\qquad

Mrs Collett
Ms Davis
Mr Dudley
Mrs Israel
Mrs Kerr
Ms Lau
Mrs Williams

Teacher: \qquad

Pymble Ladies' Gollege

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION
 2014

Mathematics

General Instructions

- Reading time - 5 minutes.
- Working time -3 hours.
- Use pencil for Questions 1-10.
- Write using black or blue pen for Questions 11-16. Black pen is preferred.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.

Total Marks - 100
Section I
Pages 1-4

10 marks

- Attempt Questions 1-10
- Allow about 15 mins for this section

Section II

Pages 5-15

90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Mark	$/ 100$
Highest Mark	$/ 100$
Rank	

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section.
Use the multiple choice answer sheet for Questions 1-10.

1 What is the period of $y=5 \sin 2 x$?
(A) π
(B) 2π
(C) $\frac{\pi}{2}$
(D) 5

2 What is the value of x if $8(x-3)^{3}-1=0$?
(A) $3-\frac{1}{2}$
(B) $3+\frac{1}{2}$
(C) $3 \pm \frac{1}{2}$
(D) 5

3 What are the values of m that will give the equation $m x^{2}+6 x-3=0$ two real and different roots?
(A) $m \leq-3$
(B) $m \geq-3$
(C) $\quad m>-3$
(D) $m<-3$

4 What is the gradient of the normal to the curve $y=2 x^{2}-5 x+1$ at the point $(2,-1)$?
(A) $\frac{1}{3}$
(B) $-\frac{1}{3}$
(C) 3
(D) -3

5 What is the derivative of $f(x)=\ln (\cos x)$?
(A) $f^{\prime}(x)=-\tan x$
(B) $\quad f^{\prime}(x)=\tan x$
(C) $\quad f^{\prime}(x)=\frac{1}{\cos x}$
(D) $\quad f^{\prime}(x)=-\frac{1}{\sin x}$

6 What are the solutions of $2 \sin x+\sqrt{3}=0$ in the domain $0 \leq x \leq 2 \pi$?
(A) $\frac{\pi}{3}, \frac{2 \pi}{3}$
(B) $\frac{2 \pi}{3}, \frac{5 \pi}{3}$
(C) $\frac{\pi}{3}, \frac{4 \pi}{3}$
(D) $\frac{4 \pi}{3}, \frac{5 \pi}{3}$

Multiple Choice (continued).

7 Given $\log _{10} y=2-\log _{10} x$, which expression is equivalent to y ?
(A) $\quad y=\log _{10}(2)-x$
(B) $y=2-x$
(C) $y=\frac{100}{x}$
(D) $y=100-x$

8 Which expression using integral notation is equivalent to the area of the shaded regions?
(A) $\int_{0}^{5}\{f(x)-g(x)\} d x$
(B) $\quad \int_{0}^{2}\{g(x)-f(x)\} d x+\int_{2}^{5}\{f(x)-g(x)\} d x$
(C) $\quad \int_{0}^{2}\{f(x)-g(x)\} d x+\int_{2}^{5}\{f(x)-g(x)\} d x$
(D) $\quad \int_{0}^{2}\{f(x)-g(x)\} d x+\int_{2}^{5}\{g(x)-f(x)\} d x$

$9 P Q R$ is a triangle with side lengths $x, 10$ and y, as shown below. In this triangle, angle $R P Q=37^{\circ}$ and angle $Q R P=42^{\circ}$.

Which one of the following expressions is correct for triangle $P Q R$?
(A) $\quad x=\frac{10}{\sin 37^{\circ}}$
(B) $x=10 \times \frac{\sin 42^{\circ}}{\sin 37^{\circ}}$
(C) $y=10 \times \frac{\sin 37^{\circ}}{\sin 101^{\circ}}$
(D) $10^{2}=x^{2}+y^{2}-2 x y \cos 42^{\circ}$

10 At $x=-a$, which of the following correctly describes the graph of $y=f(x)$?
(A) $\quad f(-a)=0, f^{\prime}(-a)>0$
(B) $\quad f^{\prime}(-a)=0, f^{\prime \prime}(-a)=0$
(C) $f(0)=-a, f^{\prime}(-a)>0$
(D) $\quad f^{\prime}(-a)>0, f^{\prime \prime}(-a)=0$

Section II

90 marks
Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section.
Answer each question in the appropriate writing booklet. Extra booklets are available.
In Questions $11-16$, your responses should include relevant mathematical reasoning and/or calculations.
(a) Solve the equation $|3+5 x|=2$.
(b) Show that $3 \sqrt{5}-2 \sqrt{2}$ is a square root of $53-12 \sqrt{10}$.
(c) Differentiate $(5-\cos 2 x)^{4}$.
(d) Find a primitive of $\sec ^{2} x-3$.
(e) α and β are the roots of $x^{2}-4 x+1=0$.
(i) Find $\alpha \beta$.
(ii) Hence, prove $\alpha+\frac{1}{\alpha}=4$.
(f) Find the coordinates of the focus of the parabola $x^{2}=-32(y-2)$.
(g) A circle is divided into n sectors in such a way that the angles of the sectors are in arithmetic progression. The smallest two angles are 3° and 5°. Find the value of n.

