Total marks (120) Attempt Questions 1 – 10 All questions are of equal value

Answer each question in a SEPARATE writing booklet.

QUESTION 1 (12 MARKS)
 Use a SEPARATE writing booklet
 Marks

 (a)
$$f(x) = 2x^3 - 3x$$
. Evaluate $f(-3)$.
 1

 (b) Simplify $2 \times |-5| - |-12|$.
 1

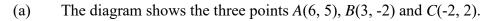
 (c) Simplify $\frac{4x^2 - 9}{4x + 6}$.
 2

(d) Rationalise the denominator and simplify
$$\frac{\sqrt{3}-1}{\sqrt{3}+1}$$
. 2

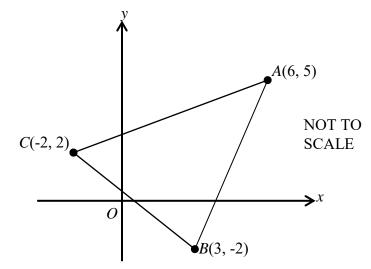
- (e) Find the values of $\frac{\tan x}{x+1}$ when x = 2.3 radians, giving your answer correct 2 to two decimal places.
- (f) The length of a rectangle is increased by 5% and the width is decreased by 2%. 2Find the percentage increase in its area.

(g) Solve the inequality
$$2x^2 + 7x - 4 \ge 0$$
. 2

(a) Differentiate the following functions:

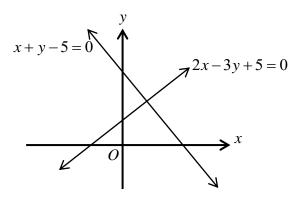

(i)
$$3x^2 - 2\sqrt{x}$$
. 2

(ii)
$$\frac{1}{(3x-2)^2}$$
. 2


(b) Find
$$\int (e^{2x} - \sin x) dx$$
. 2

(c) Evaluate
$$\int_{4}^{5} \frac{1}{x-3} dx$$
 correct to two decimal places. 2

(d)(i)Differentiate
$$x^2 \ln x$$
.2(ii)Hence find $\int x \ln x \, dx$.2



.••

(1)	Find the length of AC.	1
(ii)	Show that the equation of AC is $3x - 8y + 22 = 0$.	2
(iii)	Find the perpendicular distance from <i>B</i> to <i>AC</i> .	2
(iv)	Hence find the area of $\triangle ABC$.	2

(b) The diagram shows the graphs of the lines x + y - 5 = 0 and 2x - 3y + 5 = 0.

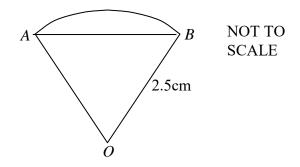
(i) Find the coordinates of the point of intersection of the two lines.

(ii) Copy the diagram into your writing booklet, and shade the region which satisfies both the inequalities $x + y - 5 \le 0$ and $2x - 3y + 5 \le 0$.

(a) Solve the equation
$$2^{2x} - 7 \times 2^x - 8 = 0.$$
 3

(b)	(i)	Write down the discriminant of the expression $kx^2 + 4x + k$.	1
	(ii)	For what values of k does the equation $kx^2 + 4x + k = 0$ have	2

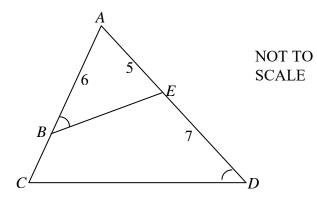
(ii) For what values of k does the equation $kx^2 + 4x + k = 0$ have no real roots?


(c) The equation of a parabola is
$$x^2 = -8(y+2)$$
.

(i)	Write down the coordinates of the vertex of the parabola.	1
(ii)	What is the focal length of the parabola?	1
(iii)	Write down the coordinates of the focus of the parabola.	1
(iv)	What is the equation of the directrix of the parabola?	1

(d) If
$$\alpha, \beta$$
 are the roots of the quadratic equation $ax^2 + bx + c = 0$, prove that $(\alpha - \beta)^2 = \frac{b^2 - 4ac}{a^2}$.

(a) In $\triangle PQR$, PQ = 12 cm, QR = 8 cm, and the area of the triangle is 28.8 cm². **3** Find two possible values for the size of $\angle PQR$ (to the nearest degree).

