

PRESBYTERIAN LADIES' COLLEGE SYDNEY 1888

2015 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen Black is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks – 100

Section I: Pages 3-6 10 marks

- Attempt questions 1-10, using the answer sheet on page 23.
- Allow about 15 minutes for this section

Section II: Pages 7-19 90 marks

- Attempt questions 11-16, using the Answer Booklets provided.
- Allow about 2 hours 45 minutes for this section.

Multiple Choice	11	12	13	14	15	16	Total
							%

BLANK PAGE

Section I

10 marks Attempt Questions 1 – 10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

1.	$\left(\frac{2a}{3b}\right)$	-5 = ?
	(A)	$\frac{2a^5}{3b^5}$
	(B)	$\frac{3b^5}{2a^5}$
	(C)	$\frac{243b^5}{32a^5}$
	(D)	$\frac{1}{243b^5}$

2. Let α and β be the solutions of $2x^2 - 5x - 9 = 0$. Which value is the answer to $\frac{1}{\alpha} + \frac{1}{\beta}$?

(A) $-\frac{9}{2}$ (B) $-\frac{9}{5}$ (C) $-\frac{5}{9}$ (D) $\frac{5}{2}$ 3. Which expression (value) is equal to $\lim_{x\to\infty} \frac{3x^2}{x^3-x}$?

(A) $\frac{3x}{x^2 - 1}$ (B) 3

(C)
$$\frac{3}{x-1}$$

4. The period and amplitude of $y = 3 \cos 2x$ is:

- (A) Amplitude = 2 Period = $\frac{2\pi}{3}$
- (B) Amplitude = 3 Period = π
- (C) Amplitude = π Period = 3
- (D) Amplitude = $\frac{2\pi}{3}$ Period = 2

5. What is the value of x in the equation $\log_a 12 - 2\log_a 2 = \log_a x$?

(A) 6 (B) $\frac{1}{3}$ (C) 3 (D) $\frac{1}{6}$

PLC Sydney Mathematics HSC Trial Examination 2015

6.

Which expression shows $\cos^2\left(\frac{\pi}{2} - \theta\right) \cot\theta$ simplified fully ?

- (A) $\cos^2 \theta \cot \theta$
- (B) $\sin\theta\cos\theta$

(C)
$$\frac{\sin^3 \theta}{\cos \theta}$$

(D)
$$\sin^2 \theta \cot \theta$$

7. Which expression is equal to
$$\int_{2}^{7} \frac{5}{x} dx$$
?

(A)
$$5(\log_e 7 - \log_e 2)$$

(B)
$$\frac{1}{5}(\log_e 7 - \log_e 2)$$

(C)
$$\frac{5}{49} - \frac{5}{4}$$

8.

Which expression is the equation of the normal to the curve $x^2 = 4y$ at the point where x = 2?

- (A) y = 1
- (B) x y 1 = 0
- (C) y = -1
- (D) x + y 3 = 0

9. The function of g(x) is given by

$$g(x) = \begin{cases} x^2 - 4 & \text{for } x > 0 \\ (X) & \text{for } (Y) \end{cases}$$

Which expressions for (X) and (Y) are correct, if g(x) is an odd function?

- (A) $(X): 4-x^2, (Y): x < 0$
- (B) $(X): -x^2 4, (Y): x < 0$
- (C) $(X): 4-x^2, (Y): x > 0$
- (D) $(X): -x^2 4, (Y): x > 0$
- 10. A particle moves along a straight line. Initially it is at rest at the origin. The graph shows the acceleration, a, of the particle as a function of time t seconds for $0 \le t \le 10$.

At what time during the interval $0 \le t \le 10$ is the particle furthest from the origin?

- (A) 3 seconds
- (B) 6 seconds
- (C) 7 seconds
- (D) 8 seconds

End of Section I

Section II

90 marks

Attempt Questions 11 – 16.

Allow about 2 hours and 45 minutes for this section.

Answer each question in a <u>new writing booklet</u>. Extra writing booklets are available.

In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a new writing booklet for Question 11.

(a) Solve $x^2 - 2x - 7 = 0$, expressing your answer in simplest surd form.

(b) Find
$$\int \frac{3x}{x^2 + 1} dx$$
. 1

(c) Simplify fully :

$$\frac{2}{\sqrt{7}+3} - \frac{3\sqrt{7}}{\sqrt{7}-3}$$

(d) Find the value of *x* (correct to the nearest mm).

(e) Find the coordinates of the vertex and focus of the parabola $x^2 - 5y + 5 = 0$. 2

Question 11 continues on page 8

2

2

Question 11 (continued)

(f) Water flows into an empty container, so that after t minutes the volume V of water in litres is given by

$$V = \frac{12t^2}{t+4} \quad \text{for } t \ge 0.$$

What is the rate at which the water is flowing into the container at 1 minute?

(g) Evaluate
$$\int_0^{\ln 6} e^x dx$$
.

(h) Differentiate $y = \sin 4x$

End of Question 11

2

Question 12 (15 marks) Use a new writing booklet for Question 12.

(a) Differentiate:

(i)
$$y = x^3 e^{3x}$$
. 2

(ii)
$$y = \frac{e^x}{(x+3)^2}$$
. (Full simplification of your answer is not required.) 2

(b) Solve $\sqrt{3}\cos x = \sin x$ for $0 \le x \le 2\pi$.

(c) Use Simpson's Rule with five function values (x is in radians) to find an approximation for 2 $\int_{0}^{1} \tan x \, dx.$

(d) Evaluate $\int_{0}^{\frac{\pi}{2}} \sec^2 3x \, dx$

Question 12 continues on page 10

(e) Use the graphs below to answer (i) and (ii).

(i) Solve the inequality $4-x^2 \le x+2$.

1

(ii) Calculate the area between the curve $y = 4 - x^2$ and the line y = x + 2.

End of Question 12

Question 13 (15 marks) Use a new writing booklet for Question 13.

(a) The diagram shows $\triangle ABD$ and $\triangle ACE$, where *BD* is parallel to *CE*,

AB = AD = x cm, BC = DE = 2 cm and AD : AE = 3:4. Triangle ACE and arc CE form a sector in a circle of radius (x+2) cm. The angle of the sector is θ radians and arc CE = 18 cm.

- (i) Find the value of θ .
- (ii) Calculate the area of the segment cut off by *CE*.

(b) In the diagram below, OA = OB = OC. Show that $\angle OBC = 65^{\circ}$. Give reasons.

Question 13 continues on page 12

2

2

Question 13 (continued)

(c) For the domain $0 \le x \le 6$, a function y = f(x) satisfies f'(x) < 0 and f''(x) < 0. Sketch a possible graph of y = f(x) in this domain.

(iv) Using the distances AB, BC and AC, or otherwise, find $\angle CAB$ to the nearest degree.

End of Question 13

2

Question 14 (15 marks) Use a new writing booklet for Question 14.

(a) The part of the curve $\frac{x^2}{2} + y^2 = 8$ that lies in the first quadrant is drawn below.

This part of the curve is rotated about the *x*-axis to form a solid. Find the exact volume of this solid of revolution.

- (b) For the curve $y = x^3(3-x)$
 - (i) Find all stationary points and determine their nature.
 - (ii) Draw a sketch of the curve showing the stationary points, inflexion points and 3 intercepts on the axes.
- (c) The displacement of a particle moving along the *x*-axis is given by

$$x = 5\sin\frac{\pi}{2}t$$

where *x* is the displacement from the origin in metres, *t* is the time in minutes and $t \ge 0$.

