

SAINT IGNATIUS' COLLEGE

Trial Higher School Certificate

2004

MATHEMATICS

8:50am – 11:55 am Monday 23rd August 2004

Directions to Students

• Reading Time : 5 minutes	• Total Marks 120
• Working Time : 3 hours	
• Write using blue or black pen. (sketches in pencil).	• Attempt Question 1 – 10
• Board approved calculators may be used	• All questions are of equal value
• A table of standard integrals is provided at the back of this paper.	
• All necessary working should be shown in every question.	
• Answer each question in the booklets provided and clearly label your name and teacher's name.	

This paper has been prepared independently of the Board of Studies NSW to provide additional exam preparation for students. Although references have been reproduced with permission of the Board of Studies NSW, the publication is in no way connected with or endorsed by the Board of Studies NSW.

Total marks (120) Attempt Questions 1 – 10 All questions are of equal value

Answer each question in a SEPARATE writing booklet.

QUESTION 1(12 Marks)Use a SEPARATE writing booklet.Marks(a)Evaluate
$$\frac{(\sqrt{6}+1)^2}{\sqrt{6}-1}$$
 correct to three significant figures.2(b)Simplify $|-8|-|11|$.1(c)Simplify $\frac{x}{2} - \frac{2x-3}{5}$.1(d)Find the exact value of $\cos \frac{\pi}{3} + \cos \frac{3\pi}{4}$.2

(e) Find a primitive of
$$x^3 - 5$$
. 2

(f) Express
$$\frac{1}{5+\sqrt{2}} + \frac{1}{5-\sqrt{2}}$$
 in simplest surd form. 2

(g) In 2003, I travelled 18 480 km in my car, which was 17.5% less than the distance I travelled in 2002. What distance did I travel in 2002?

(a) Differentiate the following functions:

(i)
$$(7-3x^2)^6$$
. 2

(ii)
$$x \tan x$$
. 2

(iii)
$$\frac{x}{\sin 2x}$$
. 2

(b) Evaluate the following integrals:

(ii)
$$\int_{0}^{2} e^{3x} dx$$
. 2

(c) Find
$$\int \frac{6x}{x^2 + 3} dx$$
. 2

The diagram shows the points A(1, 0), B(4, 2) and C(0, 8) in the Cartesian plane.

(a)	Show that the equation of <i>BC</i> is $3x + 2y - 16 = 0$.	2
(b)	Show that $\angle ABC$ is 90°.	2
(c)	Find the length of <i>AB</i> .	2
(d)	Find the equation of the circle with centre <i>A</i> that passes through <i>B</i> .	2
(e)	The circle in (d) crosses the y axis between the origin and C at point D (not shown on the diagram). Find the coordinates of D .	2
(f)	Copy or trace the diagram into your Writing Booklet, and shade the region that satisfies both the inequalities:	2

$$3x + 2y - 16 \ge 0$$
 and $y \le 0$.

QUES	STION	4 (12 Marks)	Use a SEPARATE writing booklet.	Marks
(a)	In an a	rithmetic series,	the sixth term is 13 and the tenth term is 1.	
	(i)	Find the first ter	rm and common difference.	2
	(ii)	Find the sum of	the first twenty terms.	2

(b) A container holds 50 litres of oil. A pump withdraws 10 litres on the first stroke and 7.5 litres on the second stroke. On each future stroke, the pump withdraws ³/₄ of the amount of the previous stroke.
 Show that the container will never be emptied, and find how much oil will finally remain in the container.

3

- (i) Show that the equation of the normal to the parabola $y = x^2$ at the **2** P(1, 1) is x + 2y 3 = 0.
- (ii) This normal cuts the parabola again at Q. Find the coordinates of Q. 3

(a) The following table shows the values of a function for four values of *x*.

Marks

2

1

	x	1	2	3	4
	f(x)	1.2	3.7	5.2	1.1
Use the trapezoidal rule to	o estin	nate	$\int_{1}^{4} f$	(x) dx	ς.

