Mrs Israel
Ms Lau
Ms Prosser
Ms Stott

Mrs Kerr Mr Morrison Mrs Semler

Name:

Teacher:
\qquad

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

2016

Mathematics

General Instructions

- Reading time - 5 minutes.
- Working time -3 hours.
- Use pencil for Questions 1-10.
- Write using a black or blue pen for Questions $11-16$. Black pen is preferred.
- Board approved calculators may be used.
- A reference sheet is provided.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.

Total Marks - 100
Section I
Pages 1-5
10 marks

- Attempt Questions 1-10
- Allow about 15 mins for this section

Section II
 Pages 7-16

90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Mark	$/ 100$
Highest Mark	$/ 100$
Rank	

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section.
Use the multiple choice answer sheet for Questions 1-10.

1 The line with equation $2 y=3 x+5$ is perpendicular to the line with equation $y=k x$. What is the value of k ?
(A) $-\frac{3}{2}$
(B) $-\frac{2}{3}$
(C) $\frac{2}{3}$
(D) $\frac{3}{2}$

2 A function f, defined on a suitable domain, is given by $f(x)=\frac{6 x}{x^{2}+6 x-16}$. What restrictions are there on the domain of f ?
(A) $x \neq-8$ or $x \neq 2$
(B) $x \neq-4$ or $x \neq 4$
(C) $x \neq 0$
(D) $x \neq 10$ or $x \neq 16$

3 The functions f and g are defined by $f(x)=x^{2}+1$ and $g(x)=3 x-4$, on the set of real numbers.

Which expression is equivalent to $g(f(x))$?
(A) $3 x^{2}-1$
(B) $9 x^{2}-15$
(C) $9 x^{2}+17$
(D) $3 x^{3}-4 x^{2}+3 x-4$

4 Given that $f(x)=4 \sin 3 x$, what is $f^{\prime}(0)$?
(A) 0
(B) 1
(C) 12
(D) 36

5 What is $\int x(3 x+2) d x$?
(A) $x^{3}+c$
(B) $x^{3}+x^{2}+c$
(C) $\frac{1}{2} x^{2}\left(\frac{3}{2} x^{2}+2 x\right)+c$
(D) $3 x^{2}+2 x+c$

6 If $e^{4 t}=6$, which of the following is an expression for t ?
(A) $t=\log _{e} \frac{3}{2}$
(B) $t=\frac{\log _{e} 6}{4}$
(C) $t=\frac{6}{\log _{e} 4}$
(D) $t=\frac{\log _{e} 6}{\log _{e} 4}$

7 The diagram shows part of the graph of $y=a \cos b x$. The shaded area is $\frac{1}{2}$ unit 2. What is the value of $\int_{0}^{\frac{3 \pi}{4}}(a \cos b x) d x$?

(A) -1
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $1 \frac{1}{2}$

8 The volume of a sphere is given by the formula $V=\frac{4}{3} \pi r^{3}$. What is the rate of change of V with respect to r, at $r=2$?
(A) $\frac{16 \pi}{3}$
(B) $\frac{32 \pi}{3}$
(C) 16π
(D) 32π

9 The diagram shows part of the graph of $y=f(x)$.

Which of the following diagrams could be the graph of $y=2 f(x)+1$?
(A)

(C)

(B)

(D)

10 The graph of $y=f(x)$ shown has stationary points at $(0, p)$ and (q, r).
Here are two statements about $f(x)$
(i) $f(x)<0$ for $s<x<t$.
(ii) $f^{\prime}(x)<0$ for $x<q$.

Which of the following is true?
(A) Neither statement is correct.
(B) Only statement (i) is correct.
(C) Only statement (ii) is correct.
(D) Both statements are correct.