End of Question 11

(a) Given that $y=\frac{x^{2}}{\tan 4 x}$, find $\frac{d y}{d x}$.
(b) Find $\int \sqrt{7 x-2} d x$.
(c) In a geometric series, all the terms are positive, the second term is 24 and the fourth term is $13 \frac{1}{2}$. Find
(i) the first term,
(ii) the sum to infinity of the series.
(d)

The diagram above shows a triangle $A B C$ in which A has coordinates $(1,3), B$ has coordinates $(5,11)$ and angle $A B C$ is 90°. The point $X(4,4)$ lies on $A C$. Find
(i) the gradient of $A B$.
(ii) the equation of $B C$.
(iii) the coordinates of C.
(e) It is given that $f(x)=\frac{1}{x^{3}}-x^{3}$. Show that $f(x)$ is a decreasing function.
(a) A function is given by $f(x)=x^{3}-3 x^{2}-9 x+11$.
(i) Find the coordinates of the stationary points of $f(x)$ and determine their nature.
(ii) Hence, sketch the graph $y=f(x)$ showing all stationary points and the y-intercept.
(b) In the diagram, M is the midpoint of $A B . \angle A C B=\angle M N A=90^{\circ}$. Copy the diagram into your booklet.

Prove that
(i) $M N=\frac{1}{2} B C$.
(ii) $\triangle A M N$ and $\triangle C M N$ are congruent.
(iii) $C M=\frac{1}{2} A B$

Question 13 continues on page 10.
(c)

In the diagram, D lies on the side $A B$ of the triangle $A B C$ and $C D$ is an arc of a circle with
centre A and radius 2 cm . The line $B C$ is of length $2 \sqrt{3} \mathrm{~cm}$ and is perpendicular to $A C$.
Find the area of the shaded region $B D C$, giving your answer in terms of π and $\sqrt{3}$.
(d) A curve is such that $\frac{d^{2} y}{d x^{2}}=4 e^{-2 x}$. Given that $\frac{d y}{d x}=3$ when $x=0$ and that the curve passes through the point $\left(2, e^{-4}\right)$, find the equation of the curve.

End of Question 13

(a) Prove that $\frac{\sin A}{1+\cos A}+\frac{1+\cos A}{\sin A}=2 \operatorname{cosec} A$
(b) The curves $y=\sqrt{2 x-1}$ and $2 x-3 y-1=0$ are drawn below.

They intersect at $x=\frac{1}{2}$ and $x=a$ as indicated on the diagram.

(i) Show that $a=5$. 2
(ii) Find, showing all necessary working, the area of the shaded region.
(c) The temperature $T^{\circ} \mathrm{C}$ of an object in a room, after t minutes, satisfies the differential equation

$$
\frac{d T}{d t}=k(T-22), \text { where } k \text { is a constant. }
$$

(i) Show that $T=A e^{k t}+22$, satisfies the differential equation.
(ii) When $t=0, T=100$, and when $t=15, T=70$.
(α) Use this information to find the values of A and k.
(β) Hence find the value of t when $T=40$, correct to 1 decimal place.

End of Question 14

(a) Evaluate $\int_{2}^{3} \frac{x^{2}}{x^{3}-2} d x$.
(b)

The above diagram shows the curve $y=x-2 \ln x$ and its minimum point M.
(i) Find the x coordinate of M.
(ii) Use 2 applications of the trapezoidal rule to estimate the value of

$$
\int_{2}^{4}(x-2 \ln x) d x
$$

Give your answer to correct to 2 decimal places.
(iii) State, with a reason, whether the trapezoidal rule gives an under-estimate or an over-estimate of the true value of the integral in part (ii).
(c)

The above diagram shows part of the curve $y=\frac{9}{2 x+3}$, crossing the y-axis at the point $B(0,3)$. The point A on the curve has coordinates $(3,1)$.

