Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section.
Use the multiple choice answer sheet for Questions 1-10.

1 Which of the following is equal to $\frac{1}{\sqrt{5}-1}$?
(A) $\sqrt{5}-1$
(B) $\frac{\sqrt{5}+1}{4}$
(C) $\frac{\sqrt{5}-1}{4}$
(D) $\frac{\sqrt{5}-1}{\sqrt{5}+1}$

2 What is the solution(s) to the equation $|2 k+1|=k+1$?
(A) 0 only
(B) 0 or $\frac{2}{3}$
(C) 0 or $\frac{-2}{3}$
(D) 0 or $\frac{-1}{2}$

3 A parabola is concave down and its vertex is $(2,0)$.
Which statement about the discriminant (Δ) of the parabola is correct?
(A) $\Delta>0$
(B) $\Delta=0$
(C) $\Delta<0$
(D) $\Delta \leq 0$

4 If $f^{\prime}(x)=2 \cos (5 x)$ and c is a real constant, then what is $f(x)$ equal to?
(A) $-\frac{2}{5} \sin (5 x)+c$
(B) $\frac{2}{5} \sin (5 x)+c$
(C) $-10 \sin (5 x)+c$
(D) $10 \sin (5 x)+c$

5 What are the coordinates of the focus of the parabola $(x+3)^{2}=-12 y$?
(A) $(-3,-3)$
(B) $(-3,3)$
(C) $(0,-3)$
(D) $(0,3)$

6 A ship leaves a port, P, and sails 6 km on a heading of N 30 E to position R. It then heads N 40 W until it reaches a port, Q, which is directly north of P.

Which equation represents the distance $x \mathrm{~km}$ from P to Q ?
(A) $\frac{x}{\sin 40^{\circ}}=\frac{6}{\sin 70^{\circ}}$
(B) $\frac{x}{\sin 30^{\circ}}=\frac{6}{\sin 40^{\circ}}$
(C) $\frac{x}{\sin 40^{\circ}}=\frac{6}{\sin 30^{\circ}}$
(D) $\frac{x}{\sin 110^{\circ}}=\frac{6}{\sin 40^{\circ}}$

7 If $y=2 \tan (2 x)$, then which expression represents $\frac{d y}{d x}$?
(A) $\frac{1}{\cos ^{2}(2 x)}$
(B) $\frac{2}{\cos ^{2}(2 x)}$
(C) $\frac{4}{\cos ^{2}(x)}$
(D) $\frac{4}{\cos ^{2}(2 x)}$

8 The diagram below shows part of the graph of a circular function.

Which equation represents the graph shown?
(A) $y=1+\sin (x)$
(B) $y=1+\sin \left(\frac{x}{2}\right)$
(C) $y=1+\cos (x)$
(D) $y=1+\cos \left(\frac{x}{2}\right)$

9 The graph of a curve $y=f^{\prime}(x)$, is shown below.

Which one of the following is most likely to be the graph of the function of $f(x)$?
(A)

(B)

(C)

(D)

10 The area of the region enclosed between the equations $y=x^{2}-9$ and $y=9-x^{2}$ is shaded in the diagram. Which integral could be used to calculate the shaded area?
(A) $\int_{-3}^{3} 2 x^{2}-18 d x$
(B) $2 \int_{0}^{3} 18-2 x^{2} d x$
(C) $\int_{-9}^{9} 2 x^{2}-18 d x$
(D) $\quad \int_{-9}^{9} 18-2 x^{2} d x$

Section II

90 marks

Attempt Questions 11-16
Allow about $\mathbf{2}$ hours and $\mathbf{4 5}$ minutes for this section.

Answer each question in the appropriate writing booklet. Extra booklets are available.
In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a separate writing booklet.
(a) Solve $x^{2}-3=3 x+1$.
(b) Solve the simultaneous equations

$$
\begin{aligned}
& 3 x-y=-7 \\
& 5 x+2 y=3
\end{aligned}
$$

(c) Differentiate $\frac{2 x^{3}}{4 x+2}$.
(d) Evaluate $\int_{0}^{\pi} \sin 2 x d x$.
(e) Evaluate $\int_{0}^{1} \frac{5}{\sqrt{e^{x}}} d x$.
(f) The angle of a sector in a circle of radius 7 cm is $\frac{4}{3}$ radians, as shown in the diagram. The points A and B lie on $O D$ and $O C$ respectively and $A B$ is an arc of a circle. O is the centre of the circle.
The area of the shaded region $A B C D$ is $48 \mathrm{~cm}^{2}$.

