Mr Antonio Mrs Collett Mr Dudley Mrs Kerr Ms Lau Mrs Sear Miss Single Mrs Soutar Name:.....

Teacher:.....

2011 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question
- Start each question in a new booklet
- Marks may be deducted for careless
 or untidy work

Total Marks - 120

- Attempt Questions 1-10
- All questions are of equal value

Blank Page

.

.

2

2

1

2

(a) Evaluate, correct to two decimal places
$$\frac{2.35}{\sqrt{43.7} + 3.19}$$
.

(b) Simplify
$$\frac{2}{x(x-3)} - \frac{1}{x}$$
. 2

(c) Evaluate
$$\sum_{n=3}^{5} (2n-1)^2$$
. 1

(d) Solve the simultaneous equations. 2x + y = i3

$$x - y = -7$$

- (c) Solve |2x+1| = 5.
- (f) Factorise $8x^3 + 27$.
- (g) Rationalise the denominator of the following fraction. $\frac{4}{\sqrt{7}-2}$

Question 2 (12 marks) Usc a SEPARATE Writing Booklet.

(a) In the diagram below, ABCD is a quadrilateral.

Marks

The equation of the line AD is 3x + 2y + 6 = 0.

(i) Show that ABCD is a trapezium by showing that BC is parallel to AD.2(ii) The line AB is parallel to the x-axis. Find the coordinates of A.1(iii) Find the equation of BC.1(iv) Find the length of BC.1(v) Show that the perpendicular distance from B to AD is $\frac{12}{\sqrt{13}}$.2(vi) Hence, or otherwise, find the area of the trapezium ABCD.2

(b) Find the equation of the normal to the curve $y = x^2 - 5x + 1$ when x = -1.

(a) Differentiate the following with respect to x.

- (i) $e^x \ln 2x$.
- (ii) $4(x^2+2)^3$. 1

Marks

1

(iii) $\frac{\tan x}{x^3}$. 2

(b) Find:

.

.

- (i) $\int \frac{6}{x^2} \frac{2}{x^3} dx.$ 2
- (ii) $\int 2\cos \delta x \, dx$. 2
- (c) Evaluate:
 - (i) $\int_{2}^{5} \frac{3x}{x^{2}+1} dx$. 2
 - (ii) $\int_0^\pi \sin 2x \, dx.$ 2

Ques	tion 4 (12 marks) Use a SEPARATE Writing Booklet.
(a)	The gradient of a curve is given by $g'(x) = 3x^2 - 4 + \frac{1}{x^2}$. The curve passes through the point (1, 4). What is the equation of the curve?

Marks

3

- (b) Sketch the curve $y = \cos^2 x + 1$ for $0 \le x \le \pi$, clearly showing all relevant 3 features.
- (c) The region enclosed by the curve $y = \frac{1}{2}(\sqrt{x-1})$, the x and y -axes and the 3 line y = 2 is rotated about the y -axis.

Find the volume of this solid of revolution.

(d) Shade the region in the plane defined by $x^2 + y^2 \le 4$ and y > x-1. 3 Do not find the coordinates of the points of intersection.

4

Que	stion 5 ((12 marks) Use a SEPARATE Writing Booklet.	Marks
(a)	Let f	$f(x) = 9x(x-2)^2$	
	(i)	Find the coordinates of the stationary points and determine their nature.	4
	(ii)	Find the coordinates of the point(s) where the curve crosses the axes.	1
	(iii)	Find the coordinates of the point(s) of inflexion.	2
	(iv)	Sketch the graph of $y = f(x)$, clearly indicating all relevant features.	2

(b) ABCD is a rectangle and E is a point on the diagonal BD such that AE is perpendicular to BD.

(i)

.

(ii) If AD = 5 cm and DE = 2 cm, find the length of the diagonal BD.