The tangent to the curve at A crosses the y-axis at C.
(i) Find the equation of the tangent to the curve at A.
(ii) Determine, showing all necessary working, whether C is nearer to the point B or to the point O.
(iii) Find the exact volume obtained when the shaded region is rotated through 360° about the x-axis. Show all necessary working.
(a) Solve $4 e^{2 x}-e^{x}=0$.
(b) A particle moves in a straight line and at time t it has velocity v, where

$$
v=3 t^{2}-2 \sin 3 t+6
$$

(i) Find an expression for the acceleration of the particle at time t.
(ii) When $t=\frac{\pi}{3}$, show that the acceleration of the particle is $2 \pi+6$.
(iii) When $t=0$, the particle is at the origin.

Find an expression for the displacement of the particle from the origin at time t.
(c) (i) Find $\frac{d}{d x}\left(e^{\cos 2 x}\right)$.
(ii) Hence, find $\int x+\sin 2 x e^{\cos 2 x} d x$.
(d) A machinist has a spherical ball of brass with diameter 10 cm . The ball is placed in a lathe and machined into a cylinder.

(i) If the cylinder has radius $x \mathrm{~cm}$, show that the cylinder's volume is given by

$$
V(x)=\pi x^{2} \sqrt{100-4 x^{2}} \mathrm{~cm}^{3}
$$

(ii) Hence, find the dimensions of the cylinder of largest volume which can be made.

End of paper

Mathematics Trial HSC 2017 solutions
i. A
2. B
3. C
4. B
5. A
6. D
7. C
8. D
$9 \quad B$
10. 13

Question 11
a)

$$
\begin{aligned}
& |3+5 x|=2 \\
& 3+5 x=2 \text { or }-(3+5 x)=2 \\
& 5 x=-1 \\
& 3+5 x=-2 \\
& x=-\frac{1}{5} \\
& \text { (I mark) } \\
& 5 x=-5 \\
& x=-1 \quad \text { (1mank) } \\
& \therefore \quad x=-1 \text { or }-\frac{1}{5}
\end{aligned}
$$

b)

$$
\begin{aligned}
(3 \sqrt{5}-2 \sqrt{2})^{2} & =45-2(2 \sqrt{2})(3 \sqrt{5})+8 \quad(1 \text { mark) } \\
& =53-12 \sqrt{10} \\
\therefore \sqrt{53-12 \sqrt{10}} & = \pm(3 \sqrt{5}-2 \sqrt{2})
\end{aligned}
$$

$\therefore 3 \sqrt{5}-2 \sqrt{2}$ is a square root of $53-12 \sqrt{10}$ (1.mank)
c)

$$
\begin{array}{ll}
& \frac{d}{d x}(5-\cos 2 x)^{+} \\
=4(5-\cos 2 x)^{3} \cdot 2 \sin 2 x & (1 \text { mark }) \\
=8 \sin 2 x(5-\cos 2 x)^{3} & (1 \text { man k })
\end{array}
$$

d) $\quad \int\left(\sec ^{2} x-3\right) d x$

$$
=\frac{\tan x-3 x}{L(1 \text { man } k)}+c_{D(\text { man })}
$$

e) $x^{2}-4 x+1=0$

1) $\quad \alpha \beta=\frac{c}{a}$

$$
\alpha \beta=1 \quad(1 \text { mark) }
$$

ii) From (1) $\beta=\frac{1}{\alpha}$ and $\alpha+\beta=+$

Sub $\beta=\frac{1}{\alpha}$ into $\alpha+\beta=4$
$\therefore \alpha+\frac{1}{\alpha}=4$ (1man)

Question...11. (ont'd)
($\epsilon)$

$$
\begin{gathered}
x^{2}=-32(y-2) \\
x^{2}=-4 a(y-2) \\
a=8 \\
\text { Vertex }(0, z)
\end{gathered}
$$

(i mank)
\therefore Focus $(0,-6) \quad(1 \operatorname{man} h)$
g)

$$
\begin{gathered}
3^{2}+5^{\circ}+7^{\circ}+\cdots=360^{\circ} \text { (AP) } \\
a=3=2=2 n=360^{\circ} \\
5 n=\frac{n}{2}(2 a+(n-1) d) \\
360=\frac{n}{2}(6+(n-1) 2) \\
720=n(6+2 n-2) \\
720=n(4+2 n) \\
2 \quad 2 n^{2}+4 n-720=0 \\
n^{2}+2 n-360=0 \\
(n+2 c)(n-18)=0 \\
n=18 \text { or }-20
\end{gathered}
$$

(l mank)
(Imark)
but $n>0$

$$
\therefore n=18
$$

(1 ma-k)