Blank Page

Question 11 (15 marks) Use a separate writing booklet.
(a) Express $\frac{2}{\sqrt{6}-2}$ with a rational denominator in its simplest form.
(b) Solve $|x-4| \leq 2$.
(c) Solve the equation $\frac{2-x}{3}-\frac{3-x}{2}=\frac{1}{5}$.
(d) Find the gradient of the tangent to the curve $y=(3 x+1)^{4}$ when $x=\frac{1}{3}$.
(e) Simplify $\frac{\log _{b} a^{m}}{\log _{m} a}$ and express it in terms of base b.
(f) Differentiate $\sqrt[3]{x}$.
(g) Find $\int \frac{x+2}{x^{2}+4 x} d x$.
(h) Evaluate $\int_{0}^{\frac{\pi}{2}} \sec ^{2}\left(\frac{x}{2}\right) d x$.

Question 12 (15 marks) Use a separate writing booklet.
(a)

In the diagram, $A B \| C D, \angle B A E=130^{\circ}, \angle E F D=100^{\circ}$.
(i) Find the value of y, giving reasons.
(ii) Find the value of x, giving reasons.
(b) A function f is defined on the set of real numbers by $f(x)=(x-2)\left(x^{2}+1\right)$.
(i) Find where the graph of $y=f(x)$ cuts
(1) the x-axis. 1
(2) the y-axis.
(ii) Find the coordinates of the stationary points on the curve with equation $y=f(x)$ and determine their nature.
(iii) Sketch the graph of $y=f(x)$, showing all important features.

Question 12 (continued).
(c)

(i) Prove that $\triangle P Q T$ and $\triangle P S R$ are similar.
(ii) Hence, find the length of $R S$.

Question 13 (15 marks) Use a separate writing booklet.
(a)

In the diagram above, the equations of the lines $B E$ and $B C$ are $4 x+3 y-10=0$ and $y=10$ respectively.
P is the point $(5,5)$.
$P E \perp B E$, and $B C \perp P C$.
(i) Show that the perpendicular distance from P to $B E$ is 5 units.
(ii) Hence prove that $\triangle B C P \equiv \triangle B E P$.
(iii) Show that the coordinates of B are $(-5,10)$.
(iv) Show that the locus of points which are equidistant from the lines $B C$ and $B E$ is given by the equation $x+2 y-15=0$.

Question 13 (continued).
(b) (i) Sketch the parabola P, whose focus is $(-2,2)$ and whose directrix is the line $x=-6$.
Indicate on your diagram the coordinates of the focus, the vertex and the equation of the directrix.
(ii) Determine the equation of the parabola, P.
(c) For what values of a will the equation $a x^{2}+5 x+a$ be positive definite?
(d) A ball is dropped from a height of 10 metres and each time it bounces, it reaches $\frac{4}{5}$ of it's previous height. What is the total distance travelled by the ball?

End of Question 13

Question 14 (15 marks) Use a separate writing booklet.
(a) The diagram show the curve $y=\frac{\ln x}{x}$.

The curve crosses the x-axis at A and has a stationary point at B.
(i) State the coordinates of A.
(ii) Find the coordinates of the stationary point B, of the curve, giving your answer in an exact form
(iii) Find the exact value of the equation of the normal to the curve at the point where $x=e^{3}$.
(b) Sketch the graph $y=2-\cos 2 x$ for $-\pi \leq x \leq \pi$.

Question 14 (continued).
(c)

The diagram above describes the velocity, v, of an electrical pulse along a wire in metres/second. Refer to the diagram and answer the questions below.
(i) When is the pulse travelling in a positive direction?
(ii) When is the pulse stopped?
(iii) Describe the motion of the particle for $0<t<3$.
(iv) Find the area between the curve and the t axis for $3 \leq t \leq 6$.
(d) If α and β are the roots of the quadratic equation $3 x^{2}-4 x-1=0$, find
(i) $\alpha+\beta$ and $\alpha \beta$.
(ii) $(\alpha+2)(\beta+2)$

Question 15 (15 marks) Use a separate writing booklet.
(a) The diagram shows a sketch of the curve $y=2^{4 x}$.

(i) Use the trapezoidal rule with three function values to find an approximate
value for $\int_{0}^{1} 2^{4 x} d x$.
(ii) Is the approximate for $\int_{0}^{1} 2^{4 x} d x$, an under approximation or an over approximation? Explain your choice.
(b) The concentration of the pesticide, Xpesto, in soil can be modelled by the equation

$$
P_{t}=P_{0} e^{-k t}
$$

where

- P_{0} is the initial concentration
- P_{t} is the concentration at time t
- t is the time, in days, after the application of the pesticide.
(i) Once in the soil, the half-life of a pesticide is the time taken for it's concentration to be reduced to one half of its initial value.
If the half-life of Xpesto is 25 days, find the value of k correct to 2 significant figures.
(ii) Eighty days after the initial application, what is the percentage decrease in concentration of Xpesto?