- (i) What is the furthest distance the particle moves away from the origin? 1
- (ii) When does the particle first return to its starting position?
- (iii) Find the acceleration of the particle when $t = 3 \min$.

Question 14 continues on page 14

3

Question 14 (continued)

(d) In the quadrilateral AECD, $\angle DAE = 90^\circ$, $\angle AEC = 40^\circ$, $\angle BAE = 24^\circ$ and $\angle BCE = 50^\circ$.

In quadrilateral *ABCD*, *AB* is parallel to *DC* and $\angle ABC = \alpha$ as shown in the diagram.

- (i) Explain why $\alpha = 114^{\circ}$.
- (ii) Prove that ABCD is a parallelogram.

End of Question 14

1

Question 15 (15 marks) Use a new writing booklet for Question 15.

(a) Greg has a one hectare block of land $(10\ 000\ m^2 = 1\ hectare\ (ha))$. He is going to fence off three identical rectangular plots within his block for his three children. Each plot will measure x m by y m as shown in the diagram below. He will retain the remainder of the block for himself and his wife. Greg can only afford 300 m of fencing to go around the children's plots.

(i) Show that
$$y = 75 - \frac{3x}{2}$$
. 1

(ii) Find the value of x for which the area of the children's plots will be a maximum. **3**

(iii) Find the maximum area of one of the children's blocks.

(iv) How much of Greg's 1 hectare block is left for him and his wife?

Question 15 continues on page 16

1

Question 15 (continued)

(b) The acceleration, after *t* seconds, of a particle moving in a straight line is given by $\ddot{x} = -\frac{14}{(t+4)^3}$.

Initially the particle is located $\frac{3}{4}$ m to the left of the origin and the initial velocity is $\frac{7}{16}$ m/s.

- (i) Find the velocity v and the displacement x at any time t. 2
- (ii) What is the velocity of the particle when it passes through the origin?
- (iii) Sketch a graph of the displacement as a function of time.

(c) A curve is given by the equation $y = 2x^{\frac{5}{2}} - x^3$, where $x \ge 0$.

(i) Show that
$$\frac{d^2 y}{dx^2} = \frac{15}{2}\sqrt{x} - 6x.$$
 1

(ii) For what value(s) of x is the curve
$$y = 2x^{\frac{5}{2}} - x^3$$
 concave up? 2

End of Question 15

2

Question 16 (15 marks) Use a new writing booklet for Question 16.

- (a) Connor buys a new car, which begins to depreciate immediately. The value (\$V) of the car after t years is given by $V = A e^{-kt}$ Where:
 - *A* is the initial value
 - *k* is the constant of depreciation
 - *t* is the time in years

The car is worth \$30 000 after 5 years and \$18 000 after 10 years.

(i)	Find the constant of depreciation k .	3
(ii)	Find the initial value of the car.	1
(iii)	How many whole years will it take before the car's value falls below \$1 000?	2

Question 16 continues on page 18

(b) A plane leaves an airport (A) and travels due north $190\sqrt{3}$ kilometres to a point K and then turns due west and travels a further 190 kilometres until it reaches a point P. Due to storms the plane is then diverted to a new airport (B) which is 200 kilometres on a bearing of 280° from A.

- (i) Draw the diagram in your answer booklet and label it to show the information.
- (ii) Show that $\angle KAP = 30^{\circ}$.
- (iii) Show that the plane needs to travel 294 kilometres from *P* to the new airport (*B*). 2
- (iv) Hence or otherwise find the bearing (to the nearest degree) on which the plane 1 flies from *P* to *B*.

Question 16 continues on page 19

(c) The diagram shows a shaded region which is bounded by the curve $y = \log_e(2x-5)$, the x axis and the line x = 6.

The curve $y = \log_e(2x-5)$ intersects the x axis at A and the line x = 6 at B.

(i) Show that the coordinates of points A and B are (3, 0) and $(6, \log_e 7)$ **1** respectively.

(ii) Show that if
$$y = \log_e(2x-5)$$
, then $x = \frac{e^y + 5}{2}$. **1**

(iii) Hence find the exact area of the shaded region.

End of Examination

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

BLANK PAGE

Mathematics: Multiple Choice Answer Sheet

Student Number_____

Completely fill the response oval representing the most correct answer.

1.	A 🔿	B	С	D 🔿
2.	A 🔿	B 🔿	С	D 🔿
3.	A 🔿	B 🔿	С	D 🔿
4.	A 🔿	B	С 🔾	D 🔿
5.	A 🔿	B	С 🔾	D 🔿
6.	A 🔿	B	С 🔾	D 🔿
7.	A 🔿	B	С 🔾	D 🔿
8.	A 🔿	B	С 🔾	D 🔿
9.	A 🔿	B 🔵	С	D 🔿
10.	A 🔿	B 🔘	С 🔵	D \(\circ)

BLANK PAGE

PLC Sydney Maths Department Ver 1 Solutions for exams and assessment tasks 2015 Academic Year iz Trial Calendar Year Quilt Mathi Name of task/exam Trial HSC Course multiple choice $1. \left(\frac{2a}{3b}\right)^{-5} = \left(\frac{3b}{2a}\right)^{5} = \frac{243b}{32a^{5}}$ (\mathcal{C}) $2: \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{5}{2} = -5 \quad \bigcirc$ $3: \lim_{x \to \infty} \frac{3x}{x^3 - x} = \lim_{x \to \infty} \frac{3x}{x^3} = \lim_{x \to \infty} \frac{3x}{x^2} = 0 \quad \bigcirc$ $\frac{3}{x^3} = \frac{1}{x^3} \quad x \to \infty \quad \frac{x}{x^3} = 0 \quad \bigcirc$ 5. $\log_{a} 12 = \log_{a} 2^{2} = \log_{a} (\frac{12}{4})$ $= \log_{\alpha} 3$ $= \log_{\alpha} \chi$ $\therefore \chi = 3$ 6. $\cos^2\left(\frac{\pi}{2}-0\right) \times \frac{\cos \theta}{\sin \theta} = \sin^2 \theta \times \frac{\cos \theta}{\sin \theta} = \sin^2 \theta \cos \theta$ в 7. $\int \frac{5}{2} dx = 5 \ln x \int_{2}^{7}$ = $5 \ln 7 - 5 \ln 2$ Page 1 of 20

	5 C 11177 C 54 C 17 C 54 C 17 C 54 C 17 C 54 C 17 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C				Ver 1
	Academic Year	$\frac{12}{12}$ TH $\frac{1}{12}$	Calendar Year	2015]
	Course	Zunit Mathis	Name of task/exam	TMAL HSC	
8. du dri at	$J = \frac{x^{2}}{4}$ $I = \frac{x}{2}$ $x = 2$ $m_{T} = 1$ n	1			
9.	$y - 1 = -(x)$ $y - 1 = -x + y$ $x + y - 3 = c$ $\Theta d d when$ $g(x) = x^2 - 4$	f(x) = -f(-x)			
5000-p- ($f(-x) = -(x^2)$	- 	(A)		
(LF .			
10.	(D) AIR	a under arrichs	where and be		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e equal.		NUU GUXES	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e equal.		NUU GUXES	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e equal.		NUL GLAES	
	~	e equal.		NUL GLAES	
	с.,	e equal.		1665 GUAES	
	с.,	e equal.			
		e equal.			
		e equal.			
	с.,	e equal.		ada gozej	
		e equal.		auto goaes	
		e equal.			
		e equal.			
		e equal.			
		e equal.			

. . .