(i) Find the distance $O D$. 2
(ii) Find the perimeter of the shaded region.
(a) Calculate the limiting sum of the infinite geometric series given by

$$
2-1+\frac{1}{2} \ldots
$$

(b)

The diagram shows a trapezium $A B C D$ in which $A B$ is parallel to $D C$ and $B A$ is perpendicular to $A D$. The length of $D C$ is twice the length of $A B$.
The point A is $(0,6)$ and the point D is $(2,-2)$.
(i) Show that equation of $A B$ is $x-4 y+24=0$.
(ii) Given that B lies on the line $y=x$, find the coordinates of B.
(iii) Find the area of the trapezium $A B C D$.
(iv) Find the coordinates of C.
(c) The diagram shows the graphs of $y=x^{2}+2 x-5$ and $y=-2 x$.

These two graphs intersect at point A and point B.

(i) Find the x-coordinates of the points of intersection A and B.
(ii) Calculate the area of the shaded region.

End of Question 12

(a) For the parabola $8 x=16 y-y^{2}$.
(i) Find the coordinates of the vertex.
(ii) Find the coordinates of the focus.
(iii) Sketch the curve showing all relevant features.
(b) A man buys a new motorcycle. After t months its value $\$ V$ is given by $V=10000 e^{-p t}$, where p is a constant.
(i) Find the value of the motorcycle when the man bought it.
(ii) The value of the motorcycle after 12 months is expected to be $\$ 4000$.

Calculate the expected value of the motorcycle after 18 months, correct to the nearest dollar.
(iii) Calculate the age of the motorcycle, to the nearest month, when its expected value will be less than $\$ 1000$.
(c) A particle moves in a straight line, so that, t seconds after leaving a fixed point O, its velocity, $v \mathrm{~ms}^{-1}$, is given by $v=\frac{12}{(t+1)^{2}}-3$.
Find:
(i) an expression for the acceleration of the particle in terms of t.
(ii) the distance travelled by the particle before it comes to instantaneous rest.
(a) (i) Use one application (two function values) of the trapezoidal rule
to find an approximation to

$$
\int_{0}^{2} \sqrt{16-x^{2}} d x
$$

(ii) Explain whether this approximation is greater than or less than the exact value.
(b) Consider the function defined by $f(x)=x^{3}+3 x^{2}-9 x+5$.
(i) Find the coordinates of the stationary points of the curve $y=f(x)$ and determine their nature.
(ii) Find the coordinates of any point of inflexion.
(iii) Sketch the graph of $f(x)=x^{3}+3 x^{2}-9 x+5$ by showing the above information.
(c) In its first year of production, 6000 mobile phones were sold by a company. Each year after that, sales were 15% more than the previous year's sales.
(i) Find the sales in the $10^{\text {th }}$ year of production. Express your answer to the nearest ten.
(ii) Find the total sales in the first 10 years of production.

Express your answer to the nearest ten.
(iii) When will the total profit reach $\$ 1$ million if the company
made $\$ 10$ profit on each sale? (Answer to the nearest whole year).
(a) Solve $\sin x=\cos x$ for $0 \leq x \leq 2 \pi$.
(b) Prove the identity $\frac{1}{1+\tan ^{2} A}=(1+\sin A)(1-\sin A)$.
(c)

In the diagram $A B \| F D, A D F$ is a right-angled triangle, C is the midpoint of $A D$ and E is the midpoint of $F D$.
(i) Explain why $\angle C E D=\angle A B C$.
(ii) Show that $\triangle C D E \equiv \triangle C A B$.
(iii) Show that $A F=2 B C$.
(d) The roots of the quadratic equation $2 x^{2}+4 x+5=0$ are α and β.
(i) Find the value of $\alpha+\beta$.
(ii) Show that $\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=-\frac{2}{5}$.
(iii) The roots of $x^{2}+m x+p=0$ are $\frac{\alpha}{\beta}+2$ and $\frac{\beta}{\alpha}+2$.

It is also given that $\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=-\frac{2}{5}$.
Find the values of m and p where m and p are constants.

