Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section.

Use the multiple choice answer sheet for Questions 1-10.

1 Write 0.00000350793 in scientific notation correct to three significant figures.
(A) $\quad 0.351 \times 10^{-5}$
(B) 3.508×10^{-6}
(C) $\quad 35.1 \times 10^{-7}$
(D) $\quad 3.51 \times 10^{-6}$

2 Solve $|2 x+1| \leq 5$.
(A) $-3 \leq x \leq 2$
(B) $-2 \leq x \leq 3$
(C) $\quad x \geq 2, x \leq-3$
(D) $\quad x \geq 3, x \leq-2$

3 A parabola has equation $(y-3)=8(x+2)^{2}$. The coordinates of its vertex are
(A) $(3,-2)$
(B) $\quad(-3,2)$
(C) $\quad(-2,3)$
(D) $\quad(2,-3)$

4 Choose the equation of the graph below.

(A) $y=2+\sin x$
(B) $y=2 \sin x$
(C) $y=\sin 2 x$
(D) $y=\sin (x+2)$

5 Find $\frac{1}{2} \int e^{\frac{t}{2}} d t$.
(A) $e^{-\frac{t}{2}}+C$
(B) $e^{\frac{t}{2}}+C$
(C) $2 e^{\frac{t}{2}}+C$
(D) $\quad e^{t}+C$

6 If $\int_{a}^{b} f(x) d x=a+2 b$, then $\int_{a}^{b}(f(x)+5) d x$ is given by
(A) $a+2 b+5$
(B) $a+2 b-5$
(C) $7 b-5 a$
(D) $7 b-4 a$

Questions 7 and 8 refer to the following graph:

A bug begins to crawl up a vertical wire at time $t=0$. The velocity $v \mathrm{~cm} / \mathrm{s}$ of the bug at time t seconds, $0 \leq t \leq 8$, is given by the function whose graph is shown above.

7 After how many seconds does the bug change direction?
(A) 2
(B) 4
(C) 6
(D) 7

8 What is the total distance the bug travelled from $t=0$ to $t=8$?
(A) 13 cm
(B) 11 cm
(C) 8 cm
(D) 4 cm

9 The quadratic function $y=2 x^{2}-5 x+1$ has
(A) No real roots.
(B) Two real, distinct, rational roots.
(C) Two real, distinct, irrational roots.
(D) Two equal roots.

10 If $e^{y}=\sin x, 0 \leq x \leq \pi$, find $\frac{d y}{d x}$.
(A) $\tan x$
(B) $\cot x$
(C) $-\cot x$
(D) $-\tan x$

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section.

Answer each question in the appropriate writing booklet. Extra booklets are available.
In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a separate writing booklet.
(a) Find a and b such that $\frac{1}{2 \sqrt{3}-1}=a \sqrt{3}+b$.
(b) Solve $\frac{x-1}{2}-\frac{2 x-3}{3}<1$.
(c) Find the equation, in general form, of the normal to the curve $y=\frac{1-x}{1+x}$ at the point where $x=0$.
(d) Find a primitive function of $\frac{x^{2}}{x^{3}-2}$.
(e) Find the exact value of x for which $5^{x+2}=7$.
(f) The area of a sector of a circle is $28.86 \mathrm{~cm}^{2}$ and contains an angle at the centre of $\frac{\pi}{6}$ radians.

Find the radius of the circle, correct to one decimal place.
(g)

$A B C D$ is a rectangle.
The line $B M$ meets $A C$ at X.
Prove that the triangles $A X M$ and $C X B$ are similar.

Question 12 (15 marks) Use a separate writing booklet.
(a) Differentiate with respect to x.
(i) $\tan x$
(ii) $\frac{\ln x}{x}$
(iii) $\frac{1}{7 x+4}$
(b) Find $\int \sqrt{5 x-2} d x$.
(c) Zoe is saving for a holiday. In the first month she saves $\$ 20$ and in the second month she saves $\$ 25$. In each subsequent month her savings are $\$ 5$ more than the month before.
(i) How much will she save in the $18^{\text {th }}$ month?
(ii) How much money will she have saved in total by the end of the $18^{\text {th }}$ month?
(iii) Zoe needs $\$ 1900$ to pay for her plane ticket. How many whole months will it take for her to save at least this amount?
(d) Use Simpson's rule with 5 function values to find an approximation to
$\int_{1}^{17} \sqrt{x} d x$, giving your answer correct to 2 decimal places.