2

1

Question 6 (12 marks) Use a SEPARATE Writing Booklet.		Marks	
(a)	Find th roots.	the values of m for which the equation $x^{2} + (m-2)x + 4 = 0$ has no real	2
(b)	Consid	for the parabola $4y = x^2 - 6x + 1$	
	(i)	Express in the form $(x-h)^2 = 4\alpha(y-k)$.	1
	(ii)	Write down the coordinates of the vertex.	1
	(iii)	Find the coordinates of the focus.	2
(c)	Use Sit to estit Give y	mpson's rule with five function values nate $\int_{0}^{4} \frac{1}{\sqrt{x^{3}+1}} dx$. our answer correct to 2 decimal places.	3
(d)	(i)	Find the limiting sum of the geometric series $3 + \frac{3}{1 + \sqrt{3}} + \frac{3}{(1 + \sqrt{3})^2} + \dots$	2
	(ii)	Explain why the geometric series $3 + \frac{3}{1 - \sqrt{3}} + \frac{3}{(1 - \sqrt{3})^2} + \dots$	1

.

does NOT have a limiting sum.

(a) (i) Solve
$$e^{x-2} - 1 = 0$$
.

(ii) Sketch
$$y = e^{x-2} - 1$$
, clearly showing all the relevant features.
(b)

Marks

1

2

2

3

1

3

In the diagram, the shaded region is bounded by $y = 6x^2$, y = 2x(x-2)(x-4)and the x-axis. The curves intersect in three places, two of which (0, 0) and A, are shown on the diagram.

- Find the x coordinate of A.
- (ii) Find the area of the shaded region bounded by $y = 6x^2$, y = 2x(x-2)(x-4) and the x-axis.
- (c) A vessel initially contains 100 litres of liquid. It is being emptied and the rate of change of volume is $\frac{dV}{dt} = -\left(2 + \frac{20}{t+1}\right)$ where V is the volume in litres after t minutes,
 - (i) At what rate is the vessel emptying initially?
 - (ii) Find how many litres of liquid remain in the vessel after five minutes. Answer correct to 3 significant figures.

Marks

Z

I

- (a) Find the maximum value of the function $y = -16x^2 + 160x 256$.
- (b) The triangle XYZ has XZ = 6, YZ = x, XY = z as shown below. The perimeter of triangle XYZ is 16. All measurements are in continuentes.

- (ii) Using the cosine rule, express z^2 in terms of x and $\cos Z$. 1
- (iii) Hence show that $\cos Z = \frac{5x-16}{3x}$.
- (iv) Let the area of triangle $\lambda \gamma Z$ be A. Show that $A^2 = 9x^2 \sin^2 Z$.
- (v) Hence, show that $A^2 = -16x^2 + 160x 256$. 2
- (vi) What is the maximum area for triangle XYZ ? 1
- (c) Let $f(x) = 1 + 10^x$. 2

Show that $f(x) \times f(-x) = f(x) + f(-x)$.

(i)

Ouestion 9 (12 marks) Use a SEPARATE Writing Booklet

(a) Assume the population, P, of Tasmanian devils has been decreasing at a rate proportional to P due to the infection of individuals by Devil facial humour disease. That is $\frac{dP}{dt} = -kP$ where k is a positive constant.

Marks

4

2

2

It was estimated that 130 000 individuals were in Tasmania in 1985. Twenty three years later, in 2008, the estimated number stood at just 10 000.

If the population continues to decrease at this rate, how many Tasmanian devils will there be in Tasmania in 2020?

A particle moves in a straight line such that after t seconds its acceleration (b) function is $\ddot{x} = (6t - 2) \text{ ms}^2$. Initially the velocity of the particle is -1 ms^2 .

(i)	Find the particle's velocity after 2 seconds.	2	
(ii)	Find the time at which the particle is stationary.	1	

- Find the distance travelled by the particle in the third second of motion. (iii)
- (c) The diagram shows the graph of y = f(x).

(ii) Sketch the graph y = f'(x). Ouestion 10 (12 marks) Use a SEPARATE Writing Booklet.

- Herculè decides to save for a deposit on a new igloo. The Greater Antartic (a) Savings Bank is offering an interest rate of 7.2% per annum, compounded monthly. Herculè receives his salary on the first day of the month and at this time puts \$500 into his savings account.
 - What will be the value of the first \$500 invested after 2 years? (i)
 - Hercule's dream igloo requires a deposit of \$35000. If he continues to (ii) invest \$500 each month from his salary, how long will it take him to be able to afford the deposit?

End of Paper

£.