End of Question 15

(a) The depth D, in metres, of a liquid stored in a container at time t seconds is given by

$$
D=\frac{t^{2}+1}{e^{2 t}}, \quad t \geq 0
$$

(i) Find an expression for the rate at which the depth of the liquid changes.
(ii) Hence, explain whether the depth of the liquid was increasing or decreasing at $t=10$.
(b) A curve has the equation $y=x^{2} \log _{e} x$, where $x>0$.
(i) Find an expression for $\frac{d y}{d x}$.
(ii) Hence, find $\int x \log _{e} x d x$.
(c) A garden is being designed to include a semi-circular pond in a rectangular shaped lawn. The radius of the pond is r metres and the length of the lawn is l metres, as shown in the diagram below.

(i) Given that the area of the lawn is $400 \mathrm{~m}^{2}$, express l in terms of r.

Show that $l=\frac{200}{r}+\frac{\pi}{4} r$.
(ii) Given that the perimeter of the lawn is $P \mathrm{~m}$, show
that $P=\left(\frac{3 \pi}{2}+2\right) r+\frac{400}{r}$.
(iii) Given that r and l can vary, find the value of r for which P is a minimum length.

End of paper

HSC Trial Examination 2015
Mathematics - SOLUTIONS
SECTION I (10 marks)

1	B	6	D
2	C	7	D
3	B	8	D
4	B	9	A
5	A	10	B

SECTION II (90 marks)
Question 11: (15 marks)
a.) $x^{2}-3=3 x+1$

1 mark factorisation
$1 / 2$

$$
\begin{aligned}
& x^{2}-3 x-4=0 \\
& (x-4)(x+1)=0 \\
& x=4 \text { or }-1
\end{aligned}
$$

1 mark
b) $3 x-y=-7$ (1) $\rightarrow y=3 x+7$
() $\frac{1}{2} \quad 5 x+2 y=3$

Sub. $y=3 x+7$ into (2): $\quad 5 x+2(3 x+7)=3$

$$
-11 x+14=3
$$

$$
11 x=-11
$$

$$
x=-1
$$

1 marl
\bigcirc
Sub $x=-1$ into $y=3 x+7$

$$
\begin{aligned}
& =3(-1)+7 \\
y & =4
\end{aligned}
$$

1 marl.
Sol'n $\left\{\begin{array}{l}x=-1 \\ y=4\end{array}\right.$
c) $y=\frac{2 x^{3}}{4 x+2}$
$=\frac{u}{v} \quad$ where $u=2 x^{3} ; \quad v=4 x+2$

$$
u^{\prime}=6 x^{2} \quad v^{\prime}=4
$$

$$
\begin{aligned}
y^{\prime} & =\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& =\frac{(4 x+2) 6 x^{2}-2 x^{3} \cdot 4}{(4 x+2)^{2}} \\
& =\frac{24 x^{3}+12 x^{2}-8 x^{3}}{(4 x+2)^{2}} \\
& =\frac{4 x^{2}\left(6 x^{4}+3-2 x\right)}{(4 x+2)^{2}} \\
y^{\prime} & =\frac{4 x^{2}(4 x+3)}{(4 x+2)^{2}} \text { or } y^{\prime}=\frac{4 x^{3}+3 x^{2}}{(2 x+1)^{2}}
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
\int_{0}^{\pi} \sin 2 x d x & \left.=-\frac{1}{2}[\cos 2 x]\right]_{0}^{\pi} \\
& =-\frac{1}{2}(\cos 2 \pi-\cos 0) \\
& =-\frac{1}{2}(1-1) \\
& =0
\end{aligned}
$$

1 mark

1 marl

$$
\begin{aligned}
e) \int_{0}^{1} \frac{5}{\sqrt{e^{x}}} d x & =\int_{0}^{1} 5 e^{-\frac{x}{2}} d x \\
& =5 \times\left(\frac{+1}{-\frac{1}{2}}\right)\left[e^{-\frac{x}{2}}\right]_{0}^{1} \\
& =-10\left(\frac{1-1}{\sqrt{e}}-\frac{1}{\sqrt{e^{0}}}\right) \\
& =-10\left(\frac{1}{\sqrt{e}}-1\right) \\
& =-10\left(\frac{1}{\sqrt{e}}-1\right)
\end{aligned}
$$