Question 13 (15 marks) Use a separate writing booklet.
(a)

The points A, B and C have coordinates $(1,0),(0,8)$ and $(7,4)$ respectively. The angle between the line $A C$ and the positive direction of the x-axis is θ.
(i) Find the gradient of the line $A C$.
(ii) Calculate the size of angle θ, correct to the nearest minute.
(iii) Find the coordinates of D, the midpoint of $A C$.
(iv) Show that $A C$ is perpendicular to $B D$.
(v) Find the area of $\triangle A B C$.
(b) Consider the curve $y=x^{3}-6 x^{2}+9 x$.
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Find the coordinates of the point(s) of inflexion.
(iii) Draw a neat sketch of the curve, showing all important features.

Question 14 (15 marks) Use a separate writing booklet.
(a) Evaluate $\int_{0}^{\frac{3 \pi}{2}} \cos 2 \theta d \theta$.
(b) Sophie planted a seed in the ground. During the first year it grew 50 cm . Each year after that the plant grew $\frac{2}{3}$ of the previous year's growth.

What is the maximum height of the plant?
(c) Solve $\sin 2 x+1=0$ for $0 \leq x \leq 2 \pi$.
(d) The figure below shows part of the curve $y=x^{2}+2$ and the line $y+2 x=17$.

(i) Show that the coordinates of A are $(3,11)$.
(ii) Find the area of the shaded region.

Question 14 (continued).

(e) The rate of decay of a radioactive substance is proportional to the mass present at time t years and is given by $\frac{d M}{d t}=-k M$.
(i) Show that $M=M_{o} e^{-k t}$ satisfies the equation $\frac{d M}{d t}=-k M$.
(ii) If it takes 24000 years for half of the substance to decay, show that $k=\frac{\ln 2}{24000}$.
(iii) How long would it take for $\frac{2}{3}$ of this substance to decay? Give your answer correct to the 2 nearest thousand years.

Question 15 (15 marks) Use a separate writing booklet.
(a) Given that $\frac{d^{2} y}{d x^{2}}=2-\frac{4}{x^{2}}$ and $\frac{d y}{d x}=3$ at the point (1,6), find y in terms of x.
(b) A particle moving in a straight line on the x-axis has displacement x metres after t seconds given by the function

$$
x=2 t^{2}-19 t+35 .
$$

(i) What is the initial position of the particle?
(ii) What is the initial velocity of the particle?
(iii) At what times was the particle at the origin?
(iv) At what time was the particle instantaneously at rest?
(v) How far did the particle travel in between its visits to the origin?
(c)

The region enclosed by the curve $y=4 \sqrt{x}$ and the x axis between $x=0$ and $x=6$ is rotated about the x axis as shown.

Find the volume of the solid of rotation.
(d) Prove $(\cot \theta+\operatorname{cosec} \theta)^{2}=\frac{1+\cos \theta}{1-\cos \theta}$.

Question 16 (15 marks) Use a separate writing booklet.
(a) The current of I amperes flowing in an electrical circuit is given by $I=\frac{d Q}{d t}$, where Q is the charge on a capacitor and t is the time in seconds. For a particular electrical circuit, $Q=4 \sin \pi t$.

Calculate the current flowing in the circuit after 2 seconds.
(b)

Not to Scale

The diagram shows a square $A B C D$ of side length $x \mathrm{~cm} . P$ is a point inside the square, such that $P C=6$ $\mathrm{cm}, P B=2 \mathrm{~cm}$ and $A P=2 \sqrt{5} \mathrm{~cm}$.

Let $\angle P B C=\alpha$.
(i) Using the cosine rule in triangle $P B C$, show that $\cos \alpha=\frac{x^{2}-32}{4 x}$.
(ii) By considering triangle $P B A$, show that $\sin \alpha=\frac{x^{2}-16}{4 x}$.
(iii) Hence, or otherwise, show $x^{4}-56 x^{2}+640=0$.
(iv) Find the only solution for x, giving reasons.

Question 16 (continued).

(c) A wire of length 120 cm is bent to form the perimeter of a frame $A B C D E F$, where $A B F$ and $C D E$ are equilateral triangles of side $x \mathrm{~cm}$ and $B C=E F=y \mathrm{~cm}$.

(i) Express y in terms of x.
(ii) Show that the total area of $A B C D E F, Z \mathrm{~cm}^{2}$, is given by $Z=\left(\frac{\sqrt{3}}{2}-2\right) x^{2}+60 x$.
(iii) Find the value of x for which Z will be a maximum, leaving your answer in the form $a+b \sqrt{3}$, 3 where a and b are constants.