3

2

1

4

e) 12x+11=5 2011 TRIAL HSC SOLUTIONS 2x+1=5 2x+1=-52x = 4 2x = -6QUESTION ONE x=2 or x=-3a) <u>2:35</u> (T)f) $8x^{3}+27 = (2x+3)(4x^{2}-6x+9)$ O r/w V43.7 + 3.19 9) $\frac{4}{\sqrt{7}-2} = \frac{4}{\sqrt{7}+2}$ (D correct multiple b) 2 - 1 = 2 - (x-3)x(x-3) x x(x-3) x(x-3) O loired numerator = 457+8 7-4 = 2-x+3 = 457+8 $\alpha(x-3)$ () Answer simplified = 5-2 x(x-3) O correct answer: c) $\sum_{n=1}^{5} (2n-1)^{2} = (2\times 3-1)^{2} + (2\times 4-1)^{2} + (2\times 5-1)^{2}$ * 52+72+92 = 25 + 49 + 81 = 155 O r/w. d) 2x+y= 13 ____O x-y=-7 _____. (1) + (2) = 6x=2 Sub x = 2 in 2 2-4=-7 -4=-9 4=9 : x=2, y=9

QUESTION TWO	iv. length BC
	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
(a) i. Find gradient AD	$= \sqrt{(-2-\sigma)^2 + (6-3)^2}$
3x+2y+6=0	$= \sqrt{(-2)^2 + (3)^2}$
2y = -3x - 6	= \(4+)
y = -3x - 3	= V13 arits () r/w
2	
$m_{4b} = -3$	v, perpendicular distance
2	p = [ax, +by, +c]
Find gradient BC.	$\sqrt{\alpha^2 + b^2}$
$m_{ec} = y_2 - y_1$	= 3(-2)+2(6)+6 (1) correct substitution
Xa-X	$\sqrt{3^2 + 2^2}$
- 6-3 () Gradients	= -6+12+6
-2-0 D statement just Sty 29	J9+4
= 3 Why BCILAD	= 12
-2	JIB
Since MAD = MAC, ADUBC and ABCD is a trapezium.	12 unito Devaluation
	VIS
ii. Since AB is parallel to the x-axis, it has the	
Same y-coordinate as B, that is y=6.	vi lingth AD
Sub $y = 6$ into $3x + 2y + 6 = 0$	$d = \sqrt{(x, -x_{1})^{2} + (y_{1} - y_{1})^{2}}$
$3\chi + 2(6) + 6 = 0$	$=\sqrt{(-6-0)^2+(63)^2}$
$S_{2,2} + 18 = 0$	$=\sqrt{(-6)^2+(9)^2}$
3x=-18	$=\sqrt{36\pm8}$
$\chi = -6$	= VII Ti write
A 6 (-6,6) -1w	Area trapezium ABCD:
	$A = L_{x} h \times (a+b)$
iii. Equation of BC:	2
$-\frac{y-y}{x}=m(x-x)$	$= 1 \times 12 \times (\sqrt{117} + \sqrt{13})$
y-3 = 3(2(-0))	2 13
Q2	$= 6\sqrt{117} + 6$
2y-6=-3x	VI3
$3x + 2y - 6 = 0$ $0 - 1 \omega$	= 24 units (1) Answer.

QUESTION THREE b) $y = x^2 - 5x + 1$ dy = 2x-5 a) i. Differentiate e Ln2x when x = -1, $u = e^{x} \qquad v = \ln 2x$ $u' = e^{x} \qquad v' = \frac{2}{2x} = \frac{1}{x}$ dy = 2(-1)-5 y' = vu' + uv'= $\ln 2x \times e^{x} + e^{x} \times x$ = - 2-5 $= e^{x}(n2x + \frac{1}{x})$ (1) () Corract calc of r/w =-7 so the tangent at x=-1 has gradient -7. gradient ii. Differentiate $4(x^2+2)^3$ Since m =- 7 and m, x m =- 1 when they are at point $y' = 4 \times 3 \times 2x \times (x^2 + 2)^2$ perpendicular, $= 24 x (x^{2}+2)^{2}$ Orrw $-7 \times m_2 = -1$ (1) correct calculation m2 = 1 iii. Differentiate tarx of normal gradient so the normal has gradient $u = tan \alpha \quad v = x^3$ $u' = \sec^2 x$ $v' = 3x^2$ when x=-1 y'= vu'-uv' $y = (-1)^2 - 5(-1) + 1$ = 1+5+1 $= \chi^3 \times sec^2 x - tar x + 3x^2$ 1) correct subs $(\chi^{3})^{2}$ using point gradient formula, into quotient mile $= \chi^3 \sec^2 x - 3\chi^2 \tan x$ y - y = m(x - x)y-7 = 1 (x - (-1))Correct equation 7 $= \chi^2 (\chi sec^2 \chi - 3 tan \chi)$ from pt gradient 74-49=x+1 formula x-7y+50=0 - eqn of normal = $x \sec^2 x - 3 \tan x$ (1) Correct Simplification er 13