3 marks all correct
2 marks correct integration plus correct substitution. 1 mark correct integration.
(f) $A=\frac{1}{2} r^{2} \theta$
Area $A B C D=\frac{1}{2}(x+7)^{2} \cdot \frac{4}{3}-\frac{1}{2} \cdot 7^{2}-\frac{4}{3}$

$$
48=\frac{2}{3}\left[x^{2}+14 x+4 / 9-4 / 4\right]
$$

$$
72=x^{2}+14 x
$$

$$
0=x^{2}+14 x-72
$$

$$
=(x+18)(x-4)
$$

$$
x=\frac{-18}{\uparrow} \text { or } 4
$$

Disregard

$$
x>0
$$

\therefore Solon $x=4 \mathrm{~cm}$
($\frac{1}{2} \quad O D=7+4$
2 marks all correct
$=11 \mathrm{~cm}$ 1 mark -1 error
$\frac{1 i}{2} \quad P=4 \times 2+7 \times \frac{4}{3}+11 \times \frac{4}{3} \quad(l=r \theta)$

$$
P=32 \mathrm{~cm}
$$

2 marks all correct
1 mark - showed some vaderstanding of perimeter being sum of 2 arcs and 2 radii;

Question 12 (15 marks)
a) $2-1+\frac{1}{2} \cdots \quad r=-\frac{1}{2}, a=2$

12 $\left(-1<-r^{2}<r\right)$

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{2}{1+\frac{1}{2}} \\
& =\frac{4}{3}
\end{aligned}
$$

1 mark
b)

$$
\frac{i}{2} \quad A D: \quad \begin{aligned}
m_{1} & =\frac{-2-6}{2-0} \\
& =-4
\end{aligned}
$$

$$
A B: \quad m_{2}=\frac{1}{4}
$$

Eqin $A B:\binom{x_{1}, y_{1}}{0,-6} m=\frac{1}{4} \quad \begin{aligned} & y-6=\frac{1}{4}(x-0) \quad \text { l mark } \\ & \\ & 4 y-24=-x\end{aligned}$

$$
\therefore \quad 0=x-4 y+24
$$

ii B lies on $y=x$: $0=x-4 y+24 \quad 1$ mark
反

$$
\begin{aligned}
& =x-4 x+24 \\
& =-3 x+24
\end{aligned}
$$

$$
x=8
$$

mark
Coordinates of $B:(8,8)$

$$
A(0,6) \quad B(8,8) \quad D(2,-2)
$$

() $\frac{i 1}{2}$

$$
\text { Area of trapezium }=\frac{h}{2}(a+b)
$$

$$
\text { Area } \begin{aligned}
A B C D & =\frac{\sqrt{68}}{2}(\sqrt{68}+2 \sqrt{68}) \\
& =\frac{\not x \sqrt{17}}{x}(2 \sqrt{17}+4 \sqrt{17}) \\
& =34+68 \\
& =102 \text { units }^{2} \quad 1 \text { mark }
\end{aligned}
$$

$$
\begin{aligned}
A D & =\sqrt{(2-0)^{2}+(-2-6)^{2}} \\
& =\sqrt{68} \\
A B & =\sqrt{(8-0)^{2}+(8-6)^{2}} \\
& =\sqrt{68} \\
D C & =2 \times A B
\end{aligned}
$$

1 mark

Coordinates of $C:(1.8,2)$ 2 marks
()
c)

$$
\begin{array}{ll}
i \quad y=x^{2}+2 x-5 \quad y=-2 x \\
& x^{2}+2 x-5=-2 x \\
& x^{2}+4 x-5=0 \\
& (x+5)(x-1)=0
\end{array}
$$

$$
x=-5 \text { and } 1
$$

1 mark.
x-coordinate of $A=-5$
x-coordinate of $B=1$

$$
\begin{aligned}
i i A_{-5}^{1} & =\int_{-5}^{1}-2 x-\left(x^{2}+2 x-5\right) d x \\
& =\int_{-5}^{1}-x^{2}-4 x+5 d x \\
& =\left[-\frac{x^{3}}{3}-2 x^{2}+5 x\right]_{-5}^{1} \\
& =\left(-\frac{1}{3}-2+5\right)-\left(\frac{125}{3}-50-25\right) \\
& =36 \text { units }^{2} .
\end{aligned}
$$