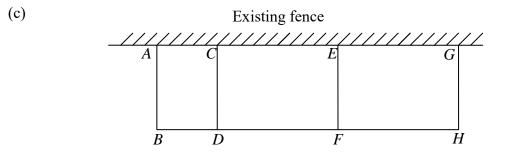

(b)

The curve AB is the arc of a circle, centre O and radius 2.5cm. The length of the arc is 4cm.

(i)	Show that $\angle AOB = 1.6$ radians.	1
(ii)	Find the length of the chord AB (to one decimal place).	2
(iii)	Find the area of the minor segment formed by arc <i>AB</i> and the chord <i>AB</i> .	2

(c)

In the diagram, $\angle ABE = \angle ADC$, AE = 5 cm, DE = 7 cm, AB = 6 cm.


(i) Prove that $\triangle ABE$ is similar to $\triangle ACD$.

(ii) Hence find the length of *BC*.

QUESTION 6 (12 MAR	RKS) Use a SEPARATI	E writing booklet	Marks
--------------------	---------------------	-------------------	-------

- (a) In an arithmetic series, the sum of the first 16 terms is 288 and the
 4 sixth term is 8.
 Find the first three terms of the series.
- (b) Find the least positive integer *n* that satisfies the inequation $4 \times (1.2)^n > 560.$ 3
- \$1500 is deposited in an account at the <u>start</u> of each year, the first deposit being in 2006 and the last in 2015.
 The account pays interest at 8% p.a., compounded half-yearly.
 - (i) Find the value of the first deposit at the end of 2015. 2
 - (ii) Find the total value of the account at the end of 2015. **3**

- (a) Find the equation of the normal to the curve $y = 3x^2 8x + 2$ at the **3** point (2, -2) on the curve.
- (b) Show that the curve $y = x^3 12x^2 + 48x + 50$ has only one stationary 4 point , and show that it is a horizontal point of inflexion.

A rectangular yard is to be constructed using an existing fence as one side, and the yard is to be divided into three rectangular regions, as shown in the diagram.

40 metres of fencing is to be used to construct the five lengths of fencing, that is: *AB*, *CD*, *EF*, *GH*, and *BH*.

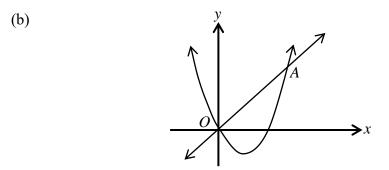
- (i) If the length of AB is x metres, find the length of BH as a function 1 of x.
- (ii) Hence find the dimensions of the yard so that the total area is a maximum. 4

QUESTION 8 (12 MARKS)	Use a SEPARATE writing booklet	Marks
------------------------------	--------------------------------	-------

(a) (i) State the period of the function
$$y=1+\sin 2x$$
. 1

(ii) Hence sketch the graph of
$$y = 1 + \sin 2x$$
 for $-\pi \le x \le 2\pi$. 3

(b) If
$$\cos \theta = -\frac{2}{3}$$
 and $\tan \theta > 0$, find the exact value of $\sin \theta$ (without 2 finding the value of θ).


(c) (i) Sketch the graph of
$$y = \cos x$$
 for $0 \le x \le 2\pi$. 1

(ii) Hence solve the inequation
$$\cos x \le \frac{\sqrt{3}}{2}$$
 for $0 \le x \le 2\pi$. 2

(d) (i) Given the trigonometric identity $\sin^2 \theta + \cos^2 \theta = 1$, what operation 1 will produce the identity $\tan^2 \theta + 1 = \sec^2 \theta$?

(ii) Hence find
$$\int (\tan^2 x) dx$$
. 2

(a) The arc of the graph of $y = 4 - x^2$ between (0, 4) and (3, -5), is rotated **3** about the y axis. Find the volume of the solid formed.

The line y = 2x and the parabola y = x(x-3) meet at O(0, 0) and A.