	C	PLC Sydney I	Maths Department			Ver 1
Academi	tor exams a	and assessment tasks $12 T \kappa t_0 l$	Calendar Year	20	215	
Course		Quart Matter	Name of task/exam	Inal	HSC	
Question 1 a. x2-2	1 2-2 - 7	20				
$x = 2 \pm$	J(-2) ² - 2	- 4(1)(-7)	··			
$= 2 \pm 4$ $= 2 \pm 4$	J 32 2 JZ	ي ب ب				
= 1 ± 2	JZ					
$\int \frac{3}{\chi^2}$	the dre	$= \frac{3}{2} \int \frac{2\pi}{\pi^2 + 1}$	- dx			
		$=\frac{3}{2}\ln(x^{2}+$	-1) +C		<u>.</u>	
c. 2 ( J	- 3) -	- 3 J7 (J7 +3) - 9	= 257-6-	21-1	9 5	
		·	= - <del>2</del> - 2	<u>1</u> . '		
			= 757 + 27	5		
d. 4	x =	5.6				
	X=	516 × 4 216 ·	,2			
	× =	9:04	im			
	1	YOMM				
				F	Page 3 c	f120

.

· · ·

	Solutions for examp	PLC Sydney M	aths Department		Ver 1
	Academic Vear	D total	Calendar Vear	2015	
	Course	2untt anath	Name of task/exam	Trial HSC	
					000mm933447mm10009mm93407m1034753
2.	$n^2 - 5y$	+520	i ver	fer (0,1)	
	Sy =	x + 5	Foci	$(0, 2^{\frac{1}{4}})$	
	$\chi^2 = \chi^2 =$	$s\gamma - s$ $\Gamma(\gamma - i)$	55	27	
	$\int x^2 = 4$	+a (y -K)]	4 2	· .	
	5 = 4 a = 5	-a.			
			• •	2	
Т. 	V = 120 ++4	セラロ	u = 124 u' = 244	V = t + 4	
	dV = 24t	( t+4) - 12t			
	dt	$(t+4)^{2}$			
	$= 24t^{2}$	+96t-12t			
	a + t = 1	(++4)			
	dv = 2	4+96-12			
	d+	52			
	-	$\frac{708}{25} = 4.3$	2 la min		
g .	se ⁿ dn =	$e^{n}$	•		
	0 =	6 - 1			
	2	5.			
h.	$\frac{dy}{dn} = 4$	cos4x			
				Page 4 of 1	20

. .

The byuney tytains Department		PLC	C Sydney	Maths	Departmen
-------------------------------	--	-----	----------	-------	-----------

10.4

• •

:

	Solutions for exams	and assessment tasks			ver 1
	Academic Year	12 Trial	Calendar Year	2015	
	Course	Zenit Months	Name of task/exam	Trial HSC	
Qu a ci	$y = x^3 e^{3x}$	u	$= \chi^{3} V =$	$\frac{3}{2}$	
0 0	$ly = 3x^2 e^3$ $= 3x^2 e^3$	$\frac{3}{7} + 3 \times e^{3x}$			
(ii)	$y = \frac{e}{(243)^{2}}$		$u = e^{\chi} v =$ $u' = e^{\chi} v' =$	$= (x+3)^{2}$ = 2 (x+3)	
de atr	$L = \frac{e^{\chi}(\chi+3)}{(2\pi)^{3/2}}$	$\frac{2}{-2e^{\chi}(\chi+3)}$	2	2x+6.	x.
	$= \frac{e^{\chi}(\chi+3)}{(\chi+3)}$	(x+3-2) -3)4			
	$= \frac{e^{\lambda}(\lambda + 3)}{(\lambda + 3)}$	( nH) +3)4			
	$= \frac{e^{n}(2k+3)}{(2k+3)}$	2) 2			
b	$\sqrt{3}\cos x = \frac{1}{2}$ $\tan x = \frac{1}{2}$	$\frac{51}{53}$ $\frac{1}{3}$ $\frac{4\pi}{3}$	*)		
С.	0 1/4 2/4 0 tartit tari/4 y= (y) yz	3/2, 1 tang tan 1 (93) Ym	$A = \frac{1}{3} \int 0 + ta \\ + \frac{1}{3} \int 0 + ta \\ + \frac{1}{12} \int 0 + ta \\ + \frac{1}{12} \int 0 + ta \\ + \frac{1}{3} \int 0 + ta \\ + \frac$	n1+ 4(tan4 + 2 Ctan2) 77 ]	tan==)
			÷ c.62 (	$2d\rho$ Page $C$ of	٦ ـ ـ ـ
					nº.

PLC Sydney Maths Department

Solutions for exams a	and assessment tasks	1	Ve
Academic Year	12 Trial	Calendar Year	2015
Course	Quit Matus	Name of task/exam	Trial Fisc
d. $\int_{-\infty}^{\frac{\pi}{2}} \sec^2 3x d$	$4x = \frac{1}{3} \tan \frac{37}{2}$ $= \frac{1}{5} \tan \frac{37}{2}$ $= \frac{1}{5} \tan \frac{37}{2}$	$3 \times \int_{3}^{\frac{\pi}{2}} tano$	
	3 2		
	= Undefine	ed.	
$e_{(1)} \times 4 - 2$ , $(\tilde{u}) = \int 4 - x^2 - 0$	$\begin{array}{l} \chi \geqslant 1 \\ 1 \\ \chi + 2 \\ d\chi = \int \\ -2 \end{array}$	4-x2-x-26	l ><
2	= '5 :	2 - x - x dx	
	-2 = 2x -	x - 2 Jaz	
	= (2(1) -	$\frac{1}{2} - \frac{1}{3} - (20)$	$(-2) - \frac{4}{2} - \frac{(-2)}{3}$
	= 7[6 0-[N	$-\frac{10}{3}$ units ²	ŗ
f. 3x + x + 1 =	$A(x^{2}+x-2)$ $Ax^{2}+(A+B)$	+ Bx+ B + C )x - 2 A + B +	د
-', A =	$A \neq B =$	-1 -2A+B	+c = 1
$ \begin{array}{c} ()  A + B = \\ 3 + B = \\ \vdots  B = \\ \end{array} $	-1 -2	(2) - 2A + b + -2(3) - 28 + 0	c = 1 $c = 1$ $c = 1$ $c = q$
A	= 3 B = -	2 C=9.	Page / of a -

ini⊋e:

۰.

:

		PLC Sydney M	aths Department		· Vor 1
	Solutions for exams	and assessment tasks	Calandar Varia	2015	Y CI I
	Academic Year	21/ait da Hil	Name of task/exam	Total HSC	
		confi mara		TUTAL FISC	
<u>(</u> )	$\frac{1}{2} l = r \theta$ $18 = r \times \theta$	$\begin{array}{c} (2) \\ \hline A \\ \hline A \\ \hline \end{array}$	- <u>3</u> - <u>4</u>		
sin 	$r = 8$ $r = 8 \times 0$ $0 = \frac{18}{8} = \frac{9}{4}$ $A = \frac{1}{7}r^{2}$	x+2 $4x = i$ $x = (i)$ $(i) = (i) = (i)$	ч 3 (х+2) э.ст.		
	$= \frac{1}{2} \times \frac{3}{2}$ $= 8(\frac{9}{4})$	$8^{\frac{2}{4}}\left(\begin{array}{c} q\\ -si-q\\ \end{array}\right) \doteq 4$	- 9) 7.1 cm		
Ь.	A B A A A A A A A A A A A A A A A A A A	0A = 0 Δ A 0B -: <0 < B 0 < 0BC < 0bC	$bB = oc (D)$ $is an 730sca$ $AB = < 0BA =$ $c = 50^{\circ} (exote)$ $= \frac{180 - 50}{2} (c$ $= \frac{130}{2}$ $= 65^{\circ}.$	eles A. 25 (base angle equal enter angle of angle sum of A base angles A in Isosceles A	-) () ()
				Page 7 of	,20

. . .