Question 13 (15 marks)
a)

$$
\begin{aligned}
& \therefore 8 x=16 y-y^{2} \\
& y^{2}-16 y+8^{2}=-8 x+8^{2} \\
&(y-8)^{2}=-8 x+64 \\
&(y-8)^{2}=-8(x-8) \\
&(y-k)^{2}=-4 a(x-h) \\
& \therefore \text { vertex }=(8,8)
\end{aligned}
$$

$$
i_{\text {mark }}
$$

ii focal length $=2$

I mark \qquad

$$
\begin{aligned}
x=0 \rightarrow(y-8)^{2} & =64 \\
y-8 & = \pm 8 \\
y & =16,0
\end{aligned}
$$

$1 \operatorname{mark}$
b) i

$$
\begin{aligned}
& V=10000 e^{-p t} \\
& V=V_{0} e^{-k t} \\
& \therefore V_{0}=10000
\end{aligned}
$$

\therefore Value of the motorcycle is \$10000 when the man bought it.
ii Value after 12 months is $\$ 4000$
$3 \rightarrow t=1$ year $; V=4000: \quad 4000=10000 e^{-P}$ inure

$$
\begin{aligned}
\frac{2}{5} & =e^{-p} \\
5 & =e^{p} \\
\ln -2.5 & =p \\
p & \div 0.916291 \quad\left(b d_{p}\right)
\end{aligned}
$$

When $t=1.5$ years: $\quad V=10000 e^{-(0.916291 \times 1.5)} \quad 1$ mark

$$
=2529.8221 \ldots
$$

\therefore Expected value after 18 months $=\$ 2530$ (nearest $\$$) 1 mark
b) iii $\quad V=10000 e^{-(\ln 2 \cdot 5) t}$

$$
\begin{aligned}
1000 & >10000 e^{-(\ln 2 \cdot 5) t} \\
\frac{1}{10} & >e^{-(\ln 2 \cdot 5) t} \\
10 & <e^{(\ln 2 \cdot 5) t}
\end{aligned}
$$

$$
\ln 10<(\ln 2.5) t
$$

$$
\ln 10<t
$$

$$
\ln 25
$$

$i=\quad t>2.51294 \ldots$
\therefore Age of motercycle when value is less than $\$ 1000$

$$
=2 y r s 7 \text { months } \quad(0.6 \text { of } 12 \mathrm{~m} \text { ths }=7.2 \mathrm{~m} \text { th } \mathrm{s})
$$ 1 ma-1-

$$
\text { c) } \begin{aligned}
& i / 2=\frac{12}{(t+1)^{2}}-3 \\
& a=\frac{d v}{d t} \\
& v=12(t+1)^{-2}-3 \\
& \frac{d v}{d t}=-24(t+1)^{-3} \cdot 1 \\
& \therefore a=-24 \\
&\therefore t+1)^{3}
\end{aligned}
$$

Imarh numereter Imark denominater

$$
\begin{aligned}
& \text { ii } v=12(t+1)^{-2}-3 \\
& x \\
&=\frac{12(t+1)^{-1}}{(-1)(1)}-3 t+c \\
& x
\end{aligned}
$$

When $t=0, x=0: 0=\frac{-12}{1}-0+c$

$$
\therefore x=\frac{-12}{t+1}-3 t+12
$$

(continued overpage)
c) ii cont!

At rest when $v=0: 0=\frac{12}{(t+1)^{2}}-3$

$$
\begin{aligned}
0= & 12-3(t+1)^{2} \\
-12 & =-3(t+1)^{2} \\
4 & =(t+1)^{2} \\
t+1 & = \pm 2 \\
t= & 1 \mathrm{~s} \text { or }-3 \mathrm{~s} \quad \text { T Smart } \\
& \begin{aligned}
& \text { Discard -vet time } \\
& \quad(t \geqslant 0)
\end{aligned} \\
&
\end{aligned}
$$

When $t=0, x=0 \mathrm{~m}$
When $t=1, x=\frac{-12}{(1)+1}-3(1)+12$

$$
=3 \mathrm{~m}
$$

\therefore Distance travelled is 3 metres.