Question 12

$$
\begin{aligned}
& \text { a) } y=\frac{x^{2}}{\tan 4 x} \\
& u=x^{2} \\
& \frac{d x}{d x}=2 x \\
& \frac{d y}{d x}=v \frac{\frac{d x}{d x}-U \frac{d v}{d x}}{v^{2}} \\
& \therefore \frac{d y}{d x}=\frac{v^{2}+\frac{1 \text { (ank) }}{\frac{d v}{d x \cdot 2 x-x^{2}+\sec ^{2} 4 x}}}{\tan ^{2}+x}=4 \sec ^{2} 4 x \\
& \text { or } \frac{d y}{d x}=\frac{2 x \tan 4 x-4 x^{2} \sec ^{2} 4 x}{\tan ^{2} 4 x}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \int \sqrt{7 x-2} d x \\
&= \int(7 x-2)^{\frac{1}{2}} d x \\
&= \frac{(7 x-2)^{\frac{3}{2}}}{\frac{3}{2} \times 7}+c \\
&= 2 \frac{\sqrt{(7 x-2)^{3}}}{21}+C \\
&(1 \text { mark })
\end{aligned}
$$

c.).)

$$
\begin{array}{rlrl}
T_{2}=24 \\
T_{4}=13 \frac{1}{2} \quad G B \therefore T_{n} & =a r^{-1} \\
a r & =24 \quad(1) \\
a r^{3} & =\frac{27}{2} \quad(2) \tag{2}\\
r^{2} & =\frac{27}{48} \\
(2) \div(1) & =\sqrt{\frac{27}{4 s}} \\
r & = \pm \frac{3}{4}(1 \text { mar })
\end{array}
$$

since $r>0$ then $r=\frac{3}{6}$ and $a=\frac{24}{34}=32(1)$

Q12 (cont'd)
c (i)

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{32}{1-\frac{3}{t}} \\
& =\frac{32}{\frac{1}{f}} \quad \text { NB } \mid r 1<1 \\
& =128 \quad(1 \text { mark })
\end{aligned}
$$

$d:$

$$
\begin{aligned}
M_{A B} & =\frac{11-3}{5-1} \\
& =2
\end{aligned}
$$

ii) $M_{B C}=-\frac{1}{2}$

$$
\begin{array}{r}
\therefore B C \text { is } y-11=-\frac{1}{2}(x-5)(1 \text { m-k) } \\
2 y-22=-x+5 \\
x+2 y-27=0 \tag{1}
\end{array}
$$

(1 mank)
11)

$$
\begin{align*}
& M_{A C}= \frac{4-3}{4-1} \\
&= \frac{1}{3} \\
& \therefore A C= y-3=\frac{1}{3}(x-1) \\
& 3 y-9=x-1 \\
& x-3 y+8=0 \tag{2}
\end{align*}
$$

(1) $-(2)$

$$
5 y-35=0
$$

$y=7$

$$
(1 \operatorname{man} l)
$$

Sub in (1)

$$
\begin{aligned}
& x=27-2(7) \\
& x=13 \\
& \therefore \text { is }(13,7) \quad(1 \text { mank })
\end{aligned}
$$

Question 12 (cont'd)
e)

$$
\begin{aligned}
f(x) & =\frac{1}{x^{3}}-x^{3}, x \neq 0 \\
& =x^{-3}-x^{3}
\end{aligned}
$$

For a decreasing function $f^{\prime}(x)<0$

$$
\begin{aligned}
f^{\prime}(x) & =-3 x^{-7}-3 x^{2} \\
& =-\frac{3}{x^{4}}-3 x^{2}
\end{aligned}
$$

For all x, x^{2} and $x^{9}>0$

$$
\therefore \quad-\frac{3}{x}+<0 \text { and }-3 x^{2}<0 \text {. }
$$

$\therefore F^{\prime}(x)<0$ for all x
$\therefore \quad$ decreasing function.
(1 marl for showing correct $f^{\prime}(x)<0$ for deireasiny function)

CI mark for qualifying why function will be <o for all x ?