(b) (i) Copy and complete this table for $f(x) = xe^x$, giving values to 2 decimal places.

The diagram shows the graphs of $y = \sin x$ and $y = \cos 2x$ for $0 \le x \le \frac{\pi}{2}$. **3** The graphs intersect at $A\left(\frac{\pi}{6}, \frac{1}{2}\right)$. Find the area of the shaded region.

(d)

The diagram shows the graph of $y = \sqrt{x-1}$ between (1, 0) and (5, 2). 4 The shaded region is rotated about the y axis. Find the volume of the solid formed.

Marks

(a)

The radius of a sector of a circle is 11.5cm, and its perimeter is 36.8cm.

- (i) Find the size of the angle θ to the nearest degree.
- (ii) Find the area of the sector.

3 1

(b)

ABCDEF is a regular hexagon, with each side of length x, and each angle 120°. Diagonals *AC*, *AE* and *CE* are drawn.

Copy or trace the diagram into your Writing Booklet.

(i)	Explain why $\angle BAC = 30^{\circ}$.	1
(ii)	Find the size of $\angle EAC$.	1
(iii)	Find the length of AC, in terms of x, using the Cosine Rule in $\triangle ABC$.	2
(iv)	Find the area of $\triangle ABC$ in terms of x.	1
(v)	Find the area of $\triangle ACE$ in terms of x.	1
(vi)	Show that the area of $\triangle ACE$ is half the area of the hexagon.	2

QUE	STION	7 (12 Marks)	Use a SEPARATE writing booklet.	Marks
(a)	(i)	Write down the	discriminant of $x^2 + kx + (k+3)$.	1
	(ii)	For what values have real and di	s of k does the equation $x^2 + kx + (k+3) = 0$ ifferent roots?	2
(b)	The e	quation of a parat	bola is $(x-4)^2 = 12(y+3)$.	
	(i)	Write down the	coordinates of the vertex of the parabola.	1

- (ii) What is the focal length of the parabola? 1
- (iii) Write down the equation of the directrix of the parabola. 1

The diagram shows the graph of the parabola $x^2 = 4ay$, with focus *S*, and *AB* is the latus rectum (that is, the focal chord perpendicular to the axis of the parabola).

Prove that the length of the latus rectum is 4a units.

2

ABCD is a parallelogram and M is the midpoint of AB.

- (i) Prove that $\triangle AMN$ is similar to $\triangle CND$. 2
- (ii) Prove that 2AC = 3NC. 2

3

(a) Solve the equation $\cos x + 2\sin x \cos x = 0$, for $0 \le x \le 2\pi$.

(b)

The velocity of a particle (v m/s) at time *t* seconds is shown in the diagram.

(i)	Find the total distance travelled by the particle in the first 5 seconds.	2
(ii)	After how many seconds is the particle the furthest from its starting point?	1
(iii)	Find the acceleration of the particle in the period $3 \le t \le 5$.	1

(c) The diameter of a tree (D cm) t years after planting is given by the formula

$$D = 60 - 50 e^{-0.2t} \, .$$

(i)	Find the diameter of the tree when it is planted.	1
(ii)	Find the diameter after 10 years.	1
(iii)	Find the rate at which the diameter is increasing after 10 years.	2
(iv)	What diameter will the tree eventually approach?	1

- (a) Wheat is poured from a silo into a railway truck at a rate *R* kg/s, given by *R* = 81*t* - t³ where *t* is the time in seconds after wheat begins to flow.
 (i) What is the rate of flow when *t* = 6?
 (ii) What is the largest value of *t* for which the expression for *R* is physically possible?
 (iii) Find an expression for the mass *M* kg of wheat in the truck after *t* seconds, if initially there was 1 tonne of wheat in the truck.
 - (iv) Calculate the total weight of wheat in the truck after 6 seconds. 1

A company wishes to locate its distribution centre such that its distance fom three different factories is a minimum.

According to a coordinate system, the factories are located at A(5, 0), B(0, 6) and C(0, -6), while the distribution centre lies on the *x* axis at D(x, 0).