- (i) Find the *x* coordinate of *A*. 1
- (ii) Hence find the area bounded by the line and the parabola. **3**

(c) A function y = f(x) has the following function values:

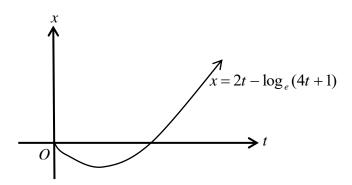
x	0	2	4	6	8
f(x)	3.2	1.4	0.6	2.2	3.6

(i) Use Simpson's Rule with five function values to find the approximate 2 value of

$$\int_0^8 f(x)\,dx.$$

(ii) The graph of y = f(x) for $0 \le x \le 8$ is rotated about the *x*-axis. Use Simpson's Rule and five function values to find the approximate volume of the solid formed.

(a)	The nu	Sumber of bacteria N in a colony after t minutes, is given by $N = 2000 e^{0.005t}$	
	(i)	Find the number of bacteria when $t = 10$.	1
	(ii)	Find the rate at which the colony is increasing when $t = 10$.	2
	(iii)	Find the time taken for the population to double.	1


- (b) A particle moves along a straight line. Its position x metres from O, t seconds after starting, is given by $x = 2t \log_e(4t + 1)$
 - (i) Show that the velocity, v m/sec, and the acceleration, a m/sec², are : 2

$$v = \frac{8t-2}{4t+1}$$
 and $a = \frac{16}{(4t+1)^2}$

(ii) Find the initial velocity <u>and</u> the initial acceleration. 2

1

- (iii) Find when the velocity is zero.
- (iv)

The diagram shows the displacement-time graph. On separate number planes, showing relevant features, draw:

(α)	the velocity – time graph	2	
(β)	the acceleration – time graph.	1	

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

NOTE: $\ln x = \log_e x, x > 0$

H.S.C. TRIAL EXAMINATION 2006 1, MATHEMATICS

SOLUTIONS AND MARKERS

· · ·

COMMENTS.

Mathematics: Question 1 Suggested Solutions Marks Marker's Comments Awarded $f(x) = 2x^3 - 3x$ (a) No problems 1 $f(-3) = 2(-3)^3 - 3(-3)$ = - 45 $(b) 2 \times |-5| - |-12| = 10 - 12$ No problems 1 = -2 $= \frac{(2x-3)(2x+3)}{2}$ (c) $\frac{4x^2-9}{4x+6}$ Correct factoring L 2(2×+3) Correct simplify 2x-3 1 2 $(d) \frac{\sqrt{3}-1}{\sqrt{3}+1}$ $\frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$ Correct first step. = 1 $= \frac{3 - 2\sqrt{3} + 1}{3 - 1}$ Many did not 3 - 1 $4 - 2 \sqrt{3}$ Simplify FULLY. z 2-√3 2 Ĺ. 1 (e) $\frac{\tan x}{x+1} = \frac{\tan 2.3}{2.3+1}$ NB Radians Correct substitution 2 = -0.34 (2d.p.) Correct rounding. Ì__ (f) New area = (1.05x)(0.984) Correct in terpretation 1 1.029 24 Many ded not indicate correct where sc, y are length and Dreadth of original rectangle. increase of 2.9% . Area increases by 2.9% 2 $2x^{2} + 7x - 4 \ge 0$ Correct factoring (g) $(2x-1)(x+4) \ge 0$ Correct values x < -4, x = 5 2 AND inequality signs.