Question 13
a 1)

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}-9 x+11 \\
& f^{\prime}(x)=3 x^{2}-6 x-9
\end{aligned}
$$

For stationary points, $f^{\prime}(x)=0$

$$
\begin{aligned}
& \therefore \quad 3 x^{2}-6 x-9=0 \\
& 3\left(x^{2}-2 x-3\right)=0 \\
& 3(x-3)(x+1)=0 \\
& \therefore x=3 \text { or }-1 \\
& \quad(3,-16)(-1,16)(1 \text { mark }
\end{aligned}
$$

$$
f^{\prime \prime}(x)=6 x-6
$$

when $x=-1 \quad f^{\prime \prime}(-1)=-6-6$

$$
=-12 \text { which is }<0
$$

A. Maximum tong point at ($-1,16$) (imalk)
when $x=3 \quad f^{\prime \prime}(3)=18-6$

$$
=12 \text { which is }>0
$$

\therefore Monemun turning pain at $(3,-16)$ (mark.
\qquad

(1 mark for points and scale (1 mark for shape)

Question 13 (cont'd)
bi) En $\triangle B C A$ and $\triangle M N A$

$$
\begin{aligned}
& \angle B C A=\angle M N A=90^{\circ} \text { (given) } \\
& <A \text { is common } \\
& \text { (i rank) } \\
& \therefore \triangle B C A l l \text { MNA. (equiangular) } \\
& \therefore \frac{B A}{M A}=\frac{B A}{\frac{1}{2} B A}=2 \quad \text { since ais the nidpent }
\end{aligned}
$$

\therefore The reduction factor is $\frac{1}{2}$ (1 mark
$\therefore \quad M N=\frac{1}{2} B C$ Crate of corresponding sides in similar triangles)
11)

$$
\begin{aligned}
\frac{A M}{A B} & =\frac{1}{2} \\
\frac{A N}{A C} & =\frac{1}{2} \quad\left(\begin{array}{rl}
\text { (ratios of corresponding sides in } \\
\text { similar tangles) }
\end{array}\right. \\
A N & =\frac{1}{2} A C \\
A N & =C N
\end{aligned}
$$

In $\triangle A M N$ and $\triangle C M N$

$$
\begin{aligned}
& A N=C N \text { (Shown above) } \\
& M N=M N \text { common side (Imark) } \\
& \angle A N M=\angle C N M=90^{\circ}(\text { given) } \\
& \therefore \triangle A M N \equiv \triangle C M N \text { (SAS) }
\end{aligned}
$$

iii) $\quad C M=M A$ (corresponding sides in congevent triangles from (ii))

$$
\begin{align*}
B M & =M A \text { given } \\
\therefore C M & =B M \tag{manh}\\
C M & =\frac{1}{2} B A \text { (Given } M \text { is the midpontef } A B \text {) }
\end{align*}
$$

Question 13 (b) (OR)
b) is $A B=A M+B M$

$$
\begin{aligned}
& =A M+A M \\
& =2 A M
\end{aligned}
$$

$$
\begin{aligned}
& (M \text { is the midpoint of } A B) \\
& (A M=B H)
\end{aligned}
$$

In $\triangle A M N$ and $\triangle A B C$,
ii). $\angle A N M \equiv \angle A C B=90^{\circ}$ (given)

Since corresponding angles are equal, MN // BC.

$$
\begin{align*}
& \frac{A M}{B M}=\frac{A N}{C N}\left(\begin{array}{l}
\text { interval parallel to a side of } \\
\text { a triangle divides other sides in } \\
\text { same ratio }
\end{array}\right. \\
& \begin{aligned}
& A N \\
& C N=\frac{A M}{A M} \\
&(A M=-B M)
\end{aligned} \\
& A N=C N \tag{2}
\end{align*}
$$

In $\triangle A M N$ and $\triangle C M N$;

$$
\begin{aligned}
M N & =M N(\text { common }) \\
\angle A N M & =\angle C N M=90^{\circ} \text { (given) }
\end{aligned}
$$

$A N=C N$ (from (2))

$$
\therefore \triangle A M N \equiv \triangle C M N(S A S)
$$

iii) $C M=A M$ (corresponding sides of congruent)

$$
\begin{aligned}
A B & =2 A M \\
\Rightarrow A M & =\frac{1}{2} A B
\end{aligned}
$$

$$
C M=\frac{1}{2} A B
$$

$$
\begin{aligned}
& \sin A=\frac{M N}{A M}=\frac{B C}{A B} \\
& \Rightarrow M N \cdot A B=B C \cdot A M \\
& M N \cdot 2 A M=B C \cdot A M \\
& 2 M N=B C \\
& M N=\frac{1}{2} B C
\end{aligned}
$$

Question 13 (cont'd)
c)

$$
\begin{aligned}
\tan A & =\frac{2 \sqrt{3}}{2} \\
\therefore A & =\frac{\sqrt{3}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area } B D C=\text { Area } \triangle A B C \text { - Ara sect } A D C \\
& =\frac{1}{2} \times 2 \sqrt{3} \times 2-\frac{1}{2} \times 2^{2} \times \frac{\pi}{3} \text { (} 1 \text { nark) } \\
& =2 \sqrt{3}-\frac{2 \pi}{3} \mathrm{~cm}^{2} \text { (} 1 \text { mark) }
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=4 e^{-2 x} \\
& \frac{d y}{d x}=-\frac{4}{2} e^{-2 x}+c
\end{aligned}
$$