2013 Mathematics Trial Solutions.

1. $3.50793 \times 10^{-6}=3.51 \times 10^{-6}$

2

$$
\begin{gathered}
|2 x+1| \leqslant 5 \\
-5 \leqslant 2 x+1 \leqslant 5 \\
-6 \leqslant 2 x \leqslant 4 \\
-3 \leqslant x \leqslant 2
\end{gathered}
$$

3. $(y-3)=8(x+2)^{2}$

$$
(-2,3)
$$

4. $y=\sin 2 x$
5. $\quad \frac{1}{2} \int e^{t / 2} d t$

$$
=e^{t / 2}+c
$$

\bigcirc

$$
\begin{array}{r}
6 \quad \int_{a}^{b} f(x) d x=a+2 b \\
\quad \int_{a}^{b}(f(x)+5) d x \\
=[5 x]_{a}^{b}+a+2 b \\
=5 b-5 a+a+2 b \\
=7 b-4 a .
\end{array}
$$

$7 . \quad 6 \mathrm{sec}$
$8^{2} \quad 13 \mathrm{~cm}$.

$$
\text { 9 } \quad \begin{aligned}
y & =2 x^{2}-5 x+1 \\
\Delta & =(-5)^{2}-4 \times 2 \times 1
\end{aligned}
$$

$$
=17 \quad \therefore \text { Two, real, distinct irrational }
$$

10. $\begin{array}{rl}e^{y} & =\sin x \\ y & =\ln (\sin x) \\ d x & d y \\ \sin x & \cos x \\ \sin x\end{array}$.

Quention II
a)

$$
\begin{aligned}
\frac{1}{2 \sqrt{3}-1} & =a \sqrt{3}+b \\
\frac{1}{2 \sqrt{3}-1} & =\frac{1}{2 \sqrt{3}-1} \times \frac{2 \sqrt{3}+1}{2 \sqrt{3}+1} \\
& =\frac{2 \sqrt{3}+1}{12-1} \\
& =\frac{2}{11} \sqrt{3}+\frac{1}{11} \\
a & =\frac{2}{11} \quad b=\frac{1}{11}(1)
\end{aligned}
$$

b)

$$
\begin{align*}
\frac{x-1}{2}-\frac{2 x-3}{3} & <1 \\
\frac{3(x-1)-2(2 x-3)}{6} & <1 \\
3 x-3-4 x+6 & <6 \tag{1}\\
-x+3 & <6 \\
-x & <3 \\
x & >-3 \tag{D}
\end{align*}
$$

c)

$$
\begin{align*}
y & =\frac{1-x}{1+x} \quad u=1-x \quad u^{\prime}=-1 \quad v=1+x \\
\frac{d y}{d x} & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{(1+x) \times(-1)-(1-x) \times 1}{(1+x)^{2}} \\
& =\frac{-1-x-1+x}{(1+x)^{2}} \\
& =\frac{-2}{(1+x)^{2}} \quad(1) \tag{1}
\end{align*}
$$

when $x=0$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-2}{(1+0)^{2}} \\
& =-2
\end{aligned}
$$

ie gradient of tangent is $m_{T}=-2$
\therefore gradient of nomal $m_{N}=-\frac{1}{m_{T}}$

$$
=\frac{1}{2} .(1)
$$

wron $x=0$

$$
\begin{align*}
& y=\frac{1-0}{1+0} \\
&=1 \quad \text { ie }(0,1) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-i=\frac{1}{2}(x-0) \\
& 2 y-2=x \\
& x-2 y+2=0 \tag{1}
\end{align*}
$$

d)

$$
\begin{aligned}
& \int \frac{x^{2}}{x^{3}-2} d x \\
= & \frac{1}{3} \int \frac{3 x^{2}}{x^{3}-2} d x \\
= & \frac{1}{3} \ln \left(\frac{\left.x^{3}-2\right)}{1}+C\right.
\end{aligned}
$$

e) $\quad 5^{x+2}=7$

OR $\quad 5^{x+2}=7$

$$
\begin{gathered}
(x+2) \ln 5=\ln 7 \\
x+2=\frac{\ln 7}{\ln 5} \\
x=\frac{\ln 7}{\ln 5}-2
\end{gathered}
$$

$$
x+2=\log _{5} 7
$$

$$
x=\log _{5} 7-2
$$

f)

$$
A=28.86 \quad \theta=\frac{\pi}{6}
$$

Area of sector $A=\frac{1}{2} r^{2} \theta$.

$$
\begin{aligned}
28.86 & =\frac{1}{2} \times r^{2} \times \frac{\pi}{6} \\
r^{2} & =28.86 \times \frac{12}{\pi} \\
& =110.2370798 \\
r & =\sqrt{110.23707} \\
& =10.49938473 \\
& =10.5 \mathrm{~cm} .
\end{aligned}
$$