(a) b) $(6 - 2) dx = ((6x^{-2} - 2x^{-3})) dx$	O UNESTION FOUR
$\sqrt{\frac{1}{2^2}}$	
$\bigcirc \qquad = 67^{-1} - 27^{-2} + c \text{Print-ration}$	$O_{a} = 2r^{2} - 4 + 1$
=1 -2	$\frac{1}{\sqrt{2}}$
$= -6\chi^{-1} + \chi^{-2} + 0$	$a(x) = 3x^{3}$ $Ax + x^{3}$
$= -6 + 1 + 1$ θ τ there	$\frac{0}{2}$
χ_{γ}^{2}	$=\gamma^3-4\gamma$ or ρ τ τ
Constant Constant	The second secon
$\ 2\cos bx dx = 2 \cos bx dx$	where $\chi = 1$ and $\chi = 4$
$= 2 \int I \sin 6x d + c \left(\int \frac{1}{1 + c} \right)^{-1}$	$A = /(n^3 - A/n) - 1$
6	
$= \sin 6\pi + c$ $\Omega = 12$	A = (-A - 1 + C)
2 and the	C = 2
	$a(x) = x^3 - 4x - \frac{1}{2} + 8$ 0
$c) = \int \frac{dx}{dx} dx = 2 \int \frac{dx}{dx} dx$	July a la correct eq
x^{2+1} z_{2} z^{2+1}	b) $\mu = c \rho s^2 r + l$ for $\rho \leq r \leq \pi$
$= 3 \left[\left(a p \cdot \left(\gamma^2 + 1 \right) \right)^5 \right]$	$\gamma = 0$ π_{12} π_{13} π_{14} π
	$\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$
$= 2 \left[\log \left(5^2 + 1 \right) - \log \left(2^2 + 1 \right) \right]$	$\frac{1}{2} \frac{1}{12} \frac{1}{12} \frac{1}{2} $
2/	
= 2(100, 26 - 100, 5)	
$\frac{3}{2}$	Ciomain
	- 1 Collect
(1) (1) (2) (2)	ange
	<u>4 2 4 U Correct</u>
$= \int -\cos 2x$	Shape'
2 20	
$O_{1} = -\frac{\cos 2\pi}{\cos 2\pi} - \left(-\cos 0\right)$	
2 2	
2 2	
An ewer	

c) $y = \frac{1}{2}(\sqrt{x-1})$ QUESTION FIVE $2y = \sqrt{x-1}$ a) i. $f(x) = 9x(x-2)^2$ 4y2= x-1 $x = 4y^2 + 1$ u = 9x $V = (x-2)^2$ V= T 1 x2 dy u'=9 v'=2(x-2)f'(x) = vu' + uv' $=\pi \int^{2} (4y^{2}+1)^{2} dy$ $= (x-2)^2 \times 9 + 9x \times 2(x-2)$ 1) Correct expression $= 9(x-2)^{2} + 18x(x-2)$ = $\pi \int_{0}^{2} (16y^{4} + 8y^{2} + 1) dy$ = 9(x-2)(x-2+2x)=9(x-2)(3x-2) () correct f'(x) = $\pi \left[\frac{16 y^5}{5} + \frac{8 y^3}{3} + y \right]^2$ O Correct integral. Stat. points occur when f'(x) = 09(x-2)(3x-2)=0 $= \pi \left\{ \frac{16}{5} \times 2^{5} + \frac{8}{3} \times 2^{3} + 2 - \left(\frac{16}{5} \times 0^{5} + \frac{8}{3} \times 0^{3} + 0 \right) \right\}$ (x-2)(3x-2)=0 x - 2 = 0 3x - 2 = 0= 188611 writs 3 x=2 3x=2 D Correct answer. 1) correct x 26 = 2 Values of st. pts d) $x^2 + y^2 \le 4$, y > x - 1when x=2, $f(2) = q(2)(2-2)^{2}$ (1) circle correct = 0 I.re correct when x= 3 and broken $f(\frac{2}{3}) = 9(\frac{2}{3})(\frac{2}{3}-2)^{2}$ D. correct shady = 10 = () correct of values $f(x) = 9x(x-2)^{2}$ f'(x) = 9(x-2)(3x-2)u = 9(x-2) v = 3x-2u' = 9 v' = 3f''(x) = vu' + uv' $= (3x - 2) \times 9 + 9(x - 2) \times 3$ = 9(3x-2) + 27(x-2)= 27x - 18 + 27x - 54 $= 54 \times -72$