(1 monk)
When $x=0 \quad \frac{d y}{d x}=3$

$$
\begin{aligned}
3 & =-2 e^{0}+c \\
c & =5 \\
\therefore \frac{d y}{b x} & =-2 e^{-2 x}+5 \\
y & =e^{-2 x}+5 x+k
\end{aligned}
$$

(1 max $)$
When $x=2 y=e^{-4}$

$$
\begin{aligned}
\therefore e^{-4} & =e^{-4}+5 \times 2+k \\
\therefore k & =-10 \\
\therefore y & =e^{-2 x}+5 x-10
\end{aligned}
$$

(1 mark)

Question I4.
a) LHS $=\frac{\sin A}{i+\cos A}+\frac{1+\cos A}{\sin A}$

$$
\begin{aligned}
& =\frac{\sin ^{2} A+(1+\cos A)^{2}}{(1+\cos A) \sin A} \\
& =\frac{\sin ^{2} A+1+2 \cos A+\cos ^{2} A}{(1+\cos A) \sin A} \quad(1 \operatorname{man} k)
\end{aligned}
$$

$$
=\frac{2+2 \cos A}{(1+\cos A) \sin A} \quad \operatorname{since} \sin ^{2} A+\cos ^{2} A=1
$$

$$
=\frac{2(1+\cos A)}{\sin A(1+\cos A)} \quad(1 \text { mar } A)
$$

$$
=\frac{2}{\sin A}
$$

$=2 \operatorname{cosec} A \quad$ (1mark)

$$
=R 1+S .
$$

$$
\therefore C 1+5=R 1+)_{1}
$$

b) $a=5$ sub in $y=\sqrt{2 x-1}$

$$
\begin{aligned}
& y=\sqrt{2 \times 5}-1 \\
& y=3 \quad(1 \operatorname{man} k) \quad \alpha>0
\end{aligned}
$$

$$
\begin{aligned}
a=5 \text { sub in } \quad \begin{array}{rlr}
2 x-3 y-1 & =0 \quad \text { (1 for simultuneous } \\
2 x 5-3 y-1 & =0 \quad \text { equatuns) } \\
3 y & =10-1 & \text { (1 Currect follew } \\
y & =3 \text { (1 madi) through to }
\end{array}
\end{aligned}
$$

Both equations equal 3 when a $=5$ show $x=5$ \therefore (2ne iot of intersection is $(5 ; 3)$. as aneat, 2 Solutime)

Question 14 cont'a
b.11)

$$
\begin{aligned}
& A=\int_{\frac{1}{2}}^{5}(2 x-1)^{\frac{1}{2}} d x-\frac{1}{2} \times \frac{9}{2} \times 3 \\
& =\left[\frac{2(2 x-1)^{\frac{3}{2}}}{3 \times 2}\right]_{\frac{1}{2}}^{5}-\frac{27}{4} \\
& =\frac{9^{\frac{3}{2}}}{3}-0-\frac{27}{4}-\frac{(1 \text { max erect }}{\left.(2 x-1)^{\frac{1}{2}}\right)} \\
& =9-\frac{27}{4} \\
& =\frac{9}{4} \text { squnits. } \\
& \text { (I mavis current sub } \\
& \text { of both expressions) } \\
& \text { (1 mark evaluation } \\
& \text { of substifuifet value }
\end{aligned}
$$

c) 1)

$$
\begin{aligned}
& T=A e^{k t}+22 \\
& \frac{d T}{d t}=k A e^{k t}
\end{aligned}
$$ $\operatorname{or} A e^{k t}=T-22$

but $A e^{k E}=T-22$
(1 mark)
$\frac{d T}{d t}=K(T-22)$ as required.
iI)

ג)

$$
\begin{aligned}
100 & =A e^{0 k}+22 \\
A & =100-22 \\
A & =78 \\
\therefore 70 & =A e^{15 k}+22 \\
70-22 & =78 e^{15 k} \\
+8 & =78 e^{15 k} \\
e^{15 k} & =\frac{48}{78} \\
e^{15 k} & =\frac{8}{13} \quad(1 \text { mark) } \\
15 k & =\ln \frac{8}{13} \\
k & =\frac{1}{15} \ln \frac{8}{13} \quad(1 \text { mark) }
\end{aligned}
$$