(correct rounding required)
g) AM If CB (ophorite sides of a rectangle are parallel)
$\angle M A X=\angle B C X$ (alternate angles in parallel)
lenis are equal; $A M / / C B$)
$\angle A \times M=\angle C \times B$ (vertically oppoute angles are equal)
$\therefore \triangle A \times M / \| \Delta C \times B$ (equiangular)

Question 12.
a) (1) $\frac{d}{d x} \tan x=\sec ^{2} x$

$$
\text { (11) } \begin{align*}
& \frac{d}{d x}\left(\frac{\ln x}{x}\right) \\
= & \frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
= & \frac{x \times \ln x-\ln x \times 1}{x^{2}} \\
= & \frac{1-\ln x}{x^{2}} \quad v=x \\
= & v^{\prime}=1 \\
= &
\end{align*}
$$

(iii)

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{7 x+4}\right) \\
= & \frac{d}{d x}(7 x+4)^{-1} \\
= & -(7 x+4)^{-2} \times 7 \\
= & \frac{-7(1)}{(7 x+4)^{2}(1)}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \int \sqrt{5 x-2} d x \\
&= \int(5 x-2)^{1 / 2} d x \\
&= \frac{2}{3} \times \frac{(5 x-2)^{3 / 2}(1)}{5(1)} c \\
&=\frac{2(5 x-2)^{3 / 2}}{15}+c \\
&=\frac{2}{15} \sqrt{(5 x-2)^{3}}+c \ldots
\end{aligned}
$$

c)

$$
\begin{array}{ll}
T_{1}=\$ 20 & a=20 \\
T_{2}=\$ 25 & d=5 \tag{1}
\end{array}
$$

$T_{3}=\$ 30$ ie artizmene sequence
(1)

$$
\begin{align*}
T_{n} & =a+(n-1) d \\
T_{18} & =20+(18-1) \times 5 \\
& =\$ 105 \quad 1 \tag{1}
\end{align*}
$$

(ii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(a+c) \quad l=105 \\
S_{18} & =\frac{18}{2}(20+105) \\
& =\$ 1 / 25
\end{aligned}
$$

(iI)

$$
\begin{align*}
& \operatorname{Sn} \geqslant 1900 \\
& \sin _{n}=\frac{n}{2}(2 a+(n-1) d \\
& \frac{n}{2}(2 \times 20+(n-1) \times 5) \geqslant 1900 \tag{1}\\
& n(40+5 n-5) \geqslant 3800 \\
& 35 n+5 n^{2} \geqslant 3800 \\
& n^{2}+7 n \geqslant 760 \\
& n^{2}+7 n-760 \geqslant 0 .
\end{align*}
$$

Solve $n^{2}+7 n-760=0$.

$$
\begin{aligned}
n & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-7 \pm \sqrt{7^{2}-4 \times 1 \times 760}}{2 \times 1} \\
& =\frac{-7 \pm \sqrt{3089}}{2}
\end{aligned}
$$

$$
\begin{equation*}
n=-31.289 \ldots \quad \text { or } n=24.289 \tag{1}
\end{equation*}
$$

$\psi^{n}, n=-31.287 \cdots$ or $n=24.289$. n ince n a positite whou number, $n \geqslant 25$
$\therefore 25$ whole mortho. (1)
d) $\quad-P(x)=\sqrt{x} \int_{1}^{17} \sqrt{x} d x$

C

x	1	5	9	13	17	$h=\frac{17-1}{4}$
\sqrt{x}	1	$\sqrt{5}$	3	$\sqrt{13}$	$\sqrt{17}$	(1)
	$=4$					

$$
\begin{aligned}
\int_{1}^{17} \sqrt{x} d x & \doteq \frac{4}{3}((1+\sqrt{17})+2 \times 3+4 x(\sqrt{5}+\sqrt{13}))(1) \\
& =45.986 \ldots \\
& \div 45.99(1)
\end{aligned}
$$

Quection 13
a)
i)

$$
\begin{aligned}
m_{A C} & =\begin{array}{ll}
y_{2}-y_{1} & A(1,0) \\
x_{2}-x_{1} & \left(x_{1}, y_{1}\right)
\end{array} \quad\left(x_{1}, y_{2}\right) \\
& =\frac{4-0}{7-1} \\
& =\frac{4}{6} \\
& =2 / 3 .(1)
\end{aligned}
$$

(i)

$$
\begin{aligned}
m & =\tan \theta \\
\tan \theta & =2 / 3 \\
\theta & =\tan ^{-1}(2 / 3) \\
& =33^{\circ} 41^{\prime} 24.24^{\prime \prime} \\
& =33^{\circ} 41^{\prime}
\end{aligned}
$$