Question 14 (15 marks)
()
a)
$1 / 2$

x	0	1	2
$f(x)$	4	$2 \sqrt{3}$	

$$
f(x)=\sqrt{16-x^{2}}
$$

\bigcirc
2

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\frac{b-a}{2}(f(a)+f(b)) \\
\int_{0}^{2} \sqrt{16-x^{2}} d x & \doteqdot \frac{2-0}{2}(\sqrt{16}+\sqrt{12}) \\
& \doteq 4+2 \sqrt{3} \\
& \doteqdot 7.46\left(2 d_{p}\right)
\end{aligned}
$$

1 marl

0

$$
1
$$

This approximation is less than the exact value as the trapezium formed by joining $f(0)$ to $f(2)$ lies below the curve. 1 maw
b) i

$$
\begin{aligned}
& f(x)=x^{3}+3 x^{2}-9 x+5 \\
& f^{\prime}(x)=3 x^{2}+6 x-9 \\
& f^{\prime \prime}(x)=6 x+6
\end{aligned}
$$

13

Stat pts when $f^{\prime}(x)=0$
i.. $3 x^{2}+6 x-9=0$

1 mark
0

$$
\begin{aligned}
& x^{2}+2 x-3=0 \\
& (x+3)(x-1)=0 \\
& x=3 \text { or } 1
\end{aligned}
$$

$(-3,32) \frac{x}{} \frac{x-4-3-2}{f^{\prime}(x)} 150-9$ is a mAx or $f^{\prime \prime}(-3)=-12$

$$
\therefore(-3,32)_{13} \text { a max }
$$

1 mart

$(1,0) \quad$| x | $0 \quad 1 \quad 2$ | |
| :--- | :--- | :--- |
| $f^{\prime}(x)$ | -90 | 15 |\quad is MIN or $f^{\prime \prime}(1)=12$

$$
\therefore(1,0) \text { is a min }
$$

1 marl:\therefore Stat pts at $(-3,32) \operatorname{mAx}$ and $(1,0)$ miN
b) ii inflexion pt when $f^{\prime \prime}(x)=0$

12
i. $\quad 6 x+6=0$

1 marl
$x=-1$
$(-i, 16) \quad \frac{x-\frac{-2-10}{f^{\prime \prime}(x)} \frac{-606^{\prime}}{n} \longrightarrow \text { change in concavity }}{} \rightarrow \frac{0}{n}$
\therefore Pt of inflexion at $(-1,16)$
1 mark
iii
$1 / 2$

2 marks
c) $i \quad 6000,6900,7935,9125.25$,

$$
\begin{aligned}
1 / 1 \quad a & =6000 \\
r & =1.15 \\
T_{n} & =a r^{n-1} \\
T_{10} & =6000 \times 1.15^{9} \\
& =21107.25775 \\
& =21110 \text { (nearest ten) }
\end{aligned}
$$

1 mark
Sol'n: 21110 mobile phones sold in the $10^{\text {th }}$ year.

$$
\left.\begin{array}{rlrl}
\text { ii } & S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1}, r>1 & a
\end{array}\right)=6000
$$

Sol'n: Total sales in first 10 yrs $=121820$ (nearest ten)
c) iii $\$ 1000000 \div \$ 10=100000$ sales
$1 / 2$

$$
\begin{aligned}
S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \\
100000 & =\frac{6000\left(1.15^{n}-1\right)}{0.15} \\
2.5 & =1.15^{n}-1 \\
3.5 & =1.15^{n} \\
\log 3.5 & =n \log 1.15 \\
n & =\frac{\log 3.5}{\log 1.15} \\
& =8.96354864 \ldots
\end{aligned}
$$

\therefore In the $9^{\text {th }}$ year sales will reach 100000 \therefore profits will reach $\$ 1000000$. 1 mall.

Question 15 (15 marks)
a) $\quad \sin x=\cos x \quad 0 \leqslant x \leqslant 2 \pi$
$12 \quad \frac{\sin x}{\cos x}=1$

$$
\begin{array}{rlrl}
\tan x & =1 & & \frac{s}{T / A} \\
x & =45^{\circ} \text { or } \frac{\pi}{4} &
\end{array}
$$