- (i) Find an expression, in terms of *x*, for the total distance between the distribution centre and each of the factories, that is: Distance = DA + DB + DC
- (ii) Where should D be placed so that this total distance is a minimum.(There is no need to verify that it is a minimum.)
- (iii) What is this minimum total distance?

1

3

QUESTION 10 (12 Marks) Use a SEPARATE writing booklet. Marks

Consider the function $f(x) = \frac{e^x}{x}$.

(a) What is the domain of
$$f(x)$$
?
(b) The first derivative of $f(x)$ is $f'(x) = \frac{xe^x - e^x}{x^2}$.
Show that the second derivative can be written as:
 $f''(x) = \frac{e^x [(x-1)^2 + 1]}{x^3}$
(c) Find the coordinates of the stationary point and determine its nature.
(d) Show that there are no points of inflexion.
(e) For what values of x is the curve concave up and concave down?
(f) Find $\lim_{x \to -\infty} \frac{e^x}{x}$.
1

(g) Sketch the graph of
$$y = f(x)$$
. 2

End of paper

STANDARD INTEGRALS

< 0

$$\int x^n dx \qquad = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n$$

$$\int \frac{1}{x} dx \qquad = \ln x, \ x > 0$$

$$\int e^{ax} dx \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx \qquad = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx \qquad = \ln \left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x, x > 0$

SAINT IGNATIUS' COLLEGE

Trial Higher School Certificate

2004

MATHEMATICS

SUGGESTED SOLUTIONS

ANDA MATHEMATICS (20) - QUESTION 1.		
$\frac{(a)}{\sqrt{6}-1} = \frac{(\sqrt{6}+1)^2}{= 8 \cdot 20908}$	2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
$ (c) \frac{x}{2} - \frac{2x-3}{5} = \frac{5 \cdot x - 2 (2x-3)}{10} $ $ = \frac{x+6}{10} $		
(d) $\cos \frac{\pi}{3} + \cos \frac{3\pi}{4} = \frac{1}{2} - \frac{1}{\sqrt{2}}$	2	
(e) $\int (x^3 - 5) dx = \frac{1}{4} x^4 - 5 x$	2	
$ (f) \frac{1}{5+12} + \frac{1}{5-12} = \frac{5-\sqrt{2}+5+\sqrt{2}}{(5+12)(5-\sqrt{2})} $		
$= \frac{10}{25-2}$ $= \frac{10}{23}$	2	
(g) 82.5% of distance = 18480 1% of distance = <u>18480</u> 82.5		
100% of distance = 18 480 × 100 82.5		
= 22400 [travelled 22400 km in 2002.	2	i

	Year 12 Trial	HSC Examination	
	Question	Marker: TDS	
	Marks Awarded	Marker's Comments	
(a)	1	correct calculation	
	1	correct rounding	
(ь)	١	correct answer	
(0)	1	correct answer . students lost the mark for not expanding correctly2x-3 =+6	
$\langle q \rangle$	1	cos II = 2 . didn't have to	
	1	$\cos \frac{3\pi}{4} = -\frac{1}{\sqrt{2}}$ or rationalise denomination of the formation of the second	tor
e)	2	correct answer didn't take mark off for not having '+ C'	
F)	1	correct working	
	I	answer in simplest form	
g)	l	correct working . many students	
	1	correct answer got zero tor """ question as they	
		found 17.5% of	
		on. incorrect method.	

$$\frac{2004 \quad MRTHEMATICS (20) - QUESTION 2.}{(a) (i) \frac{d}{dx}(7-3x^{2})^{\frac{d}{d}} = (47-3x^{2})^{\frac{d}{d}} = (67-3x^{2})^{\frac{d}{d}} = (67-3x^{2})^{\frac{d}{d}$$

.