(iil) Midpoint D.

$$
\begin{aligned}
D & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{1+7}{2}, \frac{0+4}{2}\right) \\
& =(4,2) \text { (1) }
\end{aligned}
$$

(iv) gradient BO.

$$
m_{B D}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{2-8}{4-0}
$$

$$
\begin{align*}
B(0,8) & D(4,2) \\
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right) \tag{1}\\
m_{A C} \times m_{B D}= & \frac{2}{3} \times-\frac{3}{2}(1) \\
& =-1
\end{align*}
$$

$$
=\frac{-6}{4}
$$

pemperdiculer
to BD

$$
=-3 / 2
$$

(v)

$$
A=\frac{1}{2} b h
$$

base is length $A C$ height is lengh $B D$.

$$
\begin{aligned}
A C & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(7-1)^{2}+(4-0)^{2}} \\
& =\sqrt{6^{2}+4^{2}} \\
& =\sqrt{52}
\end{aligned}
$$

$$
\begin{align*}
B D & =\sqrt{(4-0)^{2}+(2-8)^{2}} \\
& =\sqrt{4^{2}+(-6)^{2}} \\
& =\sqrt{52} \tag{1}\\
A & =\frac{1}{2} b h \\
& =\frac{1}{2} \times \sqrt{52} \times \sqrt{52} \\
& =26 \text { uni5 }^{2}
\end{align*}
$$

b) $y=x^{3}-6 x^{2}+9 x$.
(1) $\frac{d y}{d x}=3 x^{2}-12 x+9$

Stationory points when $\frac{d y}{d x}=0$.

$$
\begin{align*}
& 3 x^{2}-12 x+9=0 \tag{1}\\
& x^{2}-4 x+3=0 \\
& (x-3)(x-1)=0 \\
& x=3 \text { or } x=1 \tag{1}
\end{align*}
$$

when $x=3, y=3^{3}-6 \times 3^{2}+9 \times 3$

$$
\left.\begin{array}{l}
=27-54+27 \\
=0 \tag{1}\\
\frac{1-6}{4}+9 \\
i i \\
i+0) \\
i, 4)
\end{array}\right\}
$$

when $x=1, \begin{aligned} y & =1-6+9 \\ & =4\end{aligned}$

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=6 x-12 \\
& \text { At }(3,0) \quad \frac{d^{2} y}{d x}=6 \times 3-12 \\
&
\end{aligned}
$$

ie concore up
$(3,0)$ is a minimuem tuening point.)
At $(1,4) \quad \frac{d^{2} y}{d x^{2}}=\frac{6 \times 1-12}{}=-6$
ie concave doson.
$\therefore(1,4)$ is a mascinum tuming, point
(ii) For points of inplescion

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =0 \\
6 x-12 & =0 \\
x & =2 .
\end{aligned}
$$

when $x=2, y=2^{3}-6 \times 2^{2}+9 \times 2$

$$
=8-24+18
$$

$$
=2
$$

$$
\begin{equation*}
\text { ie }(2,2) \tag{1}
\end{equation*}
$$

Check concarety

x	1.5	2	2.5
$d^{2} y$	-3	0	3
$d x^{2}$			

\therefore Since concarity chainges at $(2,2)$ (1) it is a point of mplesuion
(iii) x-interests when $y=0$

$$
\begin{aligned}
0 & =x^{3}-6 x^{2}+9 x \\
& =x\left(x^{2}-6 x+9\right) \\
& =x(x-3)^{2} \\
x & =0 \text { or } x=3
\end{aligned}
$$

ie x intercepts ant 0 or 3 .
y-intercepts when $x=2$
ie at 0 .

Quevion 14.
a) $\int_{0}^{\frac{3 \pi}{2}} \cos 2 \theta d \theta$

$$
\begin{align*}
& =\left[\frac{1}{2} \sin 2 \theta\right]_{0}^{-3 \pi / 2} \tag{1}\\
& =\frac{1}{2}\left(\sin 2 \times \frac{3 i \pi}{2}-\sin 2 \times 0\right) \\
& =\frac{1}{2}(\sin 3 \pi-\sin 0) \\
& =0 \text { (1) }
\end{align*}
$$

i.) $a=50 \quad r=\frac{2}{3}$
this is geomemie uruis witk $|r| s 1$

$$
\begin{align*}
S & =\frac{a}{1-r} \\
& =\frac{50}{1-2 / 3} \tag{1}\\
& =\frac{50}{1 / 3} \\
& =150 \tag{1}
\end{align*}
$$