.

PLC Sydney	Maths	Department
------------	-------	------------

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Solutions for	exams ar	nd assessme	ent tasks	the discourse, instance, allowed from the second states and				ve	11
Course 2 2 and Macheli Name of tasklexam Trial etse. Course 2 4 Macheli Name of tasklexam Trial etse. Course 4 4 4 4 th + 1) - 4 (4 th + 1) Course 4 for the format of tasklexam trial etse. Course 4 format for the format of tasklexam trial etse. Course 4 format for the format of tasklexam trial etse. Course 4 format for the format of tasklexam trial etse. Course 4 format for the format of tasklexam trial etse. Course 4 format for the format of tasklexam trial etse. Course 4 format for the format of tasklexam trial etse. Course 4 format for the format of tasklexam trial etse. Course 4 format for the format of tasklexam trial etse. Course 4 format for the format of tasklexam trial etse for the format of tasklexam trial etse format for the format of the format of tasklexam trial etse format of the format of tasklexam trial etse for the format of tasklexam trial etse for the format of tasklexam trial etse for the format of the forma		Academic Ye	ar	12 Tr	val	Calendar Year	20	15			
c. $\frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{1$		Course		2 unid	Mathe	Name of task/exam	Trial	MSC.			
$d_{111} \text{ midpoint } AB = \left(\frac{\pi + 5\pi}{2}, \frac{4+2}{2}\right)$ $= (3\pi, 2) \qquad A(\pi, 1)$ $B(5\pi, 2)$ $(0) \qquad M_{AB} = \frac{3-1}{5\pi - \pi} = \frac{2}{4\pi} = \frac{1}{2\pi}, \qquad C(\pi, 5)$ $(1) \qquad M_{AB} = \frac{3-1}{5\pi - \pi} = \frac{2}{4\pi} = \frac{1}{2\pi}, \qquad C(\pi, 5)$ $y - S = -2\pi (2 - \pi)$ $y = -2\pi x + 2\pi^{2} + 5$ $y + 2\pi x - S - 2\pi^{2} = 0,$ $(11) \qquad d_{AB} = \int (5\pi - \pi)^{2} + (2 - 1)^{3}$ $= \int 16\pi^{3} + 4$ $= \int 44\pi^{2} + 1)$ $= 2 \int 4\pi^{2} + 1$ $(1V) \qquad AAB \subset 1S  an  isosceler  A$ $AB = BC = 2 \int 4\pi^{2} + 1, \qquad AC = 4$ $Cos (CAB = \frac{4^{2}}{4^{2}} + (2 \int 4\pi^{2} + 1)^{2} - (2 \int 4\pi^{2} + 1)^{2}$ $= \frac{16}{16 \int 4\pi^{2} + 1}$	C.	31				,	ana ang ana ang ang ang ang ang ang ang				
$d_{in} \text{ midpoint } AB = \left(\frac{\pi + s\pi}{2}, \frac{(t+3)}{2}\right)$ $= (3\pi, 2) \qquad A(\pi, 1)$ $B(s\pi, 2)$ $i(0) \qquad A_{B} = \frac{3-1}{s\pi - \pi} = \frac{2}{4\pi} = \frac{1}{2\pi} \qquad C(\pi, 1)$ $B(s\pi, 2)$ $d_{AB} = \frac{3-1}{s\pi - \pi} = 2\pi$ $M = -2\pi \qquad C(\pi, s)$ $y - S = -2\pi (x - \pi)$ $y = -2\pi x + 2\pi^{2} + 5$ $y + 2\pi x - S - 2\pi^{2} = 0.$ $(iii) \qquad d_{AB} = \int (5\pi - \pi)^{2} + (3-i)^{2}$ $= \int 16\pi^{2} + 4$ $= \int 4(4\pi^{2} + 1)$ $= 2\int 4\pi^{2} + 1$ $(iv) \qquad AAB = BC = 2\int 4\pi^{2} + 1, \qquad AC = 4$ $Cos \ CCAB = \frac{4^{2}}{4} + \left(2\int 4\pi^{2} + 1\right)^{2} - \left(2\int 4\pi^{2} + 1\right)^{2}$ $= \frac{16}{16\int 4\pi^{2} + 1}$ $= \frac{16}{16\int 4\pi^{2} + 1}$ $CCAB = Cos^{-1} \left(\frac{1}{4\pi^{2}\pi}\right)$ $= \frac{16}{5} = \frac{16}{6} =$				4=+1	(x)	ł					
$d_{10} \text{ midpoint } AB = \left(\frac{\pi + 3\pi}{3\pi}, \frac{\pi + 2}{2}\right)$ $= (3\pi, 2) \qquad A(\pi, 1)$ $B(S\pi, 2)$ $A(\pi, 1)$ $B(S\pi, 2)$ $A(\pi, 1)$ $B(S\pi, 2)$ $B(S\pi, 2)$ $C(\pi, 5)$ $\int -5 = -2\pi (2\pi, 5)$ $= \sqrt{16\pi^{2} + 1}$ $= \sqrt{16\pi^{2} + 1}$ $= \sqrt{16\pi^{2} + 1}$ $= \sqrt{16\pi^{2} + 1}$ $= \frac{16}{16\sqrt{16\pi^{2} + 1}}$	1.			6		1+2					
$= (3\pi, 2) \qquad A(\pi, 1)$ $B(S\pi, 2)$ $(i) \qquad M_{AB} = \frac{3-1}{5\pi - \pi} = \frac{2}{4\pi} = \frac{1}{2\pi}, \qquad C(\pi, 5)$ $\int +0 \ AB : \qquad m_{\perp} = -2\pi, \qquad C(\pi, 5)$ $y - S = -2\pi (\chi - \pi)$ $y = -2\pi \chi + 2\pi^{2} + 5$ $y + 2\pi \chi - S - 2\pi^{2} = 0,$ $(ii) \qquad d_{AB} = \int (5\pi - \pi)^{2} + (2-1)^{2}$ $= \int 16\pi^{2} + 4$ $= \int 4(4\pi^{2} + 1)$ $= 2 \int 4\pi^{2} + 1$ $(iv) \ AABC \ is \ an \ isosceler \ A$ $AB = BC = 2 \int 4\pi^{2} + 1, \qquad AC = 4$ $Cos \ (CAB = \frac{4^{2}}{4} + (2\sqrt{4\pi^{2} + 1})^{2} - (2\sqrt{4\pi^{2} + 1})^{2}$ $= \frac{16}{16\sqrt{4\pi^{2} + 1}}$ $= \frac{16}{16\sqrt{4\pi^{2} + 1}}$ $= \frac{16}{16\sqrt{4\pi^{2} + 1}}$ $= \frac{16}{16\sqrt{4\pi^{2} + 1}}$ $= \frac{16}{34\pi^{2} + 1}$	d.(1)	midpoint	Αß	<u> </u>	TC+5 T	$\left(\frac{1+2}{2}\right)$		~			