Mathematics: Question 2		1
Suggested Solutions	Marks Awarded	Marker's Comments
$d(22^2 - 7) d(22 - 4)$	Awarued	
$(a)(i) \frac{d}{dx} (3x^2 - 2\sqrt{x}) = \frac{d}{dx} (3x^2 - 2x^{\frac{1}{2}})$		
$= 6x - 3c^{-1}$		
$oR 6x - \frac{1}{\sqrt{x}}$	(2)	
$(ii) \frac{d}{dst} \frac{1}{(3x-2)^2} = \frac{d}{dst} (3x-2)^{-2}$		Students who used
$a_{32}(32-2)^2 = a_{32}(322-2)^2$		Brothent R. made
$= -2(3x-2)^{-3} \times 3$		many more error
$=\frac{-6}{(3x-2)^3}$	2	
$(3x-2)^{3}$	<u> </u>	
$(1) \left(\int_{-2x}^{2x} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{2x} \int_{-1}^{1} \int_{-1}^{1}$		Check answer by
$(b) \int (e^{2x} - \sin x) dx = \frac{1}{2}e^{2x} + \cos x + C$		Diff this avoids
	(2)	
$c = c^{s}$		common error of sig or multiplier of 2.
$(C) \int_{4}^{5} \frac{1}{x-3} dx = \left[\log_{e} (x-3) \right]_{4}^{5}$		
$= log_e 2 - log_e 1$		
$= loq_e^2$ (2)	
ے ہے۔ میں		
$(\mathcal{A})(i) \stackrel{d}{=} sc^2 \ln x = \ln x \times (2x) + sc^2 \times \frac{1}{x}$		Use Product R.
$= 2 \times \ln x + x ($	$\overline{\mathbf{x}}$	
= 2x mx + x	2	
		1 ma) - L -
(ii) $2x dn x = \frac{d}{dsc} x^2 ln x - x$		1 mont for recognision
$x \ln x = \frac{1}{2} \frac{d}{dsc} x^2 \ln z - \frac{1}{2} x$		$\int x \ln x dx = \frac{1}{2} x^2 \ln x$
se vin e - 2 dise - 2		J
$\int x \ln x dx = \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + \frac{1}{4} x$		
	2)	
•		
		•
		· · · ·
· ·		

.

•

`

Mathematics: Question 3 Suggested Solutions Marks Marker's Comments Awarded (a) (i) $AC = \sqrt{8^{2}+3^{2}}$ Well done 1 1 = 173 units. $\frac{y-2}{x+2} = \frac{5-2}{6+2} = \frac{3}{8}$ Imk for gradiat 1 (ii) AC: Imk correct method L 3x+6 = 8y-16 2 3x - 8y + 22 = 0 Some did not $\frac{3\times 3 - 8\times (-2) + 22}{\sqrt{3^4 + 8^2}}$ Ļ (iii) cl= know formula. 1 $=\frac{47}{\sqrt{73}}$ units 2 」 」 full mks if incorrect (iv) Area $\triangle ABC = \frac{1}{2} \times \sqrt{73} \times \frac{47}{\sqrt{23}}$ pt (111) Used. = 23.5 unit 2 2 L (b) (i) · (1) Generally well x + y = 52 sc - 3 y = -5 (2) done. 2x' + 2y = 10(3) $(1) \times 2^{1}$ Some simple errors - 5 y = -15 (2) - (3): 1 y = 3 $\therefore x = 2$ from (1) in calculation. L Point of intersection is (2,3)2×-3y +5≤0 (ii) x+y-5≤0, Inik for EACH 2x-3y+5=0 correct region. 1 Quite a feur concless arcors mshading x+y-5=0

Mathematics: Question 4- Suggested Solutions	Marks	Marker's Comments
	Awarded	IVIAINCI S COMMENIS
(a) $2^{2x} - 7x2^{2} - 8 = 0$	-	
$Let u = 2^{2}$: $u^{2} - 7u - 8 = 0$		
(m - 8)(m + 1) = 0		
u = 8 or u = -1		
$2^{2} = 8 \text{ or } 2^{2} = -1$		
x=3 is the only solution. (3	
$\mathbf{J}_{\mathbf{r}}$		
(b) (i) $kx^{2} + 4x + k$	_	
$\Delta = 16 - 4 k^2 \qquad ($	1)	•
(i) For no real roots, a <0		Draw sketch to
$16 - 4k^2 < 0$ $k^2 > 4$		solve k2>4
K > 4 K < -2, K > 2 ($\overline{\mathbf{D}}$	$\sum_{i=1}^{n} \frac{1}{\sqrt{1-1}} = \frac{1}{\sqrt{1-1}}$
(5	-2 2 k
(c) $x^2 = -8(y+2)$		ا باست و ا
(i) Vertex (6, -2) -2	▶	Students who drin
(ii) Focal length = 2 units.		sketch made for
(iii) Focus (0, -4)		Jewer errors.
(iv) Directrix: y=0		$\chi^2 = -44(y-k)$
о С	, 1)	NB length =>+2
		OR.
$ (d) ax^2 + bx + c = 0 $		(-b+VD2-422b-
$(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$		24
$= d^2 + 2\alpha\beta + \beta^2 - 4\kappa\beta$		
$= (\alpha + \beta)^2 - 4 \propto \beta$	· · · · · · · · · · · · · · · · · · ·	$= \left(\frac{2\sqrt{b^{4}-4AL}}{2A}\right)^{2}$
$= \left(-\frac{b}{a}\right)^2 - 4\left(\frac{c}{a}\right)$		XA.
$= \frac{b^2}{\alpha^2} - \frac{4c}{\alpha}$		
$= b^2 - 4ac$		
$= \frac{D}{a^2}$	2)	
		κ.
· · · · · · · · · · · · · · · · · · ·		24