Question if (cout'd)
B) When $T \neq 40$

$$
\begin{aligned}
4 c & =78 e^{k t}+22 \\
e^{k+} & =\frac{40-22}{78} \\
e^{k+} & =\frac{3}{13} \quad(1 \operatorname{mack}) \\
k+ & =\ln \frac{3}{13} \\
t & =\frac{1}{k} \frac{3}{13} \\
& =\frac{15 \ln \frac{3}{13}}{\ln \frac{5}{13}} \quad(1 \text { mack }) \\
& =45.3 \quad \text { (Imark) }
\end{aligned}
$$

\qquad

Question 15
a) $\int_{2}^{3} \frac{x^{2}}{x^{3}-2} d x$

$$
\begin{align*}
& =\left[\frac{1}{3} \ln \left(x^{3}-2\right)\right]_{2}^{2} \quad(1 \text { mark }) \\
& =\frac{1}{3}[\ln 25-\ln 6] \tag{1mark}\\
& =\frac{1}{3}[2 \ln 5-\ln 6]
\end{align*}
$$

b) 1)

$$
\begin{align*}
& y=x-2 \ln x \\
& \frac{d y}{d y}=1-\frac{2}{x} \tag{lmark}
\end{align*}
$$

Stationary points occur at $y^{\prime}=0$

$$
\begin{aligned}
1-\frac{2}{x} & =0 \\
\frac{2}{x} & =1 \\
x & =2
\end{aligned}
$$

(1 mark)
ii)

$$
\begin{aligned}
& \begin{array}{c|c|c|c}
x & 2 & 3 & 4 \\
\hline f(x) & 2-2 \ln 2 & 3-2 \ln 3 & +-2 \ln 4
\end{array} \\
& \text { (1 lari) } \\
& \int_{2}^{4}(x-2 \ln x) d x \neq \frac{1}{2}[2-2 \ln 2+2(3-2 \ln 3)+1 \ln +2 \ln x] \\
& =1.723 \ldots \\
& =1.72 \text { to } 2 d p \text {. } \quad(\text { rank })
\end{aligned}
$$

fl) Since the curve is concave up for $2 \leq x \leq 4$, the trapezoidal rule will give an over estimate. (1 mani $)$

Question is (cont'd)
c)

$$
\begin{aligned}
y= & \frac{9}{2 x+3} \\
y & =9(2 x+3)^{-1} \\
\frac{d y}{d x} & =-9 \times 2(2 x+3)^{-2} \\
& =\frac{-18}{(2 x+3)^{2}}
\end{aligned}
$$

At A when $x=3$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-18}{9^{2}} \\
& =\frac{-2}{9}
\end{aligned}
$$

(Lank)
Tangent at A is: $y-1=-\frac{2}{9}(x-3)$

$$
\begin{aligned}
& 9 y-9=-2 x+6 \\
& 2 x+9 y-15=0 \quad \text { (1 man) }
\end{aligned}
$$

(1) $A C$ cuts y axis when $x=0$

$$
\begin{aligned}
2(c)+9 y & =15=0 \\
9 y & =15 \\
y & =\frac{15}{9} \\
y & =\frac{5}{3}
\end{aligned}
$$

Distance from o to C is $\frac{5}{3}=1 \frac{2}{3}$
Distance From $<t c B$ is $3-\frac{5}{3}=1 \frac{1}{3}$
$\therefore C$ is closer to B. (1 mans)

Guestion 15 (ont'd)
(i1) $v=\pi \int_{0}^{3} y^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{3}\left[\frac{9}{(2 x+3)}\right]^{2} d x \quad(l \text { murk }) \\
& =81 \pi \int_{0}^{3}(2 x+3)^{-2} d \\
& =81 \pi\left[\frac{-1}{2(2 x+3)}\right]_{0}^{3} \\
& =-\frac{81 \pi}{2}\left(\frac{1}{6 \pi 3}-\frac{1}{3}\right) \\
& =-\frac{81 \pi}{2}\left(\frac{1}{9}-\frac{1}{3}\right)
\end{aligned}
$$