Question 15 (continued).
(c)

The region bounded by the curve $y=\ln (x-2)$ and the y-axis between $y=0$ and $y=2$ is rotated about the y-axis to form a solid.

Find the exact volume of the solid.
(d) Given that $\int_{0}^{a} 5 \sin 3 x d x=\frac{10}{3}, 0 \leq a<\pi$, calculate the value of a.

Question 16 (15 marks) Use a separate writing booklet.
(a) Solve $2 \tan x \sin ^{2} x=\tan x$ for $0 \leq x \leq 2 \pi$.
(b) An open cylindrical can is to have a surface area of $20 \pi \mathrm{~cm}^{2}$. The can has no lid.
(i) Let r centimetres be the radius of the can and h centimetres be its height. Show that $h=\frac{20-r^{2}}{2 r}$.
(ii) Hence, show that the total volume of the can is given
by $V=10 \pi r-\frac{1}{2} \pi r^{3}$.
(iii) Show that the maximum volume is obtained when the height of the can is equal to it's radius.
(c) (i) Show that the equation $4 \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=k$, where $k \neq 4$, can be written in the form

$$
\sec ^{2} \theta=\frac{k-1}{k-4} .
$$

(ii) Hence, or otherwise, solve the equation

$$
4 \operatorname{cosec}^{2}\left(2 x+75^{\circ}\right)-\cot ^{2}\left(2 x+75^{\circ}\right)=5,
$$

giving all values of x in the interval $0^{\circ}<x<180^{\circ}$.

End of paper

Year 12 Mathematics T-ial solutions
Multiple Cnoice

1. 5
2. B
3. A
4. B
5. A
$8 c$
6. $<$
7. B
$5 B$

Question 11
a)

$$
\begin{aligned}
& \frac{2}{\sqrt{6}-2} \times \frac{\sqrt{6}+2}{\sqrt{b}+2} \\
& =\frac{2 \sqrt{6}+4}{6-4} \\
& =\frac{2 \sqrt{6}+4}{2} \\
& =\sqrt{6}+2
\end{aligned}
$$

(1) Corect multiplier
(1) Correct simplification
b) $|x-4| \leqslant 2$
$-2 \leqslant x-4 \leqslant 2$

$$
2 \leqslant x \leqslant 6
$$

(1) correct boundaries
(i) correcty exprossing as a closed interval
c)

$$
\begin{gather*}
\frac{2-x}{3}-\frac{3-x}{2}=\frac{1}{5} \\
10(2-x)-15(3-x)=6 \tag{i}\\
20-10 x-45+15 x=6 \\
2 \quad 1
\end{gather*}
$$

correctly romaring fraction, or equivalem
d)

$$
\begin{aligned}
y & =(3 x+1)^{4} \\
\frac{d y}{d x} & =4(3 x+1)^{3} \times 3 \\
& =12(3 x+1)^{3}
\end{aligned}
$$

- (1) corre of deriradire

When $x=\frac{1}{3} \quad \frac{d y}{d x}=12\left(3 \times \frac{1}{3}+1\right)^{3}$
$=96$ - (i) correct subonitution and evalmation
e) $\frac{m \log _{b} a}{\log _{m} a}$
$=m \log _{b} a \div \frac{\log _{b} a}{\log _{b} m}$ - (1) correct change of base $=m \log _{b} / a \times \frac{\log _{b} m}{\log _{b} m} /$

$$
\left.=m \log _{t} m\right\}
$$

$$
\left.=\log _{b} m^{m}\right\}(1 \text { for either canswe. }
$$

F)

$$
\begin{aligned}
y & =x^{1 / 3} \\
\frac{d y}{d x} & =\frac{1}{3} x^{-2 / 3} \cdots(0)+w \\
& =\frac{1}{3 \sqrt[3]{x^{2}}}
\end{aligned}
$$