$\tan x$ is positive, x is in list a ard quadrants

$$
\therefore x=\frac{\pi}{4}, \pi+\frac{\pi}{4}
$$

$$
\therefore x=\frac{\pi}{4}, \frac{5 \pi}{4} \quad 1 \text { mark for each solution }
$$

b) Prove $\frac{1}{1+\tan ^{2} A}=(1+\sin A)(1-\sin A)$

$$
\begin{aligned}
\text { Lit } & =\frac{1}{1+\tan ^{2} A} \quad\left[\tan ^{2} A+1=\sec ^{2} A\right] \\
& =\frac{1}{1+\sec ^{2} A-1} \\
& =\frac{1}{\sec ^{2} A} \\
& =\cos ^{2} A \\
& =1-\sin ^{2} A \\
& =(1+\sin A)(1-\sin A) \\
& =\text { RUS. }
\end{aligned}
$$

c) : $\angle C E D=\angle A B C$
\% Alternate angles equal;

$$
A B \| F D
$$

ii Prove $\triangle C D E \equiv \triangle C A B$
In \triangle 'S CDE and $C A B: \quad(A) \angle C E D=\angle A B C$ (Alternate angle s equal; $A B \| F$
(1) 2 correct reasons
(A) $\angle A C B=\angle D C E$ (vertically opposite angles)
(2) - All correct
(S) $A C=D C$ (given C is midst of $A D$)

$$
\therefore \triangle C D E \equiv \triangle C A B \text { by AAS }
$$

c) iii Show $A F=2 B C$ $1 / 2 \ln \triangle$'s $A D F$ and $C D E$:
$\frac{E D}{F D}=\frac{C D}{A D}=\frac{1}{2}($ given E is midptoF,
$\angle D$ is common

$\therefore \triangle A D F \| \triangle C D E \quad(2$ pairs of corresponding sides in same ratio and included angle is equal)

$$
\therefore \quad A F=2 \times C E
$$

$\therefore \ddot{A}=2 \times B C$ (from ii- corresponding sides $C E$ and $B C$ in congruent triangles $C D E$ and $C A B$) 2 mule,

$$
\begin{aligned}
& \text { d) } 2 x^{2}+4 x+5=0 \\
& i \quad \alpha+\beta=-\frac{b}{a} \quad a=2, b=4, c=5 \\
&=-\frac{4}{2} \\
&=-2
\end{aligned}
$$

1 mark
ii. Show $\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=-\frac{2}{5}$

$$
\begin{aligned}
\text { LAS } & =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta} \\
& =\frac{\alpha^{2}+2 \alpha \beta+\beta^{2}-2 \alpha \beta}{\alpha \beta} \\
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
& =\frac{(-2)^{2}-2\left(-\frac{5}{2}\right)}{\frac{5}{2}} \\
& =-1 \div \frac{5}{2} \\
& =-\frac{2}{5} \\
& =\text { RUS }
\end{aligned}
$$

Q15
d) iii

$$
\text { iii } \begin{aligned}
& x^{2}+a x+b=0 \quad \text { Roots: } \frac{\alpha}{\beta}+2, \frac{\beta}{\alpha}+2 \\
& x^{2}+(\alpha+\beta) x+(\alpha \beta)=Q
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+m x+p= \\
& \frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=-\frac{2}{5}
\end{aligned}
$$

$$
\frac{\alpha}{\beta}+2 \frac{\beta}{\alpha}+2
$$

$$
\begin{aligned}
&\left(\frac{\alpha}{\beta}+2\right)\left(\frac{\beta}{\alpha}+2\right)=\frac{21}{5} \\
& \frac{2 \alpha}{\beta}+\frac{2 \beta}{\alpha}=-\frac{4}{5} \\
& \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=-\frac{2}{5} \\
&-\frac{2}{5}+4=-m \\
& m=-\frac{18}{5}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\alpha}{\beta}+\frac{B}{\alpha}+4=-m \\
\left(\frac{\alpha}{\beta}+2\right)\left(\frac{B}{\alpha}+2\right)=p \\
1+\frac{2 \alpha}{\beta}+\frac{2 \beta}{\alpha}+4=P \\
\frac{2 \alpha^{2}+2 \beta^{2}}{\alpha \beta}=p-5 \\
2 \times-\frac{2}{5}=p-5 \\
p=5-\frac{4}{5} \\
=\frac{21}{5}
\end{gathered}
$$

imarl.