Year 12 Trial	HSC Examination
Question 3	Marker's Comments
Q ✓ ✓	fonovally well done. Studnets and knew the appropriate formula
b) V V	· Too many students did this wave Pythagoras. · Many made the socurreption the examinat pines thay wave referring to fant (a) relat then state the gradients explicitly.
∠ √ √	Well done. Sommelter brown.
d) -	Well done. Most proces how to get the eggs given centre and reduces.
e) v v	Many students believe that lines out the y-axis user $y=0$. This is false. Many did not state the answere explicitly $i.e$ $D = (0, \sqrt{12})$
f) ~ ~	Doma confusion suar y < 0. Consistant unth e).

		A BARTAN A A BARTAN A A
Questern 4		
$a)i)T_6 = 13$ Tio = 1	1. 2. 1-	
a+5a=13	d=-5	
a+9a = 1	2 - 15 = 13	
4d = -12	C - 28	•
$\frac{1}{10}$ C 20/2 + 10 + 1		- A ₂
$S_{20} = \frac{1}{2} \left(a + 19 \left(-3 \right) \right)$	1	ň,
10		
$b) S = 10 + 7.5 + \cdots$		
= 10		
- ⁵ / ₄	1	
- 40.		
10 likes will remain	·	
e) i) $y = x^2$	$M_N = -\frac{1}{2}$	1
y' = 2x	$y - 1 = -\frac{1}{2}(x - 1)$	1
at $x = 1$ $M_T = 2$	2g - 2 = -2C + 1	
· · · · · · · · · · · · · · · · · · ·)(+ 2y-3=0	
ii) x + 2y - 3 = 0		
$y = 3C^{2}$	$y(=-\frac{3}{2})$	<u> </u>
$x + 2(x^{2}) - 3 = 0$	$Y = \left(-\frac{3}{2}\right)^2$	
$2x^{2} + x - 3 = 0$	$= \frac{9}{4}$	L
(2x+3)(x-1)=0	(-31, 9/4)	
$\gamma(=-3)$		

Year 12 Trial Question	HSC Examination FOUR Marker: NM
Marks Awarded	Marker's Comments
1 1	") Well done. Mast scored
1	full marks
1	1000
-	ii) Well done
1	
	1
1	6) man could not
	data in de consit
	alternine de correct
	Series.
_	Many del not understand
	lang and root of
1	de So.
	Man could be t
	Muning could has
	"show that the contourer
	Court has a stilled .
	Carnot the empire
	(Poorly done).
1	e)i)Imk for correct gradient
	1 / P and i have
1	Imk for correct y-y, = M(x-x,)
	(Well done by most)
	Concrete J
1	(L) 0 and attempt
-	Ink for correct arring.
	to solve simultaneously.
1	
	Imk each for X & y
	coordinate at Q
_	
1	

$$\frac{2004 \quad MATHEMATICS (2U) - QUESTION S.}{(a) \int_{1}^{4} f(x) dac = \frac{1}{2} \left[\frac{1}{2} + 2(3 \cdot 7 + 5 \cdot 2) + 1 \cdot 1 \right]}{= 10 \cdot 0 S}$$

$$(b) (i) \qquad \frac{x}{16x} \frac{0}{0} \frac{1}{2 \cdot 72} \frac{2}{14 \cdot 78} \qquad (i)$$

$$(i) \int_{0}^{2} x e^{x} dx = \frac{1}{3} \left[0 + 4 \times 2 \cdot 72 + 14 \cdot 72 \right]}{= 1 \cdot 8 \cdot 5 S} (2 \text{ dec. pl}) \qquad (2)$$

$$(c) \qquad A - \int_{0}^{\frac{x}{2}} (\cos 2x - \sin x) dx$$

$$= \left[\frac{1}{2} \sin 2x + \cos x \right]_{0}^{\frac{x}{2}}$$

$$= \left(\frac{3}{4x} \frac{15}{2} + \frac{15}{2} \right) - \left(0 + 1 \right)$$