Mathematics: Question 5 Suggested Solutions Marks Marker's Comments Awarded P (a) Using Area = 1 ab sinc 1Z 1 x 12 x 8 x sin 0 = 28.8 conect substitution 0 into area formula $\sin \theta = \frac{28.8}{48}$ 8 = 0.6 (v) acute (v) obtuse $\phi = 37^{\circ}, 143^{\circ}$ 3 1= 10 (b) (i) 4 = 2.5 8 conect substitution 4. A = = 1.6 radians. 1 Lorest . (ii) $AB^2 = 2.5^2 + 2.5^2 - 2 \times 2.5 \times 2.5 \cos 1.6^{c}$ satution using (COSINE) = 12.5 -12.5 COS1.6 the coine mile RULEI - 12.865 AB = 3.6 cm (id. P) $\frac{x}{0.8^{2}/2.5} = \frac{3c}{2.5} = \sin 0.8 \sqrt{2.5}$ OR salution making 2c = 2.5 sin 0.8 a right angled = 1.793 triangle. : AB = 3 6 cm (101 P) $Area = \frac{1}{2}r^2(\theta - \sin\theta)$ (iii) Note: calculator = ± x 2.52 (1.6 - sin 1.6) must in radians mode = 1.876 cm² (3 dp) for this question 2 (c)(i) In AABE, AACD LABE = LADC (given) LBAE = LDAC (same angle) equiangular A ... AABE // LACD (two angles equal) 6+x (ii) Let BC = x cm $\frac{6}{5} = \frac{12}{6+x}$ BL 36 + 6x = 60if you drow the 2 626 = 24 similar triangles JC = 4 next to each other :. BC = 4 cm you will get the ratio right.

e :

Mathematica Quartian 7	e	
Mathematics: Question 7		
Suggested Solutions	Marks Awarded	Marker's Comments
(a) $y = 3x^2 - 8x + 2$ $\frac{dy}{dx} = 6x - 8$		
$At(2,-2), dy = 6 \times 2 - 8 = 4.$	1	
Gradient of normal = $-\frac{1}{4}$.	1	
Normal: $y + 2 = -\frac{1}{4}(x - 2)$	1	· · · · · · · · · · · · · · · · · · ·
4y + 8 = -3c + 2 x + 4y + 6 = 0 3		
(b) $y = x^{3} - 12x^{2} + 48x + 50$		It is not true
$\frac{dly}{dsc} = 35c^2 - 245c + 48$ $\frac{dsc}{dsc} = 3(x^2 - 8x + 16)$		that: dy =0 and
$= 3(x - 4)^{2}$	4	$\frac{d^2 u}{dx^2} = 0$
At stationary point, $\frac{dy}{dsc} = 0$ $\therefore 3(x-4)^2 = 0$ $\therefore x = 4$		defines a H.P.I.
There is only one stationary point		(check with y=x4)
$\frac{d^{2}y}{dx^{2}} = 6x - 2t$ when $x = 4$, $\frac{d^{2}y}{dx^{2}} = 6x + -24 = 0$	1	first derivative test
when $x = 3$, $\frac{d^2 4}{dx^2} = 6 \times 3 - 24 = -6$	>1	
when $x = 5$, $\frac{d^2y}{dx^2} = 6x5 - x^4$		x 3 4 5 dy + 3 0 + 3
$d^{2}y = 0$ and concervity changes.	1	TRE 1 3 0 13
$\overline{dx^{\lambda}} = 0$ and \int		
$(c)(i) \qquad 4x + Bt = 40 Bt = 40 - 4x \qquad (1)$		
(ii) $A = x (40-43c)$ = $40x - 43c^{2}$	1	
$\frac{dA}{du} = 40 - 8x$ $= 0 \text{ when } x = 5.$	1	
$\frac{d^2A}{dx^2} = -8 < 0$	1	Must prove Max not
:. Area is a maximum when		just assume
AB = 5m, BH = 20m. (4)	1	Read & concfully Area not sequired
		The second se