when $x=2$	Test concavity charges:
f''(2) = 54(2) - 72	x 1 13 13
= <u>36</u>	f''(x) = -18 0 18
>0	Since concavity changes, there is a point of
: concave up with minimum twring point	inflexion at x = 13.
when $x = \frac{2}{3}$	when $\chi = 1\frac{1}{3}$
$f''(\frac{2}{3}) = 54(\frac{2}{3}) - 72$	$F(1\frac{1}{3}) = 9(1\frac{1}{3})(1\frac{1}{3}-2)^2$
= -36	= 16 3 D Testing
<0	= 53 (correct point (x,y)
: concave down with maximum turning point	: Point of inflexion at (13,53)
: Stat point at (2,0) is a minimum () correct	() () () () () () () () () () () () () (
Stat point at (3, 103) is a maximum testing	iv.) (3, 103)
$i C(x) - 9x(x-2)^2$	A D Coccect de
where $V = 0$	
$f(0) = 9(0)(0-2)^2$	(13, 53/ (1) correct 13
=0	Fatares'
when, $f(x) = 0$	
$9x(x-2)^2 = 0$	(10,0) (2,0) ×
$9x=0$ $(x-2)^2=0$	
x = 0 $x - 2 = 0$	
$\chi = 2$	
Curve crosses at (0,0), (2,0). () ~ 1 w	b) i. Since ABCD is a rectangle,
	AD II BC and AB II DC (opposite sides of a
iii. $f''(x) = 54x - 72$	rectangle are parallel)
when $f''(x) = 0$,	In SADE and SDBC
54x-72=0	LAED = LDCB (given)
54x = 72	LADE = LDBC (alternate, angles on parallel L
$\chi = \dot{s} $	are equal, AD IIBC) (1)
There is a possible point of inflexion at x=13	· A ADE III ADBC (equiangular)

ii. <u>BD</u> = <u>BC</u> (corresponding sides in similar <u>DA</u> <u>DE</u> triangles are in the same ratio) QUESTION SIX a) $\chi^2 + (m-2)\chi + 4 = 0$ has no real roots when $\Delta < 0$ BD = 5 D= 62-4ac 5 2 $= (m-2)^2 - 4 \times 1 \times 4$ BD = 25 . $= m^2 - 4m + 4 - 16$ 2 $=m^2-4m-12$ (1) Evaluation of D = 12.5 rin 140 m2-4m-12,20 (m - 6)(m + 2) < 0y From the sketch, 1) correct answer -2<m<6 b) i, $4y = x^2 - 6x + 1$ $4y - 1 = x^2 - 6x$ $4y-1+9=x^2-6x+9$ $4y+8=(x-3)^2$ $4(y+2)=(x-3)^2$ $(x-3)^2 = 4(y+2)$ () r/wii. Vertex: (3,-2) () / r/w) iii, Focal length: 4a=4 a=1 () Focal length Focus: (3;-1) () Answer