Question 16 (15 marks)

$$
\begin{aligned}
& \text { a) } \frac{1}{2} D=\frac{t^{2}+1}{l^{2 t}} \quad t \geqslant 0 \\
& =\frac{u}{v} \quad \text { where } u=t^{2}+1 \quad, \quad v=e^{2 t} \\
& u^{\prime}=2 t \quad, \quad v^{\prime}=2 e^{2 t} \\
& D^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
& \frac{=e^{2 t} \cdot 2 t-\left(t^{2}+1\right) \cdot 2 e^{2 t}}{\left(e^{2 t}\right)^{2}} \quad 1 \text { mark } \\
& =\frac{e^{z t}\left(2 t-2 t^{2}-2\right)}{e^{4 t 2 t}} \\
& =\frac{-2\left(t^{2} t+1\right)}{l^{2 t}} \\
& \text { marl }
\end{aligned}
$$

0

0

$$
\text { ii } \quad \begin{aligned}
2^{t=10: \quad D^{\prime}} & =\frac{-2\left(10^{2}+10+1\right)}{e^{20}} \\
& =-\frac{18^{2}}{e^{20}} \\
& =-3.75 \times 10^{-1} \\
& <0
\end{aligned}
$$

\therefore Depth of liquid decreasing at $t=10$

$$
\text { b) } \begin{array}{rlrl}
\frac{1}{2} y & =x^{2} \log _{e} x & x>0 & \\
& =u \cdot v \quad \text { where } u=x^{2} & & \\
& u^{\prime}=2 x & & v^{\prime}=\frac{1}{x} \\
y^{\prime} & =u v^{\prime}+v u^{\prime} & & \\
& =x^{2} \cdot \frac{1+\log _{e} x \cdot 2 x}{} & & \\
& =x+2 x \cdot \log _{e} x & & 1 \text { mark } \\
& =x\left(1+2 \log _{e} x\right) & &
\end{array}
$$

$$
\text { b) ii } \left.\begin{array}{rl}
& \int x \log x d x \\
& \int(x+2 x \ln x) d x
\end{array} \quad=x^{2} \ln x\right](\ln \ln 1 .
$$

c)
$1 / 2$

$1 / 2$

$$
\begin{aligned}
A & =2 r l-\frac{\pi r^{2}}{2} \\
400 & =2 r l-\frac{\pi r^{2}}{2} \\
800 & =4 r l-\pi r^{2} \\
4 r l & =800+\pi r^{2} \\
l & =\frac{800}{4 r}+\frac{\pi r^{2}}{4 r} \\
l & =\frac{200}{r}+\frac{\pi}{4} r
\end{aligned}
$$

$$
\begin{aligned}
& \text { } / 2 \text { ii } \quad P=\frac{2 \pi r}{2}+2 l+2 r \\
& =\pi r+2 r+2\left(\frac{200}{r}+\frac{\pi}{4} r\right) \\
& =\pi r+2 r+\frac{400}{r}+\frac{\pi}{2} r \\
& =r\left(\pi+2+\frac{\pi}{2}\right)+\frac{400}{r} \\
& \therefore P=\left(\frac{3 \pi}{2}+2\right) r+\frac{400}{r} \\
& \text { iii } \frac{d P}{d r}=\frac{3 \pi}{2}+2+(-2) \cdot 400 r^{-2} \\
& =\frac{3 \pi}{2}+2-\frac{800}{r^{2}}
\end{aligned}
$$

c) iii cont.

Far stat pt, $\frac{d p}{d r}=0$

$$
\begin{align*}
\therefore \quad \frac{3 \pi}{2}+2 & =\frac{400}{r^{2}} \tag{1}\\
\frac{3 \pi+4}{2} & =\frac{400}{r^{2}} \\
r^{2} & =\frac{800}{3 \pi+4} \\
r & = \pm \sqrt{\frac{800}{3 \pi+4}}
\end{align*}
$$

$r>0$ since r is a length

$$
\begin{equation*}
\therefore r=\sqrt{\frac{800}{3 \pi+4}} \doteq 7.72 \mathrm{~m}(2 d p) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\frac{d^{2} p}{d r^{2}} & =-2\left(-400 r^{-3}\right) \\
& =\frac{8.00}{r^{3}}
\end{aligned}
$$

When $r=7.72, \quad \frac{d^{2} p}{d r^{2}}=\frac{800}{7.72^{3}}$

$$
\begin{equation*}
>0 \tag{1}
\end{equation*}
$$

$\therefore P$ is a maximum when $r \doteq 7.72 \mathrm{~m}$