. 1

Mathematics: Question g
Suggested SolutionsMarket's Comments
AwardedMarket's Comments(a)
$$g = 1 + \sin 2x$$

(b) $g = 2\pi + \pi$
(c)11Well done.
L for shape
L position(a) $2^{\frac{1}{2}}$
(f) $2^{\frac{1}{2}}$
(f) $2^{\frac{1}{2}}$
(f) 3^{-1} 11(b) $\cos s = -\frac{\pi}{3}$, $\tan \theta > 0$
(f) 3^{-1}
(f) 3^{-1}
(f) 3^{-1}
(f) $1 - \pi - 2 + \pi$
(f)(b) $\cos s = -\frac{\pi}{3}$, $\tan \theta > 0$
(f) 3^{-1}
(f) 3^{-1}
(f) $1 - \pi - 2 + \pi$
(f)(c) $\cos s \sin^2 + \cos^2 g = 1$
(f) $1 + \pi - 2 + \pi$
(f) $1 + \pi - 2 + \pi$
(f)(c) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f) $1 + \pi - 2 + \pi$
(f)(a) $\cos s \sin^2 + \cos^2 g = 1$
(f) $1 + \pi - 2 + \pi$
(f)(a) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$ (a) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(a) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(a) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(b) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(a) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(b) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(a) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(b) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(a) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(b) $(1) = \frac{\pi}{3}$
(f) $(1) = \frac{\pi}{3}$
(f)(a) $(1) = \frac{\pi}{$

Mathematics: Question \mathcal{Q} . Suggested Solutions Marks Marker's Comments Awarded y = 4 - x2 (a) (6,4) -some notated V= TT / Jc? dy about the si $= \pi \int_{-\infty}^{4} (4-y) \, dy$ ダ ナ <u>-</u> -<u>-</u> axis $= \pi \left[4y - \frac{1}{2}y^{2} \right]_{-5}^{T}$ -gorerally OK. = TT[(16-8)-(-20-12=)] (3,-5) ľ Volume = 40.5 Tr unit 3. 3 (6) y = 23c, y = 3c(x-3) $x^{2} - 3x = 2x^{2}$ (i) well done. $x^2 - 5x = 0$ x(x-s)=0x=0 or x=5. : pr-coord of A is x=5 1 -many fried (ii) $A = \int_{a}^{a} (y_1 - y_2) dx$ other ways with $= \int_{0}^{5} [2x - (x^{2} - 3x)] dx$ SOME SUCCESS. $= \int_{0}^{\infty} (s^{2}x - x^{2}) dx$ - Some divided 1 $= \int \frac{5}{2} x^{2} - \frac{1}{3} x^{3} \int_{0}^{5}$ region into 3 $= \left(\frac{125}{2} - \frac{125}{3}\right) - \left(0 - 0\right)$ aneas NOT SUCCESS FUL. Area = $\frac{125}{5}$ unit² 1 3 - most did this $(c)(i)\int_{x}^{y}f(x)dx = \frac{h}{3}[y_0 + 4y_1 + 2y_2 + 4y_3 + y_4]$ with little difficult 1 $\frac{1}{2} \left[3 \cdot 2 + 4 \times 1 \cdot 4 + 2 \times 0 \cdot 6 + 4 \times 2 \cdot 2 + 3 \cdot 6 \right]$ = 14.93 Ŀ (ii) $V = \pi \left(-y^2 dx \right)$ - Many could $= \pi \times \frac{2}{3} \left[3 \cdot 2^2 + 4 \times 1 \cdot 4^2 + 2 \times 0 \cdot 6^2 \right]$ $+ 4 \times 2 \cdot 2^2 + 3 \cdot 6^2$ not understand ニト how do get a = 2T x51.12 Volume with this Volume = 34.08 T or 107 unit 3 (3 L whe. - poorly done.