(i) $M_{AB} = \frac{3-1}{5\pi - \pi} = \frac{2}{4\pi} = \frac{1}{2\pi}$ $f(x) = M_{AB} = \frac{3-1}{5\pi - \pi} = \frac{2}{4\pi} = \frac{1}{2\pi}$ $f(x) = M_{AB} = \frac{3-1}{5\pi - \pi}$ $f(x) = -2\pi$ $f(x) = -2\pi$ $f(x) = -2\pi + 2\pi^{2} + 5$ $f(x) = -2\pi + 2\pi^{2} + 5$ $f(x) = -2\pi + 2\pi^{2} + 5$ $f(x) = \sqrt{5\pi - \pi}^{2} + (2-\pi)^{2}$ $f(x) = \sqrt{5\pi - \pi}^{2} + (2\pi^{2} + \pi)^{2}$ $f(x) = \sqrt{6\pi^{2} + 4}$ $f(x) = \sqrt{6\pi^{2} + 4}$ $f(x) = ABC = BC = 2\sqrt{4\pi^{2} + 1}$ , $AC = 4$ $f(x) = ABC = BC = 2\sqrt{4\pi^{2} + 1}$ , $AC = 4$ $f(x) = ABC = \frac{4^{2} + (2\sqrt{4\pi^{2} + 1})^{2} - (2\sqrt{4\pi^{2} + 1})^{2}}{2 \times 4 \times 2\sqrt{4\pi^{2} + 1}}$ $f(x) = \frac{16}{16\sqrt{4\pi^{2} + $				~ (3 . *	(π, 2)		Α(π,	, ( ) 			
$ \int \int dAB : m_{\perp} = -2\pi. $ $ m = -2\pi  C \ (\pi, s) $ $ y - S = -2\pi \ (\pi - \pi) $ $ y = -2\pi \ x + 2\pi^{2} + 5 $ $ y + 2\pi \ x - S - 2\pi^{2} = 0. $ $ (iii)  d_{AB} = \int (5\pi - \pi)^{2} + (2 - i)^{2} $ $ = \int \int k\pi^{2} + 4 $ $ = \int 4 (4\pi^{2} + i) $ $ = 2 \int 4\pi^{2} + i $ $ (iv)  AAB c \text{ is an isosceler } \Delta $ $ \therefore AB = BC = 2 \int 4\pi^{2} + i , AC = 4 $ $ Cos \ (CAB = \frac{4^{2} + (2 \int 4\pi^{2} + i)^{2} - (2 \int 4\pi^{2} + i)^{2} }{2 \times 4 \times 2 \int 4\pi^{2} + i} $ $ = \frac{16 + 4 (4\pi^{2} + i) - 4 (4\pi^{2} + i)}{16 \int 4\pi^{2} + i} $ $ = \frac{16}{16 \int 4\pi^{2} + i} $ $ CAB = Bcs^{-1} \ (\int 4\pi^{2} + i) - 4 (4\pi^{2} + i) $ $ = \frac{16}{16 \int 4\pi^{2} + i} $ $ Fage g of 20 $	(ii)	MAB= 3		2 =	1		B(SII	( ² )			
$ \begin{array}{l} \sum_{k=1}^{n} (1 + 2k) & m_{1} = -2\pi \\ m = -2\pi \\ y = -2\pi \\ y = -2\pi \\ y + 2\pi \\ y + 2\pi \\ x - 5 - 2\pi^{2} = 0 \\ (in) \\ d_{Ag} = \int (5\pi \\ -\pi \\ 7 \\ Ag = \\ g = -2\pi \\ x + 2\pi^{2} + 5 \\ y + 2\pi \\ y + 2\pi \\ x - 5 - 2\pi^{2} = 0 \\ (in) \\ d_{Ag} = \int (5\pi \\ -\pi \\ 7 \\ Ag = \\ g = $			u'-11		20,		$C(u_i)$	3)			
$m = -2\pi  C (\pi, s)$ $y = -2\pi (x - \pi)$ $y = -2\pi x + 2\pi^{2} + s$ $y + 2\pi x - s - 2\pi^{2} = 0.$ (iii) $d_{Ag} = \int (5\pi - \pi)^{2} + (3 - i)^{2}$ $= \int  6\pi^{2} + 4$ $= \int 4(4\pi^{2} + i)$ $= 2 \int 4\pi^{2} + i$ (iv) $AABC is an isosceler \Delta$ $AB = BC = 2 \int 4\pi^{2} + i, AC = 4$ $Cos (CAB = \frac{4^{2}}{4} + (2 \int 4\pi^{2} + i)^{2} - (2 \int 4\pi^{2} + i)^{2}$ $= \frac{16}{16 \int 4\pi^{2} + i}$ $= \frac{16}{16 \int 4\pi^{2} + i}$ $CAB = Bor - i (\frac{1}{\sqrt{4\pi^{2} + i}})$ $= 8i^{6}. (newart degree)$ Page 8 of 20	* when the	L to AP	ιν)	1	~ 11 ,						
$y = 5 = -2\pi ((x - \pi))^{2}$ $y = -2\pi x + 2\pi^{2} + 5$ $y + 2\pi x - 5 - 2\pi^{2} = 0.$ (iii) $d_{AB} = \sqrt{(5\pi - \pi)^{2} + (3 - i)^{2}}$ $= \sqrt{16\pi^{2} + 4}$ $= \sqrt{4(4\pi^{2} + i)}$ $= 2\sqrt{4\pi^{2} + i}$ (iv) $A + B c$ is an isosceler $A$ $A = B = B = 2\sqrt{4\pi^{2} + i},  A = 4$ $Cos < CAB = \frac{4^{2} + (2\sqrt{4\pi^{2} + i})^{2} - (2\sqrt{4\pi^{2} + i})^{2}}{2 \times 4 \times 2\sqrt{4\pi^{2} + i}}$ $= \frac{16}{16\sqrt{4\pi^{2} + i}}$ $= \frac{16}{16\sqrt{4\pi^{2} + i}}$ $= \frac{16}{16\sqrt{4\pi^{2} + i}}$ $= \frac{16}{16\sqrt{4\pi^{2} + i}}$ Page & of 20		m = -2		C(	π, s) ~)						
$ \begin{array}{l} \begin{array}{c}                                     $		y-3 = -	$-2\pi$	x + 2	$\pi^2 + 5$						
$ \begin{array}{ll} \begin{array}{c} \begin{array}{c} (11)\\ (11)\\ \end{array} & d_{AB} = \sqrt{(5\pi - \pi)^{2} + (3 - i)^{2}} \\ = \sqrt{16\pi^{2} + 4} \\ = \sqrt{4(4\pi^{2} + 1)} \\ = 2\sqrt{4\pi^{2} + 1} \\ \begin{array}{c} (1v)\\ \end{array} & ABc \ is \ an \ isosceler \ \Delta \\ \end{array} & AB = BC = 2\sqrt{4\pi^{2} + 1} \\ Cos \ (CAB = \frac{\mu^{2}}{4} + \frac{(2\sqrt{4\pi^{2} + 1})^{2} - (2\sqrt{4\pi^{2} + 1})^{2}}{2 \times 4 \times 2\sqrt{4\pi^{2} + 1}} \\ = \frac{16}{16\sqrt{4\pi^{2} + 1}} \\ = \frac{16}{16\sqrt{4\pi^{2} + 1}} \\ = \frac{16}{16\sqrt{4\pi^{2} + 1}} \\ CAB = Bc = -1 \ \left( \frac{1}{\sqrt{4\pi^{2} + 1}} \right)^{2} \\ \end{array} $ Page & of 20	L	σ 1·+2π×	- 5 -	$2\pi^{2} =$	ΞΘ,		·				