$$Areq = \left(\frac{34}{4x} - 1 \right) \quad unit^{2} \qquad (3)$$

$$(d) \qquad \qquad y = \sqrt{x - 1}$$

$$y^{2} = x - 1$$

$$y^{2} = (\frac{3}{4} + \frac{1}{3})$$

$$(d) \qquad (g = \sqrt{x - 1} + \frac{1}{3} + \frac{1}{3})$$

$$(f) \qquad (g = \sqrt{x - 1} + \frac{1}{3} + \frac{1}{3})$$

$$(g) \qquad (g = \sqrt{x - 1} + \frac{1}{3} + \frac{1}{3})$$

$$(g) \qquad (g = \sqrt{x - 1} + \frac{1}{3} + \frac{1}{3})$$

$$(g) \qquad (g = \sqrt{x - 1} + \frac{1}{3} + \frac{1}{3})$$

$$(g) \qquad (g = \sqrt{x - 1} + \frac{1}{3} + \frac{1}{3})$$

$$(g) \qquad (g = \sqrt{x - 1} + \frac{1}{3} + \frac{1}{3})$$

$$(g) \qquad (g = \sqrt{x - 1} + \frac{1}{3} + \frac{1}{3})$$

$$(g) \qquad (g = \sqrt{x - 1} + \frac{1}{3} + \frac{1}{3})$$

1

.

Year 12 Trial	HSC Examination
Marks Awarded	Marker's Comments
(a)	
Imank	2
Immk	1.2+2(3.7+5.2)+1.1
(b) Immk	table correctly completed (2d. b.)
Imark	1
Imank	D = 4(2.72) + 14.7-8
) man	
$\langle c \rangle$	
Immk.	So (cos 2x - sinx) dx or equivalent
Immk	integration I' sin 2x + cusx]0
Immk.	313-1 (rr cquiralent)
	4
(d)	· · · · · · · · · · · · · · · · · · ·
1 mmk.	$V = \pi \int_{a}^{b} x^{2} dy \dots \text{ or similar}$
Immk	$V = \overline{11} \int_{0}^{2} (y^{2}+1)^{2} dy \cdot it \cdot x^{2} = (y^{2}+1)^{2}$
· · · · * · · ·	
Imank.	$(y^2+1)^2 \rightarrow (y^4+2y^2+1)$ and
	integration I's ys+ 2 y3+y]
	o so or traba
	Minks and maded for use of in concel vance
	of x unless trivial.
Imask	2067
1	12

$$(b) \quad MATHEMATICS (2U) - QUESTION 6$$

$$(c) \quad P = ro + 2r$$

$$(c) \quad Sis = 11.5 + 0 + 2x11.5$$

$$(c) = 1/2 radians$$

$$(c) = 1/2 radi$$

-

Year 12 Trial HSC Examination					
Question	Marker: GJA				
Marks Awarded	Marker's Comments				
V	$\Delta = k^2 - 4(k+3) = k^2 - 4k - 12$				
	A>O (real and different - learn the different cases)				
~	$(K-6)(K+2) > 0$ \rightarrow use a sketch to				
\checkmark	K<-2 or K>6 answer.				
\checkmark	V(4,-3) -> draw a plottch				
\checkmark	a=3 to work out the				
1	y=-6 anower .				
<pre> < {</pre>	easiest method let $y=\alpha$ definition Solve $x=\pm 2\alpha$.				
\checkmark	2a + 2a = 4a				
V	} any two (atternate 25 in 11 lines) connect reasons (vertically opposite 25)				
\checkmark	conclusion + conect reason (equiangular)				
\checkmark	Needed to prove $\frac{AN}{NC} = \frac{1}{2}$				
2,	using properties of III DS				
51	Note $AC = \frac{1}{2}NC + NC$.				