\therefore masumum height of plant is 150 cm .
c) $\quad \sin 2 x+1=0$

$$
\sin 2 x=-1
$$

$$
0 \leq x \leq 2 \pi
$$

Let $\theta=2 x$

$$
0 \leq \theta \leq 4 \pi
$$

$$
\begin{gather*}
\sin \theta=-1 \\
\therefore \theta=\frac{3 \pi}{2}, \frac{7 \pi}{2} \\
\therefore x=\frac{3 \pi}{4} \text { or } \frac{7 \pi}{4} \tag{2}
\end{gather*}
$$

d) (1) Sorve simultaneourly

$$
\begin{align*}
& y=2 x=17 \tag{1}\\
& y=x^{2}+2 \tag{2}
\end{align*}
$$

Sabritute (2) int (1)

$$
\begin{align*}
& x^{2}+2+2 x=17 \\
& x^{2}+2 x-15=0 . \\
& (x-3)(x-5)=0 \\
& x=3 \text { or } x=-5 \tag{1}
\end{align*}
$$

Sulntilute $x=3$, wo (2)

$$
\begin{aligned}
y & =3^{2}+2 \\
& =11
\end{aligned}
$$

since A is in fiest quadian, $(3,11)$ is the point we require
(i1) Find where $y+2 x=17$ crosses x-uous.

$$
\begin{aligned}
& 0+2 x=17 \\
& x=8.5 \\
& \text { Area }=\int_{0}^{3}\left(x^{2}+2\right) d x+\int_{3}^{8.5}(-2 x+17) d x \text { (1) } \\
& =\left[\frac{x^{3}}{3}+2 x\right]_{0}^{3}+\left[-\frac{2 x^{2}}{2}+17 x\right]_{3}^{8} \text { (1) } \\
& =\left(\frac{3^{3}}{3}+2 \times 3\right)-(0+0)+\left(-8.5^{2}+17 \times 8.5\right) \\
& -\left(-3^{2}+17 \times 3\right) \\
& =(9+6)+72.25-42 \\
& =45.25 \text { unis }^{2} \text { (1) }
\end{aligned}
$$

e)

$$
\frac{d M}{d t}=-k M
$$

(1)

$$
\begin{align*}
M & =m_{0} e^{-k t} \\
\frac{d M}{d t} & =m_{0} x-k e^{-k t} \\
& =-k m_{0} e^{-k t} \tag{1}\\
& =-k m
\end{align*}
$$

(ii) When $t=24000 \quad m=\frac{m_{0}}{2}$.

$$
\text { ie } \frac{m_{0}}{2}=m_{0} e^{-k \times 24000}
$$

$$
\begin{aligned}
\frac{1}{2} & =e^{-k \times 24000} \\
2 & =e^{k \times 24000} \\
k \times 24000 & =\ln 2 \\
k & =\frac{\ln 2}{24000}
\end{aligned}
$$

(1) $O R$

$$
\ln \frac{1}{2}=-k \times 24000
$$

$$
\begin{aligned}
\ln 2-1 & =-k \times 24000 \\
-\ln 2 & =-k \times 24000
\end{aligned}
$$

$$
\begin{aligned}
-\ln 2 & =-k \times 24000 \\
k & =\ln 2
\end{aligned}
$$

$$
k=\frac{\ln 2}{24000}
$$

(III) $\quad m=\frac{m_{0}}{3}$, find $t=$?

$$
\begin{align*}
\frac{1}{3} m_{0} & =m_{0} e^{-k t} \\
1 / 3 & =e^{-k t}(1) \tag{1}\\
3 & =e^{k t} \quad k=\frac{\ln 2}{24000} \\
t & =\frac{k t}{\ln (3)} \ln 2 / 24000 \\
& =38039 \cdot 10002
\end{align*}
$$

ie 38000 years (neorest thersand)

Quection 15 .
a)

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=2-\frac{4}{x^{2}} \\
& \frac{d y}{d x}=3 \text { at }(1,6) \\
& \frac{d y}{d x^{2}}=2-4 x^{-2} \\
& \frac{d y}{d x}=2 x-\frac{4 x^{-1}}{-1}+c \\
& \\
& =2 x+\frac{4}{x}+c
\end{aligned}
$$

A+ $(1,6) \quad \frac{d y}{d x}=3$
万

$$
\begin{aligned}
\therefore 3 & =2 \times 1+\frac{4}{1}+c \\
c & =-3 \\
\therefore \frac{d y}{d x} & =2 x+\frac{4}{x}-3 \\
& =2 x+4 x-1-3 \\
y & =x^{2}+4 \ln x-3 x+c
\end{aligned}
$$

$(1,6)$

$$
\begin{align*}
& 6=1^{2}+4 \times \ln \mid-3 \times 1+c . \tag{1}\\
& 6=1+0-3+c \\
& 6=-2+c \\
& c=8
\end{align*}
$$