$= \int  b\pi^{2} + 4$ $= \int 4(4\pi^{2} + 1)$ $= 2 \int 4\pi^{2} + 1$ (iv) $A + bc$ is an isosceler $\Delta$ $A = BC = 2 \int 4\pi^{2} + 1,  AC = 4$ $Cos \langle CAB = \frac{4^{2} + (2 \int 4\pi^{2} + 1)^{2} - (2 \int 4\pi^{2} + 1)^{2}}{2 \times 4 \times 2 \int 4\pi^{2} + 1}$ $= \frac{16 + 4(4\pi^{2} + 1) - 4(4\pi^{2} + 1)}{16 \int 4\pi^{2} + 1}$ $= \frac{16}{16 \int 4\pi^{2} + 1}$		d. =	15 17	$-\pi^{2}$	(2)						
$\int 10\pi \pi^{2} + 1$ $= \int 4(4\pi^{2} + 1)$ $= 2 \int 4\pi^{2} + 1$ (iv) $A A B c$ is an isosceler $A$ $\therefore A B = B c = 2 \int 4\pi^{2} + 1,  A c = 4$ $\cos(cAB) = \frac{4^{2} + (2 \int 4\pi^{2} + 1)^{2} - (2 \int 4\pi^{2} + 1)^{2}}{2 \times 4 \times 2 \int 4\pi^{2} + 1}$ $= \frac{16 + 4(4\pi^{2} + 1) - 4(4\pi^{2} + 1)}{16 \int 4\pi^{2} + 1}$ $= \frac{16}{16 \int 4\pi^{2} + 1}$ Page 8 of 20		5 A B =		+	( \$ -()						
$= 2 \sqrt{4\pi^{2}+1}$ (iv) $A A B c$ is an isosceler $A$ $A B = B c = 2 \sqrt{4\pi^{2}+1}$ , $A c = 4$ $cos (cAB = \frac{4^{2} + (2\sqrt{4\pi^{2}+1})^{2} - (2\sqrt{4\pi^{2}+1})^{2}}{2 \times 4 \times 2\sqrt{4\pi^{2}+1}}$ $= \frac{16 + 4(4\pi^{2}+1) - 4(4\pi^{2}+1)}{16\sqrt{4\pi^{2}+1}}$ $= \frac{16}{16\sqrt{4\pi^{2}+1}}$ $(cAB = cos^{-1} (\sqrt{\sqrt{4\pi^{2}+1}}))$ $= 81^{\circ}$ . (nearest degree) Page 8 of 20		. = J	4(ATT ²	+ 1)							
(iv) $A A B c$ is an isosceler $A$ $A B = BC = 2 \sqrt{4\pi^2 + 1}$ , $AC = 4$ $Cos \langle CAB = \frac{4^2 + (2 \sqrt{4\pi^2 + 1})^2 - (2 \sqrt{4\pi^2 + 1})^2}{2 \times 4 \times 2 \sqrt{4\pi^2 + 1}}$ $= \frac{16 + 4(4\pi^2 + 1) - 4(4\pi^2 + 1)}{16 \sqrt{4\pi^2 + 1}}$ $= \frac{16}{16 \sqrt{4\pi^2 + 1}}$ $\leq CAB = cos^{-1} (\sqrt{4\pi^2 + 1})$ $= 81^{\circ}$ (nearest degree) Page 8 of 20		= 2	$\sqrt{4\pi^2}$	+1.							
$AB = BC = 2\sqrt{4\pi^{2}+1}, AC = 4$ $Cos (CAB = \frac{4^{2} + (2\sqrt{4\pi^{2}+1})^{2} - (2\sqrt{4\pi^{2}+1})^{2}}{2 \times 4 \times 2\sqrt{4\pi^{2}+1}}$ $= \frac{16 + 4(4\pi^{2}+1) - 4(4\pi^{2}+1)}{16\sqrt{4\pi^{2}+1}}$ $= \frac{16}{16\sqrt{4\pi^{2}+1}}$ $CCAB = Cos^{-1} (\sqrt{4\pi^{2}+1})$ $= \frac{16}{81^{6}}, (nearest degree) Page & g of 20$	(iv)	AABC i	s ar	rosi ~	celer	Δ		,			
$Cos \langle cAb = \frac{4^{2} + (2\sqrt{4\pi^{2}+1})^{2} - (2\sqrt{4\pi^{2}+1})^{2}}{2 \times 4 \times 2\sqrt{4\pi^{2}+1}}$ $= \frac{16 + 4(4\pi^{2}+1) - 4(4\pi^{2}+1)}{16\sqrt{4\pi^{2}+1}}$ $= \frac{16}{16\sqrt{4\pi^{2}+1}}$ $= \frac{16}{16\sqrt{4\pi^{2}+1}}$ $CAb = Cos^{-1} (\sqrt{\sqrt{4\pi^{2}+1}})$ $\stackrel{\sim}{=} 81^{6} (newest degree) Page 8 of 20$		<i>_</i> .	AB=	= BC =	= 2 50	HTT2+1, AC	= 4				
$2 \times 4 \times 2 \sqrt{4\pi^{2}+1}$ $= \frac{16 + 4(4\pi^{2}+1) - 4(4\pi^{2}+1)}{16\sqrt{4\pi^{2}+1}}$ $= \frac{16}{16\sqrt{4\pi^{2}+1}}$ $= \frac{16}{16\sqrt{4\pi^{2}+1}}$ $\leq CAN = Ros - 1 \left(\frac{1}{\sqrt{4\pi^{2}+1}}\right)$ $= 81^{\circ} (nearest degree) \qquad Page 8 of 20$	Ce	es (CAB =	42	+ (2	$\int 4\pi^2 + 1$	$)^{2} - (2 \sqrt{4\pi^{2} + 1})$	)				
$= \frac{16 + 4(4\pi + 1) - 4(4\pi + 1)}{16\sqrt{4\pi^{2}+1}}$ $= \frac{16}{16\sqrt{4\pi^{2}+1}}$ $= \frac{16}{16\sqrt{4\pi^{2}+1}}$ $\leq CAB = Cos^{-1} \left(\frac{1}{\sqrt{4\pi^{2}+1}}\right)$ $= 81^{\circ} (nearest degree) $ Page 8 of 20		:			$2 \times 4$	$\times 2 \int 4\pi^2 + 1$					
$= \frac{16}{16 \sqrt{4\pi^2 + 1}}$ $\leq CAU = Cos^{-1} \left( \frac{1}{\sqrt{4\pi^2 + 1}} \right)$ $\stackrel{\sim}{=} 81^{\circ}.  (nearest degree) \qquad Page 8 of 20$		2	16	+ 4 (4'	TT +1) -	- 4 (+1(+()					~
$\begin{aligned} & (CAU = Cos^{-1} ( \frac{1}{\sqrt{4\pi^2 r_1}} ) \\ & = 81^{\circ}. (nearest degree) \\ \end{aligned} \qquad Page & of 20 \end{aligned}$		2		16	· V ~ 1[ * ]						
= 81°. (nearest degree) Page 8 of 20		<can =<="" td=""><td>16 : Co</td><td>JATT71 5-1 (</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></can>	16 : Co	JATT71 5-1 (							
			- 8-0	. (1	nearest	- degree)	. ' I	age N	of	20	

