 30000=A e^{-5 k} \\
& 18000=A e^{-10 k}
\end{aligned}
$$

(i)

$$
\begin{aligned}
\frac{A e^{-5 k}}{A e^{-10 k}} & =\frac{30000}{18000} \\
e^{5 k} & =\frac{5}{3} \\
5 k & =\ln \frac{5}{3} \\
k & =\frac{1}{5} \ln \left(\frac{5}{3}\right) \\
& \div 0.102165 \ldots
\end{aligned}
$$

(ii)

$$
\begin{array}{rlrl}
30000 & =A e^{-5\left(\frac{1}{5} \ln \left(\frac{5}{3}\right)\right.} & & \\
30000 & =A e^{-\ln \left(\frac{5}{3}\right)} & \quad \text { note: } e^{-\ln \left(\frac{5}{3}\right)} & =e^{\ln \frac{3}{5}} \\
A & =\frac{30000}{\frac{3}{5}} & & =\frac{3}{5} \\
A & =\$ 50000 &
\end{array}
$$

(iii)

$$
\begin{aligned}
1000 & =50000 e^{-k x t} \\
\frac{1}{50} & =e^{-k x t} \\
-k t & =\ln \left(\frac{1}{50}\right) \\
t & =\frac{\ln \frac{1}{50}}{-\frac{1}{5} \ln \left(\frac{5}{3}\right)} \quad \text { what } k=\frac{1}{5}\left(\ln \left(\frac{5}{3}\right)\right) \\
t & =38.29 \ldots
\end{aligned}
$$

$\therefore 39$ years for rt to

PLC Sydney Maths Department
Solutions for exams and assessment tasks

(iii) $\angle P A B=S 0^{\circ}$

$$
\begin{aligned}
P B^{2} & =200^{2}+380^{2}-2 \times 200 \times 380 \times \cos 50 \\
& =86696.283 \ldots \\
& =294.442326 \ldots \\
& =294 \mathrm{~km}
\end{aligned}
$$

(iv) $<A P B: \frac{\sin \alpha}{200}=\frac{\sin 50}{294.442326 \ldots}$

$$
\begin{aligned}
& \sin \alpha=\frac{200 \sin 50}{29414+2326 \ldots} \\
& \alpha=31^{\circ} 21^{\prime} \\
& \therefore \text { Bearing in } 150+31^{\circ} 21^{\prime} \\
&=181^{\circ} 21^{\prime}
\end{aligned}
$$

Academic Year	12	Calendar Year	2015
Course	2 unit notus	Name of task/exam	Trial b/8e

C. (i)

$$
y=\log _{e}(2 x-5)
$$

at $x=6 \quad y=\log _{e}(12-5)$

$$
y=\log _{e} 7 \quad B(6, \ln 7)
$$

at $y=0$

$$
\begin{aligned}
0 & =\log _{e}(2 x-5) \\
e^{0} & =2 x-5 \\
1 & =2 x-5 \\
2 x & =6 \\
x & =3 \quad A(3,0)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\log _{e}(2 x-5) \\
e^{y} & =2 x-5 \\
2 x & =e^{y}+5 \\
x & =\frac{e^{y}+5}{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Area }_{\text {Rect }} & =6 \times \log _{e} 7 \\
& =6 \log _{e} 7
\end{aligned}
$$

Area bound by y-axis:

$$
\begin{aligned}
& \text { Area bound by } y-a x(s: \\
& A=\int_{0}^{\ln 7} \frac{e^{y}+5}{2} d y=\frac{1}{2}\left[\left(e^{y}+5 y\right)\right]_{0}^{\ln 7} \\
&=\frac{1}{2}\left[e^{\ln 7}+5 \ln 7-\left(e^{0}+5(0)\right)\right] \\
&=\frac{1}{2}[7+5 \ln 7-1] \\
&=\frac{1}{2}[6+5 \ln 7] \\
&=3+\frac{5}{2} \ln 7 . \\
& \therefore \text { Shaded area }=6 \ln 7-3-\frac{5}{2} \ln 7 \\
&=\frac{7}{2} \ln 7-3 .
\end{aligned}
$$