$$\begin{array}{c} 2004 \quad MATHEMATICS (2U) - QUESTION 8 \\ \hline \\ (a) \qquad cos x + 2 sin x cos x = 0 \\ cos x (1 + 2 sin x) = 0 \\ cos x = 0 \quad or \quad sin x = -\frac{1}{2} \\ x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{7\pi}{6}, \frac{7\pi}{6} \\ \hline \\ x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{7\pi}{6} \\ \hline \\ (b) 0) Total distance travelled = area between curve o x axis \\ = 8x3 + \frac{1}{3}x1 \times 8 + \frac{1}{3}x1 \times 8 \\ \hline \\ \hline \\ (b) 0) Total distance travelled = area between curve o x axis \\ = 8x3 + \frac{1}{3}x1 \times 8 + \frac{1}{3}x1 \times 8 \\ \hline \\ \hline \\ (b) 0) Total distance travelled = area between curve o x axis \\ = 8x3 + \frac{1}{3}x1 \times 8 + \frac{1}{3}x1 \times 8 \\ \hline \\ \hline \\ (b) 0) Total distance travelled = area between curve o x axis \\ = 8x3 + \frac{1}{3}x1 \times 8 + \frac{1}{3}x1 \times 8 \\ \hline \\ \hline \\ (b) 0) Total distance travelled = area between curve o x axis \\ = 8x3 + \frac{1}{3}x1 \times 8 + \frac{1}{3}x1 \times 8 \\ \hline \\ \hline \\ (c) 0) Furthest from starting point after 4 seconds (1) \\ \hline \\ (ii) Gradient = -\frac{16}{2} = -8 \\ \therefore acceleration = -8 m/s^2. \\ \hline \\ (i) When t = 0, D = 60 - so e^{-0.2t} \\ \hline \\ (i) When t = 0, D = 60 - so x \times e^{-0.3x10} \\ \hline \\ (ii) \frac{dD}{dt} = -son(-0.2) e^{-0.2t} \\ = 10 e^{-0.2t} \\ \hline \\ (iii) \frac{dD}{dt} = -son(-0.2) e^{-0.2t} \\ = 10 e^{-0.2t} \\ \hline \\ When t = 10, \frac{dD}{dt} = 10 \times e^{-2} \\ \hline \\ When t = 10, \frac{dD}{dt} = 10 \times e^{-2} \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (iv) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (v) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (v) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (v) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (v) As t = 0, e^{-0.2t} = 0 \\ \hline \\ (v) As t = 0$$

$$\begin{array}{l} 2004 \quad MATHEMATICS \ (2U) - QUESTION \ q\\ (a) \qquad R = $$it - t^3$ \\ (i) \quad When \ t = 6, \ R = $gi \times 6 - 6^3$ \\ Rate = $270 \ kyls. \end{array}$$

$$\begin{array}{l} (i) \quad When \ t = 6, \ R = $gi \times 6 - 6^3$ \\ Rate = $270 \ kyls. \end{array}$$

$$\begin{array}{l} (j) \quad Rate \ must \ bc \ positive \ \therefore \ git - t^3 > 0 \\ t(gi - t^3) > 0 \\ f(gi - t^3) > 0 \\ f(gi - t^3) > 0 \\ f(gi) \quad M = \frac{$gi}{2t} t^2 - \frac{1}{4t} t^4 + c \\ When \ t= 0, \ M = $1000 \ \therefore \ C = 1000 \\ \therefore \ M = \frac{$gi}{2t} t^2 - \frac{1}{4t} t^4 + 1000 \\ f(gi) \quad M = \frac{$gi}{2t} t^2 - \frac{1}{4t} t^4 + 1000 \\ f(gi) \quad When \ t= 6, \ M = \frac{$gi}{2t} \times 6^2 - \frac{1}{4} \times 6^4 + 1000$ \\ f(gi) \quad When \ t = 6, \ M = \frac{$gi}{2t} \times 6^2 - \frac{1}{4} \times 6^4 + 1000$ \\ f(gi) \quad G(gi) \quad Distance: \ D = DA + DB + DC \\ = $(s-x) + 12(x^2+36)^{\frac{1}{2}}$ \\ = $(s-x) + 12(x^2+36)^{\frac{1}{2}}$ \\ for \ \frac{dD}{dx} = 0, \ f(x^2+36) = 2x \\ x^2+36 = 4x^2 \\ x^2+36 = 4x^2 \\ x^2+36 = 4x^2 \\ x^2+36 = 4x^2 \\ x^2 + 36 = 4x^2 \\ x^2 + 36 = 4x^2 \\ f(gi) \quad Minimum \ olistance = (s - \sqrt{g}) + 2\sqrt{(\sqrt{g})^2 + 36} \\ = $s - 2\sqrt{3} + 2x + \sqrt{5} \\ = $s - 2\sqrt{3} + 2x + \sqrt{5} \\ = $s - 6(5 \ (or \ 15.4 \ 1dp) $ \end{array}$$

7

.