c) $\int_0^{\infty} \sqrt{\chi^3 + 1} d\alpha$ QUESTION SEVEN a); $e^{x-2} - |= 0$ 0 1 2 1 1/52 1/3 Calculation of values $\int_{a}^{b} f(x) dx = \frac{1}{3} \left[(y_{0} + y_{1}) + 4(y_{1} + y_{3}) + 2(y_{2}) \right] \odot \text{ correct}$ loge ex-2 = loge 1 x - 2 = 0h= b-a Subs 1-1+0 r1w x = 2 a version of Simpsons rule 11 y=e -1 $\int_{0}^{4} \frac{1}{\sqrt{x^{3}+1}} doc \stackrel{\div}{=} \frac{1}{3} \left[\begin{pmatrix} 1+1\\\sqrt{6s} \end{pmatrix}^{+} + 4 \begin{pmatrix} 1+1\\\sqrt{2}&\sqrt{2s} \end{pmatrix}^{+} \frac{2}{3} \begin{pmatrix} 1\\3 \end{pmatrix} \right]$ (1) shape X intercept = 1.7916858,24 0 = 1.79 (to 2 dec. pl.) (1) Answer -> Asymptote y=-1 (d); 3 + <u>3</u> + <u>3</u> + . $1+\sqrt{3}$ $(1+\sqrt{3})^2$ a=3 c = 11+13 y = 6 x²_____ Sp = a b) i 1-r $6x^2 - 2x(x-2)(x-4)$ Correct S~ and So Winer Since Hareau $6x^2 = 2x(x^2 - 6x + 8)$ achieve a correct 3(1+13) $6x^2 = 2x^3 - 12x^2 + 16x$ 1+13-1 $0 = 2x^3 - 18x^2 + 16x$ $0 = \chi^3 - 9\chi^2 + 8\chi$ V3 (1+ 13) $0 = \chi(\chi^2 - 9\chi + 8)$ nothing for decimal approximation $0 = \chi(\chi - 8)(\chi - 1)$ ii. (= 1 = -1.366025400 $\chi = 0 \quad \chi - 8 = 0$ x-1=0 1 r/w 1-13 $\chi = 8$ $\alpha \approx 1$ Since we don't have |r| <1, we do not have a x coordinate of io x=1

 $\int 6x^2 dx + \int 2x(x-2)(x-4) dx$ QUESTION EIGHT $= \int_{0}^{1} (6x^{2}) ds + \int_{1}^{2} (2x^{3} - 12x^{2} + 16x) dx \quad (0) \quad correct$ Statement $y = -16x^2 + 160x - 256$ axis of symmetry $= \left[\frac{6x^{3}}{3}\right]_{0}^{1} + \left[\frac{2x^{4} - 12x^{3} + 16x^{2}}{4}\right]_{1}^{1} \quad (1) \text{ integral}$ $\chi = -b$ $= \left[2x^{3} \right]^{1} + \left[\frac{x^{4} - 4x^{3} + 8x^{2}}{2} \right]^{2}$ = -160 2×-16 $= \int 2(1)^{3} - 0 \int + \left[\left(\frac{2^{4}}{2} - 4(2)^{3} + 8(2)^{2} \right) - \left(\frac{1^{4}}{2} - 4(1)^{3} + 8(1)^{2} \right) \right]$ $\widehat{\mathbf{n}}$ = 5 For x Value when x=5, $y = -16(5)^2 + 160(5) - 256$ $= 2 + [(8 - 32 + 32) - (\pm -4 + 8)]$ = 144 = 2+(8-4之) Maximum value is 144 1) Substitiet on and = 5 2 units 2 evaluation b) i. Perimeter: c) i. dV = -(2+20) $P=6+\chi+Z$ t+1 16 = 6 + x + zwhen t= 0 $\frac{dV}{dt} = -\left(2 + \frac{20}{0+1}\right)$ $10 = \chi + \chi$ Z = 10-X r/w $ii_{1}c^{2}=a^{2}+b^{2}-2abcasC$ Emptying at 22 L/min $z^2 = \chi^2 + 6^2 - 2 \times \chi \times 6 \times \cos Z$ $z^2 = x^2 + 36 - 12x \cos Z$ ()rIW $\frac{1}{14} \frac{dV = -2 - 20}{14} \frac{V = \int -\left(2 + \frac{20}{t+1}\right) dt}{14}$ dt t+1 $V = -2t - 20 \log_{e}(t+1) + C$ iii. $(10-x)^2 = x^2 + 36 - 12x \cos Z$ Sub \$4; tutio. Correct integral and correct $100 - 20 \times + \chi^{2} = \chi^{2} + 36 - 12 \times \cos Z$ into cosine When t=0, V=100 $12 \times \cos Z = 20 \times -64$ rnie $100 = -2(0) - 20 \log (0+1) + C$ integration. $\cos Z = 20x - 64$ 100 = C $V = -2t - 20 \log_{e}(t+1) + 100$ 122 (calculation of $\omega SZ = 5x - 16$ Correct rearlangement When t=5, to achieve show V=-2(5)-20 Loge (5+1)+100 = 54.16481062 = 54.2 (fo 3 sig. fig) () calculation of