g) $\int \frac{x+2}{x^{2}+4 x} d x$
(1) - for $1 / 2$

$$
=\frac{1}{2} \ln \left|x^{2}+4 x\right|+c
$$

(1) - correct log and constant

$$
\begin{aligned}
& \text { (1) } \quad \tau= \\
& \left.\left\{0 n_{0}+-n / \Delta^{n}+\right\}\right\}= \\
& \text { (1) - } \int_{2 / 1}^{0}\left[\frac{\tau}{x} m+\right] \sigma= \\
& \operatorname{xpp}_{x / 1}^{2}\left(\frac{2}{x}\right)_{2}=\int_{z / 1}^{0}(4
\end{aligned}
$$

$$
\begin{aligned}
x=1 \quad y & =(1-2)\left(1^{2}+1\right) \\
& =-2 \\
x=\frac{1}{3} \quad y & =\left(\frac{1}{3}-2\right)\left(\left(\frac{1}{3}\right)^{2}+1\right) \\
& =-\frac{50}{27}
\end{aligned}
$$

use $y^{\prime \prime}$ to determine native

$$
\begin{aligned}
y^{\prime \prime} & =6 x-4 \\
x=1 \quad y^{\prime \prime} & =6(1)-4 \\
& =2>0 \quad \therefore(1,-2) \text { minimum. } \\
x=\frac{1}{3} \cdot y^{\prime \prime} & =6\left(\frac{1}{3}\right)-4 \\
& =-2<0 \quad \therefore\left(\frac{1}{3},-\frac{50}{27}\right) \text { maximum. }
\end{aligned}
$$

(iii)

(i) In $\triangle P Q T$ and $\triangle P S R$

$$
\angle Q P T=\angle S P R \quad \text { (common angle) }
$$

$$
\frac{P Q}{P S}=\frac{6}{12}=\frac{1}{2} \quad \text { giver }
$$

Grates

$$
\frac{P T}{P R}=\frac{8}{16}=\frac{1}{2} \quad \text { green }
$$

(1) reason
$\therefore \triangle P Q T \| \triangle S P R$ (2 pavis of matching in proporta and included ample equal)
(ii) $\frac{Q T}{S R}=\frac{1}{2}=\frac{4}{x}$
$\therefore x=8$ match sides in similar Δs.
\qquad
\qquad

$$
s-=x
$$

$$
o z-=x \neq
$$

$$
\begin{align*}
& (\downarrow+x) 8=\tau(\tau-h) \tag{1}\\
& (\downarrow+x) b^{2} \hbar=\tau(\tau-h) \\
& \tau=4 \text { und ray II }
\end{align*}
$$

$$
\begin{aligned}
& 0=0 \tau+x p \\
& -(01) \varepsilon+x b \\
& 0=\sqrt{5} \text { vym } \\
& =01-\sqrt{\varepsilon}+x\rangle
\end{aligned}
$$

јӧr чий－ 1 － フファッロッ（7）
（9ๆnsicd opouram joinns）

न्र्भ子 vōstruos（1）
－is pov 2mpnys（1）

$$
\partial \exists=\delta \text { (1) }
$$

－
（SHy）みЭg $\nabla \equiv$ うつg $\nabla \because$

vounwo a jg

smoो－
ssajbäd（1）

$0=s ा-f_{c}+x$ $s+x=$ ol－f
$(s-x){ }_{T}^{2}=S-G$

$$
(x-x)^{T}=\sqrt{T}=G
$$

＇d pog vibnonu crived ano गया． ＂ 78 rury pro $\forall g$ गuip

$$
\begin{gathered}
\tau \\
T-= \\
\frac{D}{S--} \\
\frac{(S-)-S}{\partial D-S}= \\
\frac{1 x-\tau}{T h-z}=d d^{2} w
\end{gathered}
$$

c) For $a x^{2}+5 x+a$ to be positive definite, $a>0, \Delta<0$.
$\Delta=b^{2}-4 a c$

$$
=5^{2}-4 \times a \times a
$$

$$
=25-4 a^{2}
$$

$$
\begin{equation*}
25-4 a^{2}<0 \tag{1}
\end{equation*}
$$

$$
25<4 a^{2}
$$

$$
4 a^{2}>25
$$

$$
a^{2}>25
$$

$$
4
$$

$$
\begin{equation*}
a<-\frac{5}{2}, \quad a>-\frac{5}{2} \tag{1}
\end{equation*}
$$