$=9 \pi$ cubic units. (i mank)
\qquad

Question 16
a) $4 e^{2 x}-e^{x}=0$

$$
\therefore+\left(e^{x}\right)^{2}-e^{2}=0
$$

Let

$$
\begin{aligned}
& m=e^{x} \\
& 4 m m^{2}-m=0 \\
& m(4 m-1)=0 \\
& \therefore m=\frac{1}{4} \\
& \therefore e^{x}=\frac{1}{4} \\
& \ln e^{x}=\ln \frac{1}{4} \\
& x=\ln \frac{1}{4} \\
& x=\ln 2^{-2} \text { (I nam) } \\
& x=-2 \ln 2
\end{aligned}
$$

b) 1)

$$
\begin{aligned}
& v=3 t^{2}-2 \sin 3 t+6 \\
& a=6 t-6 \cos 3 t \quad(1 \text { man })
\end{aligned}
$$

ii) When $t=\frac{\pi}{3} \quad a=6\left(\frac{\pi}{3}\right)-6 \cos \left(3 \times \frac{\pi}{3}\right)$

$$
\begin{aligned}
& =2 \pi-6 \cos \pi \\
& =2 \pi-6(-1) \\
& =2 \pi+6
\end{aligned}
$$

(1) mark
iii) Displacement $x=t^{3}+\frac{2}{3} \cos 3 t+6 t$ (mark) When $t=0 \quad x=0$

$$
\begin{aligned}
0 & =0+\frac{2}{3}+1+0+c \\
c & =-\frac{2}{3} \\
\therefore x=t^{3} & +\frac{2}{3} \cos 3 t+6 t-\frac{2}{3} \quad(\text { man })
\end{aligned}
$$

Queption 16 (cout'd)
c) 1) $\frac{d}{d x} e^{\cos 2 x}=-2 \sin 2 x e^{\cos 2 x}$ (1 mank)

$$
\text { 11) } \begin{aligned}
& \int x+\sin 2 x e^{\cos 2 x} d x \\
= & \frac{x^{2}}{2}-\frac{1}{2} \int-2 \sin 2 x e^{\cos 2 x} d x \\
= & \frac{x^{2}}{2}-\frac{1}{2} e^{\cos 2 x}+c \quad \text { (2 marks) }
\end{aligned}
$$

(limark Gor pantial ser ${ }^{+}$)
d) 1)

$$
\begin{aligned}
V & =A \times H \\
& =\pi r^{2} \times H \\
& =\pi \times x^{2} \times h
\end{aligned}
$$

Naw $x^{2}+\left(\frac{4}{2}\right)^{2}=25 \quad$ (1mank)

$$
\begin{aligned}
& \therefore \quad \frac{h^{2}}{-4}=25-x^{2} \\
& h^{2}=100-4 x^{2} \\
& h=\sqrt{100-4 x^{2}} \quad h>0 \quad(1 \text { mark) } \\
& \therefore V(x) \quad=\pi x^{2} \sqrt{100-4 x^{2}} \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } \\
& v^{\prime}(x)=2 \pi x \sqrt{100-4 x^{2}}+\pi x^{2} \cdot \frac{1}{2}\left(100-4 x^{2}\right)^{-\frac{1}{2}}-8 x \\
&=2 \pi x \sqrt{100-4 x^{2}-\frac{4 \pi x^{3}}{\sqrt{100-4 x^{2}}}} \text { (1 (mork) } \\
&=\frac{2 \pi x\left(100-4 x^{2}\right)-4 \pi x^{7}}{\sqrt{100-4 x^{2}}}
\end{aligned}
$$

For maximum volume $v^{\prime}(x)=0$

Question 16 (cont'd)
al)

$$
\begin{array}{rl}
\therefore 2 \pi x\left(100-4 x^{2}-2 x^{2}\right) & =0 \\
100-6 x^{2}=0 \\
x & =0 \quad \frac{100}{6} \\
x & x=\frac{5 \sqrt{2}}{\sqrt{3}} \\
& x= \pm \frac{5 \sqrt{6}}{3}(1 \text { marl })
\end{array}
$$

but $x>0 \ldots x=\frac{5 \sqrt{6}}{3}$
Check if $x=\frac{5 \sqrt{6}}{3}$ gives maximum volume

x	0	1	$5 \sqrt{6}$	4.5
$v^{\prime}(x)$	0	$\frac{188 \pi}{\sqrt{96}}$	0	$171 \pi-369.57$
$V^{\prime}(x)$	0	>0	0	0

(Imus)
$\therefore \quad x=\frac{5 \sqrt{6}}{3}$ gives a maximum value.
Dimension 3 Radius $\frac{5 \sqrt{6}}{3} \mathrm{~cm}$
Height $\sqrt{100-4\left(\frac{5 \sqrt{6}}{3}\right)^{2}}$

$$
=\sqrt{\frac{100}{3}}
$$

$=\quad \frac{10}{\sqrt{3}} \quad(1$ mark $)$

$$
\therefore h=\frac{10 \sqrt{3}}{3} \mathrm{~cm}
$$