Very 12 Trial	HSC Evamination	1
Question	Marker: GTA	
Marks Awarded	Marker's Comments	
	easiest mark on	
	the entire excam /	
\checkmark	R = 270 kg/s	
\checkmark	8H-t3>0	
\checkmark	t=9 (see sketch).	
\checkmark	$M = \frac{81}{2}t^{2} - \frac{1}{4}t^{4} + C$	
\checkmark	$M = \frac{81}{2}t^2 - \frac{1}{4}t^4 + 1000.$	
\checkmark	Total Weight = 2134 kg	
\checkmark	any 1 of the distances correct (09,08 or	IC)
\checkmark	$(5-x) + 2(x^2+36)^{\frac{1}{2}}$ * look at at DA	diagram to work = 5-x
\checkmark	$\frac{dD}{dx} = -1 + \frac{2x}{\sqrt{x^2 + 36}} \text{and} DA = (x-5)$	trautule if instead of (5-sc).
\checkmark	$4x^2 = x^2 + 36$	
\checkmark	$x = \sqrt{12}$ (since $x > 0$).	
	let x=1/2	
\checkmark	$Min distance = 5+6\sqrt{3}$ [or 15.4 (10	[[q.t

2004 MATHEMATICS (20) - QUESTION 10.		-
$f(x) = \frac{e^x}{x}$	\bigcirc	
(a) Domain: all x except x=0	\odot	
(b) $f'(x) = \frac{xe^{x} - e^{x}}{x^{2}}$ $f''(x) = \frac{x^{2}\left[e^{x} + xe^{x} - e^{x}\right] - \left[xe^{x} - e^{x}\right]zx}{x^{4}}$		ь)
$= \frac{x^{3}e^{x} - 2x^{2}e^{x} + 2xe^{x}}{x^{4}}$ $= xe^{x}(x^{2} - 2x + 2)$		c)
$= \frac{e^{x} \left[(x-i)^{2} + i \right]}{x^{3}}$	2	d)
(c) Stationary point: $f'(x) = 0$ \therefore $e^{x}(x-1) = 0$		í
x = 1, $y = e$. $f''(1) = \frac{e' \times 1}{1} > 0$ \therefore Stationary point is a minimum at (1,	e) . 3	e)
(d) Points of inflexion when $f''(x) = 0$. $e^x > 0$, $(x-i)^2 + i > 0$ for all $x : f''(x) \neq 0$		
No points of inflexion.		
(e) Concave up: f"(x) >0. Occurs for x >0 Concave down: f"(x) <0. Occurs for x <0.	2	
$(f) \lim_{x \to -\infty} \frac{e^{x}}{x} = 0$		f)
(g)		
	2	

	Year 12 Trial HSC Examination				
	Question	O Marker: TDS			
	Marks Awarded	Marker's Comments			
a)	l	correct answer			
ь)	1	correct application of quotient rule			
	1	obtaining required result.			
		• once again, careful of expansions where there's a minus sign in front of the bracket.			
c)	l	correct a coordinate			
	1	correct y coordinate			
	Ę	testing for nature.			
d)	l	had to show why there are no solutions for $f''(x) = 0$.			
e)	I	correct domain for concave up			
	l	 correct domain for concave down. many students tested around the stationary point (x=1) for concavity. This led to incorrect solution. Others assumed that since the curve didn't have a point of inflexion it was always concave up or concave down. For correct answer, you had to consider what values of x made f"(x) 0 and f"(x) < 0. 			
f)	l	correct answer			
	1	correct curve in first quadrant, showing turning point.			
	L.	with curve approaching the scaxis and y axis.			