$\therefore \quad \therefore \quad \therefore \quad x^{2}+4 \ln x-3 x+8 \cdot(1)$
6) $x=2 t^{2}-19 t+35$
(i) when $t=0, x=35$
\therefore initial portion is 35 m . (1)
(iI)

$$
\frac{d x}{d t}=4 t-19
$$

when $t=0, \frac{d x}{d t}=-19$
\therefore initial reloaty is $-19 \mathrm{~m} / \mathrm{s}$ (1)
(iii) $\quad x=0$

$$
\begin{aligned}
& 2 t^{2}-19 t+35=0 \\
& (2 t-5)(t-7)=0(1) \\
& t=2.5 \text { or } t=7
\end{aligned}
$$

ie particle is at origin
when $t=2.5$ seconds and

$$
t=7 \text { seconds. (1) }
$$

(iv) intantaneourly out rest when

$$
\begin{aligned}
\frac{d x}{d t} & =0 \\
4 t-19 & =0 \\
4 t & =19 \\
t & =19 / 4 \\
& =4^{3 / 4} \text { seconds (1) }
\end{aligned}
$$

(v) ft $t=43 / 4$

$$
\begin{aligned}
x & =2 \times(19 / 4)^{2}-19 \times(19 / 4)+35 \\
& =-10.125
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { deitance travelled } & =2 \times 10.125 \\
& =20.25 \mathrm{~m} .(1)
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=4 \sqrt{x} \\
& V=\pi \int_{0}^{6} y^{2} d x \\
&=\pi \int_{0}^{6}(4 \sqrt{x})^{2} d x(1) \\
&=\pi \int_{0}^{6} 16 x d x \\
&=16 \pi\left[\frac{x^{2}}{2}\right]_{0}^{6} \\
&=8 \pi\left(6^{2}-0^{2}\right) \\
&=8 \pi \times 36 \\
&=288 \pi
\end{aligned}
$$

d) $(\cot \theta+\operatorname{cosec} \theta)^{2}=\frac{1+\cos \theta}{1-\cos \theta}$.

$$
\begin{align*}
L H S & =(\cot \theta+\operatorname{cosec} \theta)^{2} \\
& =\cot ^{2} \theta+2 \cot \theta \operatorname{cosec} \theta+\operatorname{cosec}^{2} \theta \\
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+2 \frac{\cos \theta}{\sin \theta} \times \frac{1}{\sin \theta}+\frac{1}{\sin ^{2} \theta} \tag{1}\\
& =\frac{\cos ^{2} \theta+2 \cos \theta+1}{\sin ^{2} \theta} \\
& =\frac{(\cos \theta+1)^{2}}{1-\cos ^{2} \theta}(1) \tag{1}\\
& =\frac{(1+\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)} \tag{1}\\
& =\frac{1+\cos \theta}{1-\cos \theta} \\
& =\text { RHS. }
\end{align*}
$$

Question 16
a)

$$
\begin{align*}
Q & =4 \sin \pi t \\
I=\frac{d Q}{d t} & =4 \times \pi \cos \pi t \\
& =4 \pi \cos \pi t \tag{1}
\end{align*}
$$

When $t=2$

$$
\begin{aligned}
I & =4 \pi \cos (\pi \times 2) \\
& =4 \pi \times 1 \\
& =4 \pi \text { amperes. }
\end{aligned}
$$

b) (1) $\ln \triangle P B C$

$$
\begin{align*}
\cos \alpha & =\frac{x^{2}+2^{2}-6^{2}}{2 \times 2 x} \tag{1}\\
& =\frac{x^{2}+4-36}{4 x} \\
& =\frac{x^{2}-32}{4 x}
\end{align*}
$$

(II)

$$
\begin{align*}
\ln \triangle P B A & \angle A B P=90-\alpha \\
\cos (90-\alpha) & =\frac{x^{2}+2^{2}-(2 \sqrt{5})^{2}}{2 \times 2 x} \\
& =\frac{x^{2}+4-4 \times 5}{4 x} \\
& =\frac{x^{2}-16}{4 x} \text { (1) } \tag{1}
\end{align*}
$$

Also, $\cos (90-\alpha)=\sin \alpha(D)$

$$
\therefore \quad \sin x=\frac{x^{2}-16}{4 x}
$$

(III)