.

-7-9 ۰.

ŧ

م شع

PLC Sydney Maths Department					
ſ	Solutions for exams	and assessment tasks	Colondar Voor	2015	
	Course	Davit MA Aut	Name of task/exam	Tral HIC	-
[	Course	1 20x 1 readily		1 Marti Proc	
Qu	estion 14			0	
			a, 9-	<u>,</u>	
Q	~ 2	0	0 = 8	7	
٥( ,	2 + 4 =	- 8	,	2	
	2 0	2	2 = 2	8	
	<u>и</u> 2 =	8 - 2	2		
	U .	2.	R= -	Ψ.	
		ب غرب ( ا			
- ´.	$V = \pi \int$	$\int_{a}^{2} dx$			
		J			
		2			
	- " ) *	2			
	0				
		3 74			
	- 11   8%				
	<u> </u>	0 -0	·		
	- 75 (22	64) (22	7		
	- // [(\$2	( 0 / )	1		
	- 	3			
	= 6711	thats			
	3				
1	3		3 4		
Ь.	4=20	(3-x) = 3x	$-\chi$		
	0				
in	dy a.	2 4 3			
( • •		- 12			
	CA YC	2			
	$d^2y = 18x$	-12 x.			
•					
l	0 ⁱ n		~		
	du a	2 11 3	A. Nat	Puint	
	$\partial q = q$	$\kappa - \tau \kappa = 0$			
	dn .				
	= n	( 4 - 4 n)			
	= 0				
	1		20		
	X		- 9		
		~		Page 9 of	10
			-7		-,-

,

PLC Sydney Maths Department						
Solutions for exams and assessment tasksAcademic Year12Calendar Year2015						
Course	2 init MacHal	Name of task/exam	Thial HJC			
Course	2011 10(4700)	Traine of asiv exam		······		
at x=0	$\frac{d^2 Y}{dx^2} = 18(0) - \frac{1}{2}$	72(0)				
i. pos	sible point (	of inflexion a	+ x=0			
$at x = \frac{9}{4}$	$\frac{d^2 y}{d \varkappa^2} = 18(1)$	$\left(\frac{9}{4}\right) - 12\left(\frac{9}{4}\right)^{2}$				
	= -81 4	<0 -'. M	ax.			
at x = 0	y" -1 0	6				
	- poin	t of inflex	in foncavity change	L)		
	i. hor	izantal poin	t of intle	Xion		
Sinc	$d_{\chi} = 0$	AND d'y =	0			
at x=0;	y = 0	(0,0) in the hariz				
$a + \chi = \frac{9}{4}$	$\mathcal{J} = \left(\frac{\alpha}{4}\right)^3 \left(3 - \frac{\alpha}{4}\right)^3$	$-\frac{q}{q}$				
	$=\frac{2187}{256}$	8.543 ((-	4 8.543) m	A×.		
(ii) at x=	0 y=0.	(0,0)				
inflexion	5: 18x-	$(2x^{2}=0)^{-7}$				
	x=0	$\chi = \frac{3}{2}$				
			Page 10 of	20		

,



ų,

14<u>8</u>4

	Colutions for evenu	23/2RT THEMP32322 Dra			
ſ	And anio Voor		Calendar Year	2015	
	Academic Year	2 The Trial	Name of task/exam	TA'EL HIL	
L	Course				
-111	a - 51	「一丁七			
19		2			
	Summa conversion	. anganga (			
	$\lambda = 5 T$	Costt			
	2	U			
		2	1		
	2 = -5(	王) ちい~ 低	て	- 	
	-	art	2		
a +	t = 3	×=-5	(耳) 51-37		
ai	0		2		
			2	-	
		5	TT X -1		
			¥		
		مسورج ومع			
		<u>L</u>	<u> </u>		
ð.	(1) collex	ABC = 3	60 - (24+50	+40) = 246	
				<b>0</b>	
		$\alpha = 36$	0-246=11	4	
	•			- ·	
C	n ID circu av	- 114			
C	in she a				
	· < BC	D = 180 - 114	(cointerior	angues are	C )
		= 6.0°	supplementa	y on parallel 1	1-23)
		00		J	
	, , , , , , , , , , , , , , , , , , , ,				
	< EC	0 = 66 730			
		- 116			
				i un of avaid	r. Tarkal
	< ADC	= 360 - 116 - "	90-40 (ang	le som er r	
			,		
		= 114°			
	< BAD	= 90-24	(gwen)		~
		. 10	-		
		= 60	,	-	•
		•	-		
	CADC -	$+\langle BCD = 66$	+ 114		
		=180		· · · · · · · · · · · · · · · · · · ·	
	, (	A IL AN A	winters angle	S SEL )	
	<u></u>	its a las	we equal	· · · ·	
	. Since sy	posite my	4 6		c 2
	and noposite	sides are po	iallet	Page $/ \geq 0$	I,10
					and the second se

PLC Sydney Maths Department

, .

	Solutions for	r exams a	ind assessment tasks	-		Ver 1
	Academic Y	ear .	12	Calendar Year	2015	]
	Course		Zurit Math	Name of task/exam	Tral HSC	]
Qu	estion 1	S				
(1)	6x+ 4.	y =	300			
	40	j = 3	00-67			
		1 = 3	<u>00-64</u> 4			
	Y	~ <u>30</u>	$-\frac{6\pi}{4}$			
	. y	= 7	5 - 321			
(ii)	A =	3× y				
	A = 3	2(7	5 - <u>3 x</u> )		u=3x ==	3
	$\frac{dA}{dA} = 3$	× (_	(-3) + (-7)	2 \	$u'=3$ $v'=-\frac{3}{2}$	2
	OT YL		2 1 ( 73 -	$\frac{54}{2}$ × 3	. 2	
		- <u>9</u> x 2	+ 225 - 9	x Z		
	-	- 18	× +225			
0	$\frac{l^2 A}{l x^2} = -$	-18	<0 .'- n	nax.		
	$\frac{dA}{dn} =$	0 '	for stat.	pt.		
	- 18	X +	-225-20			
			$n = \frac{225}{9}$			
	-	, -	at $\chi = \frac{2\pi}{9}$	maximi	In area	
			$\chi = 2$	, Ş	Page / 3 of	20

PLC	Sydney	Maths	Department
-----	--------	-------	------------

Solutions for exams and assessment tasks

1	Solutions for exams a		Calendar Vear	2015	_
	Academic real	12 Duit the les	Name of took/over	T-11 454	
	Course	Whit Marins	Name of task/exam	Mai Hac	
r	maximun	n area of o	ne of the d	ildrens	
	blocks i	A= xy	0		
	6	t = 25	$y = 75 - \frac{3}{2}$	(25)	
		÷	= 75		
	ŕ,	Aver = 25	× 75		
		= 937	15 m		
	A		10000 - 3	× 93715	v
(1)	Wer T	enaining =	7187-5	m ² .	
				۱.	
					·
		•			, · , ·
				· .	
				Page 14	of 20

Ver 1

÷ interest

۰.

:

PLC Sydney Maths Department					
Solutions for exams	and assessment tasks	Calendar Vear	2015	]	
Course	Zimit Math	Name of task/exam	Trial HSC	-	
Question 15 b. $\chi = -\overline{C}$	Untine d 14 t+43				
at t = 0; (i) $\chi = -14$	$k = -\frac{3}{4},  \lambda =$	7 m/s.	·		
= - 14 5	$(t+4)^{-3} d t$				
= -14 [	$\frac{(t+4)^{-2}}{-2}$ ] +	C			
= 70	$(+++)^{-2} + C$				
at $t=0$	$\varkappa = \frac{7}{16}$				
$\frac{7}{16} = 7(0+$	-4) ⁻² + C				
$\frac{7}{16} = \frac{7}{16} + \frac{7}{16} $	с О				
× =	$\frac{7}{(t+4)^{2}}$				
$x = 7 \int (t)$	$-4)^{-2}dt$				
$\chi = \frac{7(t+4)}{-1}$	$)^{-1} + c$				
at $t=0$	$n = \frac{2}{4}$	Υ.	Page /S of	20	

1. 1. 1. 1.