iv. A=zabsinC QUESTION NINE = ±x6xxsinZ a) dP = -kP= 3x sin 2 A2= 9x 2 sin 2 Z - IN P=Pekt 1) correct diff Eqn $V, A^2 = 9\chi^2 \sin^2 Z$ when t=0 (1985) P=130000 $= 9x^{2}(1-\cos^{2}Z)$ 130000 = P. e kx0 $= 9\chi^{2} \left(1 - \left(\frac{5\chi - 16}{3\chi} \right)^{2} \right)$. P. = 130000 O cale Pp. Correct combination When t= 23 (2008) P=10000 of earlier parts $= 9x^{2} \left(1 - \left(\frac{25x^{2} - 160x + 256}{9x^{2}} \right) \right)$ 1000 = 130000 e R +23 $= \rho^{23k}$ $= 9x^{2} \left(\frac{9x^{2} - 25x^{2} + 160x - 256}{160x - 256} \right)$ $\log_e(t_3) = \log_e e^{23k}$ $= -16\chi^{2} + 160\chi - 256$ $23k = log_{0}(\frac{1}{13})$ () Correct expansion $k = \frac{1}{23} \log_e(\frac{1}{13})$ and simplification Correct to achieve "show = - 0.1115195373 :, P = 1300000 -01115195373+ VI. from a) Maximum Value for A = 144 when t = 35 $P = 130000 e^{-0.11/5 \cdot 195373 \times 35}$ " Maximum area of BXYZ is VI44 = 12 units 2 1) Answer = 2623, 083792 = 2623 (to rearest whole number) \bigcirc rIW e) $f(x) = 1 + 10^{x}$ b) i. $\ddot{x} = 6t - 2$ $f(-x) = 1 + 10^{-x}$ $\dot{x} = 6t^2 - 2t + c$ $f(x) \times f(-x) = (1+10^{x})(1+10^{x})$ 2 $= |+10^{x} + 10^{-x} + 10^{x}$. 10^{-24} $\dot{\chi} = 3t^2 - 2t + c$ LHS (i) $= 1 + 10^{\times} + 10^{-\times} + 10^{\circ}$ when t=0, x=-1 $= |+10^{2} + 10^{-2} + 1$ $-1 = 3(0)^2 - 2(0) + c$ = 10x+10-x+2 $f(x)+f(-x) = 1+10^{x}+1+10^{-x}$ x = 3t2 - 2t -1 Correct (i)() R+S · = 10 + 10 + 2 when t=2 f(x) + f(-x) = f(x) + f(-x) $\hat{\chi} = 3(2)^2 - 2(2) - 3$ = 12 - 4 - 1 In i when t= 2

c) i, f'(x) <0 when -2.5<x<2 ii. The particle is stationary when i = 0. rjw z=3t2-2t-1. $0 = 3t^2 - 2t - 1$ $0 = 3t^{2} - 3t + t - 1$ 0 = 3t(t-1) + (t-1)0 = (3t+1)(t-1)>x t-1=0 3++1=0 3t = -1t=1 -O. graph t = -127-2.5 O graph O r/w since t>0, t=1s. x 2 - 2.5 D, stance = $\int (3t^2 - 2t - 1) dt$ iii. $\dot{x} = 3t^2 - 2t - 1$ 01 $x = 3t^3 - 2t^2 - t + k$.3 2 $0 = \left[\frac{3t^3}{3} - \frac{2t^2}{2} - t\right]$ $\chi = t^3 - t^2 - t + k.$ when t=2 $= 3^{3} - 3^{2} - 3 - (2^{3} - 2^{2} - 2)$ $2(2)^{3} - (2)^{2} - (2) + k$ =8-4-2+k = 2+k = 13 m ! (1) when t=3 0 $x = (3)^3 - (3)^2 - (3) + k$ = 27-9-3+k = 15+k Distance travelled = (15+k)-(2+k) 11 = 13 m