0

$$
\begin{align*}
& \quad\left(\frac{x^{2}-16}{4 x}\right)^{2}+\left(\frac{x^{2}-32}{4 x}\right)^{2}=1 \tag{1}\\
& \left(\frac{\left.x^{4}-32 x^{2}+256\right)+\left(x^{4}-64 x^{2}+1024\right)}{16 x^{2}}=1\right. \\
& \div 2 \quad 2 x^{4}-96 x^{2}+1280=16 x^{2} \tag{1}\\
& 2 x^{4}-112 x^{2}+1280=0 \\
& x^{4}-56 x^{2}+640=0 .
\end{align*}
$$

(iv) Let $u=x^{2}$

$$
\begin{align*}
& u^{2}-56 u+640=0 \\
&(u-40)(u-16)=0 \\
& u=40 \text { or } u=16 \\
& x^{2}=40 \text { or } x^{2}=16 \\
& x= \pm \sqrt{40} x= \pm 4 \tag{1}\\
&= \pm 2 \sqrt{10}
\end{align*} r l
$$

x must be positive since it is a length.
The solution must, be $2 \sqrt{10} \mathrm{~cm}$ since
.for any triangle. with sidles. $a ; b$ and c $c<a+b$.

$$
\begin{aligned}
\text { If } x & =4 \\
6 & <2+4 \quad \text { (false) } \\
\text { If } x & =2 \sqrt{10} \\
6 & <2+2 \sqrt{10} \quad \text { (true) } \\
2 & <6+2 \sqrt{10} \quad \text { (true) } \\
2 \sqrt{10} & <6+2 \quad \text { (true) }
\end{aligned}
$$

c)

$$
\text { (1) } \begin{align*}
2 y+4 x & =120 \\
y+2 x & =60 \\
y & =60-2 x \tag{1}
\end{align*}
$$

(ii)

Using Pymagoras'

$$
\begin{align*}
& x^{2}=h^{2}+(x / 2)^{2} \\
& x^{2}=h^{2}+x^{2} / 4 \\
& h^{2}=x^{2}-x^{2 / 4} \\
& h^{2}=\frac{3 x^{2}}{4} \\
& h=\frac{\sqrt{3}}{2} x \tag{1}
\end{align*}
$$

$$
\begin{align*}
\therefore z & =x y+2 x+\frac{1}{2} \times \frac{\sqrt{3}}{2} x \\
& =x(60-2 x)+\frac{\sqrt{3}}{2} x^{2}(1) \\
& =60 x-2 x^{2}+\frac{\sqrt{3}}{2} x^{2} \\
& =\left(\frac{\sqrt{3}}{2}-2\right) x^{2}+60 x \tag{1}
\end{align*}
$$

(iII) $\left.\frac{d z}{d x}=\left(\frac{\sqrt{3}}{2}-2\right) \times 2 x+60\right)$.

For maximum $\left.\frac{d z}{d x}=0\right\}$

$$
\begin{gathered}
2\left(\frac{\sqrt{3}}{2}-2\right) x+60=0 . \\
2\left(\frac{\sqrt{3}}{2}-2\right) x=-60 . \\
\left(2-\frac{\sqrt{3}}{2}\right) x=30 \\
\left(\frac{4-\sqrt{3}}{2}\right) x=30
\end{gathered}
$$

$$
\begin{align*}
x & =\frac{30 \times 2}{(4-\sqrt{3})} \times \frac{4+\sqrt{3}}{4+\sqrt{3}} \\
& =\frac{240+60 \sqrt{3}}{16-3} \\
& =\frac{340+60 \sqrt{3}}{13} \tag{1}\\
& =\frac{240}{13}+\frac{60 \sqrt{3}}{13} \\
\frac{d^{2} 2}{d x^{2}} & =2\left(\frac{\sqrt{3}}{2}-2\right) \\
& =-2.2679 \ldots
\end{align*}
$$

Since $\frac{d^{2} z}{d x^{2}}<0$, concare down
so maximum z for x value girien abore.

OR Using quadraticmethed.

$$
z=\left(\frac{\sqrt{3}}{2}-2\right) x^{2}+60 x .
$$

$A x$ of symmeny $\begin{aligned} x & =-b / 2 a \\ & =-60\end{aligned}$

$$
\begin{align*}
& =\frac{-60}{2 \times\left(\frac{\sqrt{3}}{2}-2\right)} \\
& =\frac{60}{4-\sqrt{3}} \times \frac{4+\sqrt{3}}{4+\sqrt{3}} \\
& =\frac{240+60 \sqrt{3}}{16-3} \tag{1}\\
x & =\frac{240}{13}-\frac{60}{13} \sqrt{3} .
\end{align*}
$$

Z is a mascinum here since the (1) coefficient of x^{2} is $\frac{\sqrt{3}}{2}-2=-1.1339 \ldots<0$:(parabila is concare down.)