PLC Sydney Maths Department

· Ver 1

	Solutions	for exams a	and assessment tasks				Y CI I
	Academi	c Year	/2	Calendar Year	201	C ]	
	Course		2. Fulle K	Nome of tosk/exam	TAI	450	
	Course	· · · · · · · · · · · · · · · · · · ·	wint matur	INALLIC OI LASK/CAALLI	1/121	,	
	- 3 -	ing Binar Distan	(4) + C				
	C =	- 3 4	+ 7 4				
	C =	1	. *				
-	1	χ=	- 7 +1 ++4		•		
( 1	i) at	t x	= 0	•			
		0 =	-7 +1				
			-++4			1 1	
		0 = -	-7 + + + + +	•			
		t =	3				
	, ,		- · · · · · · · · · · · · · · · · · · ·				
	X	= (+	(+4)				
			7				
		) = _	ר) ארי דער די ג				
0		·4 ×	<u>r</u>				
	")						
		$-\frac{3}{4}$	3	>t			
	-			at $t=0$	$\chi = -\frac{3}{2}$		
		χ = -	上 +1 七+4		φ Pag	e /6 of 6	20

PLC Sydney Maths Department Solutions for exams and assessment tasks

	Academic Year	12	Calendar Year	2015	
	Course	Zupit Makus	Name of task/exam	Tral HSC	
C , (1)	$dy = 2x$ $dy = 5x^{2}$ $dy = 15x$ $dx^{2} = 15x$ $z$ $dx^{2} = 15x$	$\frac{5}{2} - \frac{3}{2}$ $\frac{1}{2} - 6x$ $\frac{1}{2} - 6x$	ţ		
(īi)	$\frac{d^2 y}{dx^2} > 0$ $\frac{15}{2} \times x^2 - 6$	n 70		۰,	
	3 x 2 ( 5 -	252)>0	-21	$7x + \frac{5}{2} = 0$ $25x = \frac{5}{2}$	
	0 <	$(heck) \frac{2.5}{16}$ $\chi < \frac{2.5}{16}$		$4x = \frac{25}{4}$ $x = \frac{25}{16}$	
m	ethod 2:	1552 - 62	270	۲.	
	since Jre ?	$raise = 15 \sqrt{2}$	6x >0 (length)		
	then	225 x > 4	36x ² (s	quare bok side)	
		$225 \times 7$ $144x^2 - 225$ x(144x - 3)	225) $20225)$ $202376$	144x = 22 257 76 Page 17 of 20	5 1.2. 2.

Ver 1

A.

:

PLC Sydney Maths Department Solutions for exams and assessment tasks

	Academic Year	12	Calendar Year	2015	
	Course	2Unit Maths	Name of task/exam	That HISC	
Qu	estion 16.				
a.	$V = A e^{-kt}$	<i>k.</i>	ł		
	$BODOD = Ae^{-S}$	K			
. /	$8000 = Ae^{-10k}$				
(Ì)	Ae	= 30000			
	Ae ^{-lok}	18000	>		
	esk	= 5		·	
	5K =	$ln \frac{5}{3}$			`
	k = -	$\frac{1}{5} \ln\left(\frac{5}{3}\right)$			
	2	0.102165			
(11)	30000	$= A e^{-5}$	$\frac{1}{5}\ln\left(\frac{5}{3}\right)$		
	30000	$= A e^{-hf_s^s}$	5) <u>not</u> e	$-\ln(\frac{5}{3}) \ln \frac{1}{2}$	2/15
	A =	20 000		$=\frac{2}{3}$	
	A =	\$20 000 3 3			
(11)	1000	= 50000	-krt	`	
	$\frac{1}{50}$	-kxt			
	· _kt	$= ln\left(\frac{1}{50}\right)$			•
	t =	$= \frac{\ln 50}{-\frac{1}{5}\ln(\frac{5}{3})}$	what k?	$\frac{1}{5}\left(\ln\left(\frac{5}{5}\right)\right)$	_
	t t	= 38.29		· .	
		39 years fail below ?	fa Fit to \$ 1000	Page/8 of	20

Ver 1

PLC Sydney Maths Department					
Solutions for exams an	Solutions for exams and assessment tasks			1	
Course	2010 St 11 An Ales	Name of task/exam	Traditise	1	
Course b(i) ii) $\tan \theta = \frac{190}{400}$ $\tan \theta = \frac{1}{\sqrt{3}}$ $\theta = 30^{\circ}$ (iii) $\langle PAB = 50^{\circ}$ $PB^{2} = 200^{\circ} + 10^{\circ}$	$\frac{20\pi it Madlus}{190}$ $\frac{190}{10}$	Name of task/exam $AP = 30^{7}$ . $AP = 30^{7}$ . $AP = 30^{7}$ .	<u>Tria ( 195</u> ) ² 380 km, 50	]	
= 86696 $= 294.4$ $= 294.4$	283 742326				
(iv) <apb;< td=""><td>$\frac{\sin \alpha}{200} = \frac{\sin \alpha}{200} =$</td><td>$\frac{51n}{294.442326}$ $\frac{290}{294.442326}$ $\frac{290}{294.442326}$ $1^{9} 21^{1}$ $150 + 31^{9} 2$ $= 181^{9} 2$</td><td>Page 16 of</td><td>20</td></apb;<>	$\frac{\sin \alpha}{200} = \frac{\sin \alpha}{200} = $	$\frac{51n}{294.442326}$ $\frac{290}{294.442326}$ $\frac{290}{294.442326}$ $1^{9} 21^{1}$ $150 + 31^{9} 2$ $= 181^{9} 2$	Page 16 of	20	

***<u>*</u>*

:

PLC Sydney Maths Department

	Solutions for exams and assessment tasks						
	Academic Year	12	Calendar Year	2015			
	Course	Zunit math	Name of task/exam	Trial HISC			
С.	(i) $y = \log \frac{1}{2}$	e (2n-5)					
at	x=6 Y	= loge (12 -	-2)				
		= loge 7	B (6, 1n=	+)			
at	y=0 0	$= \log_e(2x-5)$	)				
	e	= 2×-5					
	22	= 6					
	2	= 3 A(3, 0)	)				
	4= 10g (	276-5)					
	$e^{\gamma'} = 2x - 5$	-					
	$2\pi = e^{\gamma} +$	- 5					
	$\chi = \frac{e^{Y} + 1}{2}$	5	lege7				
(Tij)	Arrackect = 6 = 6	$\times \log_e 7$		3 6 22			
A	ea bound by	y -orxis:	1.7	1			
	A= Sey+5	$dy = \frac{1}{2} \int (e$	e7+5y)]				
	0 2	$=\frac{1}{2}\left[e^{it}\right]$	$n^{7} + 5 \ln 7 - ($	e"+ 5(0))]			
		= 1 [7	+5127-1]		•		
		$=\frac{1}{2}\begin{bmatrix}6\\ 2\end{bmatrix}$	+ 5 In 7]				
		= 3 +_	5ln7.		~		
(	Charled 6	yea = 6	$\ln 7 - 3 - 5$	In 7			
-	, J VGLOULD	$=\frac{7}{2}$	$\ln 7 - 3$ ,				
				4			
				Page 20 of	20		

TE .

۰.

÷