Since $a>0$,
$a>\frac{5}{2}$ is the only sold.
d)

$$
\begin{aligned}
\text { Total distance } & =10+2 \times S_{\infty} \\
& =10+2 \times \frac{a}{1-r} \\
& =10+2 \times \frac{8}{1-\frac{4}{5}} \\
& =90 \mathrm{~m}
\end{aligned}
$$

(1) Sos
(1) Total distance

b) $y=2-\cos 2 x$
$-\pi \leqslant x \leqslant \pi$
period $=\frac{2 \pi}{2}=\pi$

(1)-shape
(1)-scale
c) (i) $0<t<3$ and $t>6$
(ii) $t=0,3,6$
(iii) Parsice movee in positive alivection
for $0<t<3$
During $0 \leq t<1$ particle has constant acceleman so speed increases.
Duining $1 \leqslant t \leqslant 2$ parthels has zero acceleration so speed is coutan at $/ \mathrm{m} / \mathrm{s}$ During $2<t \leq 3$ particu has comtant decelenation so speed deareares
(1) - describe directidn
(1) - describe speed.
(iv)

$$
\begin{align*}
A & =\frac{1}{2} h(a+b) \\
& =\frac{1}{2} \times 1 \times(1+3) \\
& =2 \text { unit }^{2} \tag{1}
\end{align*}
$$

d)

$$
\begin{aligned}
3 x^{2}-4 x-1 & =0 \\
a=3 \quad b & =-4 \quad c=-1
\end{aligned}
$$

(i)

$$
\begin{array}{rlrl}
\alpha+\beta & =\frac{-b}{a} & \alpha \beta & =\frac{c}{a} \\
& =-\frac{(-4)}{3} & & =-\frac{1}{3} \\
& =\frac{4}{3} &
\end{array}
$$

(ii)

$$
\begin{aligned}
& (\alpha+2)(\beta+2) \\
= & \alpha \beta+2(\alpha+\beta)+40 \\
= & -1 / 3+2 \times 4 / 3+4 \\
= & \frac{19}{3} 0
\end{aligned}
$$

Lysテvaroctur hos＊

$$
\mu \frac{\varepsilon}{c}=[0 \sin -\Delta \varepsilon] \frac{\varepsilon}{s}
$$

$$
\text { 上 } \ggg 0 \text { 趽 }=\int_{0}^{0}\left[x_{\varepsilon} \operatorname{sen} \frac{\varepsilon}{\varepsilon}-\right.
$$

$$
\wedge\left[x^{\frac{1}{3}}+2 x_{2}+\frac{1}{5} \varepsilon\right]=
$$

$$
-[(7+x+0)-(x+2+8+8)] n=
$$

$$
\left.\frac{3}{a^{2}-x_{0}}+(0 x)-\left(\frac{2}{3}+\cos ^{2}+(i)-h\right)\right] \underline{y}=
$$

$$
\text { -1 }\left[\sqrt{1}^{\frac{1}{x}}+5^{a h}+6 \rightarrow\right] n=
$$

$$
\Lambda \operatorname{son}_{2}^{2}+6^{2}+x+\int_{2}^{0} 2=
$$

$$
\mu
$$

$$
\mathscr{P}=\left(r^{3}+2\right)_{2}^{e} \int^{2} \cdot n=1 \text { (2) }
$$

$$
\begin{align*}
& \frac{\dot{\varepsilon}}{0!}=x \operatorname{riv} \quad s_{3} \overbrace{0}^{0}(p) \\
& {\left[\mathrm{L} \mathrm{~F}_{2}^{5} 8+x^{2}\right] \frac{1}{2} \text { yo }}
\end{align*}
$$

$$
\begin{align*}
& 5^{2}+6^{x+1}+H= \\
& 2\left(6^{2 * r}\right)=e^{x} \\
& 6^{2+y}=x \tag{3}\\
&2-x)=62 \\
&(2-x) 4=h
\end{align*}
$$