QUESTION TEN	35000 < 500 (1.006) (1.006"-1) (1) Correct
	1.006-1 Series sum
a) i. $r = 0.072 p.a$	$210 < 503(1.006^{\circ}-1)$
= 0.006 p.m	0.4174950298 < 1.006" -1
P=\$500	1.4174950298 < 1.006
n = 24	loge 1.4174950298 < loge 1.006
$A = P(1+r)^n$	loge 1:4174950298 < n loge 1:006
$= 500 (1 + 0.006)^{24}$	loge 1.417 4950298 < n
= \$577.1936461	log e 1.006
=\$577.19 (to 2 dec. pl) [] -/w	n > 58,32281342
	He will be able to afford the deposit
ii. Last amount:	after 59 months. () Answer
$A = 500(1+0.006)^{1}$	
Second last amount:	b) i. $y = b$
$A = 500 (1+0.006)^2$	$x^2 + a$
Third last amount:	when $x=0, y=4$
$A = 500 (1+0.006)^3$	<u>4= b</u>
\checkmark	o²ta.
First amount:	$4 = b \qquad 0$
$A = 500 (1+0.006)^n$	a
Total amount:	when $x=3, y=1$
A = 500 (1.006) + 500 (1.006) ² + 500 (1.006) ³ + U correct	1= b
+ 500(1.006)" Creation	3 ² 4a
= 500 (1.006 + 1.006 ² + 1.006 ³ + 1.006 ⁿ of	1= 6
When is A > \$35000	a+9
$35000 < 500 (1.006 + 1.006^2 + 1.006^3 + + 1.006^{\circ})$	From 0 , $b = 4a$
1.006+1.0062+1.0063+ +1.006° is a GP	From a , $b = a + 9$
with $a = 1.006$, $r = 1.006$, $n = ?$	4a = a + 9
$S_n = \alpha(r^n - 1)$	3a = 9
r-1	a=3 () "a"
$= 1.006(1.006^{n}-1)$	subin 0 (7) b"
1.066-1	

a company a construction of

A'= v.u'- uv! 4=6 a $= (p^2+3) \times 24 - (24p)(2p)$ 4=b $(p^{2}+3)^{2}$ 3 $= 24p^2 + 72 - 48p^2$ 6=12 $(p^2+3)^2$: a=3, b=12 $= 72 - 24\rho^2$ D dervative $(p^2+3)^2$ ii. $C: (\rho, o)$ A'= 0 at stat. pts. sub x=pinto y=b $0 = 72 - 24\rho^2$ x2+a $(\rho^2+3)^2$ y = b p2+a 2402=72 p2= 3 y = 12 $p = \pm \sqrt{3}$ "P" Values. $p^{2}+3$ B: $(\rho, p^{2}+3)$ 0 $A^{*} = 72 - 24\rho^{2}$ r/w (n) $(\rho^2 + 3)^2$ $u = 72 - 24p^2$ $V = (p^2 + 3)^2$ iii. Due to the symmetry: @ testing u' = -48p $V' = 4p(p^2+3)$ D has coordinates (-p, 0) A has coordinates $(-p, \frac{j_2}{p^2+3})$ A'' = V u' - u v'length DC = p+p $= (\rho^{2}+3)^{2}x - 48\rho - (72-24\rho^{2})(4\rho)(\rho^{2}+3)$ 04 =20 154 $(p^2+3)^4$ Area ABCD = 2p × 12 derivation $= -48\rho(\rho^2+3)^2 - 4\rho(72-24\rho^2)(\rho^2+3)$ p2+3 test (p2+3) = 24 p rIW When $p = \sqrt{3}$ 02+3 $A'' = -\frac{48\sqrt{3}(\sqrt{3^2}+3)^2}{4\sqrt{3}(72-24\sqrt{3^2})(\sqrt{3^2}+3)}$ $(\sqrt{3}^{2}+3)^{4}$ iv. A = 24p = -48.13×36-413×0×6 p2+3 u=24p $v=p^2+3$ = -172853 u' = 24 v' = 2p1296 =-2.309401077 . maximum tuning point

-: -when p= J3 A= 24P p2+3 = 24 \3 ---- $(\sqrt{53})^2 + 3$ = 24 13 6 = 453 writs² (\mathcal{D}) calculation of Arca