$\%$

Quesion 16

$$
\begin{aligned}
\frac{\beta}{2} \pi r^{2} & =10 \pi \\
r^{2} & =\frac{20}{3} \\
r & =\sqrt{\frac{20}{3}}
\end{aligned}
$$

- (i) Solving for

$$
2 \tan x \sin ^{2} x-\tan x=0
$$

a) $\begin{aligned} & 2 \tan x \sin ^{2} x-\tan x=0 \\ & \tan x\left(2 \sin ^{2} x-1\right)=0\end{aligned}$

$$
\tan x\left(2 \sin ^{2} x-1\right)=0
$$

$\therefore \tan x=0$ or $\sin ^{2} x=\frac{1}{2}$
(1) correct separation $x=0, \pi, 2 \pi$ or $\sin x= \pm \frac{1}{\sqrt{2}}$
(i) correct values $\quad x=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$
for $\tan x=0$
(1)
3)

$$
\text { 1) } 20 \pi=2 \pi r h+\pi r^{2}
$$

$$
\begin{aligned}
\therefore 20 & =2 r h+r^{2} \\
2 r h & =20-r^{2} \\
h & =\frac{20-r^{2}}{2 r}
\end{aligned}
$$

(1) - Correct demonetration
i)

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi r^{2}\left(\frac{20-r^{2}}{24}\right) \\
& =\frac{\pi r\left(20-r^{2}\right)}{2} \\
& =\frac{20 \pi r}{2}-\frac{\pi r^{3}}{2} \\
V & =10 \pi r-\frac{1}{2} \pi r^{3}
\end{aligned}
$$

(1) - Correct demondtation
11)

$$
\begin{aligned}
& \frac{d v^{\prime}}{d r}=10 \pi-\frac{3}{2} \pi r^{2} \\
& \frac{d^{2} V}{d r^{2}}=-3 \pi r
\end{aligned}
$$

Niten $\frac{d V^{\prime}}{I T}=0$
(1) differentiatig and miaking

$$
\begin{aligned}
& \text { From i) } \\
& \qquad \begin{aligned}
h & =\frac{20-\left(\frac{2 \sqrt{15}}{3}\right)^{2}}{2\left(\frac{2 \sqrt{15}}{3}\right)} \\
& =\frac{20-\frac{60}{9}}{4 \sqrt{15}} \\
& =\frac{120}{9} \times \frac{3}{4 \sqrt{15}} \\
& =\frac{10}{\sqrt{15}} \times \frac{\sqrt{15}}{\sqrt{15}} \\
& =\frac{10 \sqrt{15}}{15} \\
& =\frac{2 \sqrt{15}}{3} \\
& =\sqrt{2}
\end{aligned} \\
&=1
\end{aligned}
$$

\therefore Volurne is max mulum when $h=r$
c) 1) $4 \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=K$

$$
\begin{array}{r}
\frac{4}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=k \\
4-\cos ^{2} \theta=k \sin ^{2} \theta \tag{i}
\end{array}
$$

to tms point or equiralent

$$
\begin{aligned}
& \begin{array}{l}
\text { +no, winbo } \\
\text { or Sindmons }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\frac{\left(s_{L}+x z\right)_{e} \operatorname{sos}}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1at Ronun! } \\
& n=\left(5 L+\operatorname{coc}_{2}\right) \text { ग3 } \because \\
& \frac{n-5}{1-5}=(5 L+x z)_{z} \geqslant 25 \\
& \text { Lostortin minap 2190tims (1)- } \frac{t-n}{1-\lambda}=0_{2} 225 \\
& \frac{(x-x)}{(1-x)}=\frac{e_{8} 50}{1} \\
& \frac{x-1}{x-1}=a_{c} \leq 0, \\
& (x-1) \cos _{2}=x-4 \\
& 0 \operatorname{son} \pi-\theta_{0} \operatorname{son}=\lambda-1
\end{aligned}
$$

