

SAINT IGNATIUS' COLLEGE

Trial Higher School Certificate

2012

MATHEMATICS

Directions to Students

- Reading Time : 5 minutes	- Total Marks 100
- Working Time : 3 hours	
- Write using blue or black pen. (sketches in pencil).	- This paper contains two sections. - Section 1 contains ten objective response questions. - Section 2 contains six free response questions. - All questions may be attempted.
- Board approved calculators may be used	- Section 1 Q1-10 Multiple Choice - Section 2 1 mark each Q11-16 15 marks each
- A table of standard integrals is provided at the back of this paper.	
- All necessary working should be shown in every question.	
- Answer each question in the booklets provided and clearly label your name and teacher's name.	

This paper has been prepared independently of the Board of Studies NSW to provide additional exam preparation for students. Although references have been reproduced with permission of the Board of Studies NSW, the publication is in no way connected with or endorsed by the Board of Studies NSW.

Section 110 Marks Answer on sheet provided.

1. What is the exact value of $\operatorname{cosec} \frac{4 \pi}{3}$?
(A) 2
(B) -2
(C) $\frac{2}{\sqrt{3}}$
(D) $-\frac{2}{\sqrt{3}}$
2. Which of the following quadratic equations have two distinct real roots?
(A) $y=x^{2}-4 x+4$
(B) $y=x^{2}+4 x+4$
(C) $y=x^{2}-4 x-4$
(D) $y=x^{2}+4$
3. What is the value of $\sum_{r=1}^{3} r 2^{r}$?
(A) 384
(B) 34
(C) 2
(D) 24
4. A rubber ball is dropped from the top of a building, which is 170 metres high.

Suppose each time it hits the ground it rebounds $\frac{2}{3}$ of the distance of the preceding fall. What total distance does it travel before it comes to rest?
(A) $113 \frac{1}{3} m$
(B) $255 m$
(C) $510 m$
(D) $850 m$
5. What is the equation of the graph below?

(A)

$$
y=\ln x
$$

(B) $y=1+\ln x$
(C) $y=\ln (x+1)$
(D) $y=\frac{1}{e^{x}}$
6.

In the diagram above, which of the values is closest to the length of the side $B C$?
(A) 16
(B) 18
(C) 24
(D) 322
7. What is the value of $\int_{-2}^{2} \sqrt{4-x^{2}} d x$?
(A) $\frac{3 \pi}{2}$
(B) 2π
(C) 3π
(D) 4π
8.

The graph above shows the velocity of a particle for the first 10 seconds of its movement. If the particle starts at $2 m$ to the left of the origin, where is the particle after 10 seconds?
(A) At the origin
(B) 4 metres to the left of the origin
(C) 4 metres to the right of the origin
(D) 2 metres to the right of the origin
9. What is the approximate value of $\log _{5} 37$?
(A) 1.26
(B) 2.24
(C)
2.99
(D) 3.48
10. Which of the following functions describe a curve with amplitude of 2 and a period of 4π ?
(A) $y=1+2 \cos \frac{1}{2} x$
(B) $y=2-\sin \frac{1}{2} x$
(C) $y=2 \cos 4 x$
(D) $y=2+2 \cos 2 x$

Section 2

Question 11 (Start a new Booklet)

(a) Calculate the value of $\frac{3.7+2.11}{1.45 \times 2.22}$ correct to 4 significant figures.
(b) Solve $|4 x-2|=14$.
(c) Write the fraction $\frac{2}{3+\sqrt{5}}$ with a rational denominator.
(d) Write down the domain and range of the function $y=\frac{3}{x+1}$
(e) $\quad A B C D$ is a parallelogram. The coordinates of A, B and D respectively are $(1,4),(5,7)$ and $(-2,-3)$.
(i) Show that the equation of the line $A B$ is $3 x-4 y+13=0.2$
(ii) Calculate the distance of the interval $A B$. 1
(iii) What are the coordinates of the point C. 1
(iv) Calculate the distance from D to the line $A B$. 2
(v) Hence find the area of the parallelogram $A B C D$. 1

Question 12 (Start a new Booklet)

(a) Differentiate with respect to x.
(i) $\quad\left(6 e^{2 x}+2\right)^{5} \quad 2$
(ii) $3 x^{2} \cos 2 x \quad 2$
(b) (i) Find $\int 3 \sec ^{2} 4 x d x$
(ii) Calculate $\int_{1}^{3} \frac{x}{2 x^{2}+5} d x$, leaving your answer correct to 2 decimal places.
(c) Consider the triangle below.

(i) Calculate the length of the smallest side (write your answer correct to 3 significant figures).
(ii) Calculate the area of $\triangle A B C$ (write your answer correct to 3 significant figures).
(d) Given the function $y=27-x^{3}$. Find the equation of the tangent at the 4 point where the curve cuts the x-axis.
(a) (i) Show that the coordinates of the vertex of the parabola

$$
y=2 x^{2}+8 x+16 \text { are }(-2,8)
$$

(ii) Find the focus of the parabola.
(b)

Given that $A C$ and $B D$ are diameters of the circle. Prove that $A B=C D$.
(c)

If $\Delta A C B\|\| \Delta A E D$, find the values of x and y.
(d) A bowl is formed by rotating the curve $y=\frac{x^{2}}{3}$ between $x=0$ and $x=2$ about the y-axis. Find the volume of the solid formed.
(e) (i) Copy and complete the table below for the function $y=\log _{e} x$. Write your answers correct to 2 decimal places.

x	1	2	3	4	5
y					

(ii) Using the Simpson's Rule find an approximation for
$\int_{1}^{5} \log _{e} x d x$
Leave your answer correct to 2 decimal places.

Question 14 (Start a new Booklet)

(a) Solve the equation $2 \sin x+1=0$ for $0 \leq x \leq 2 \pi$
(b) Ricardo's Pizzeria makes pizzas that have an area of $36 \pi \mathrm{~cm}^{2}$. They slice their pizzas into 8 equal sectors.

Ben does not like the crust of his pizza. His mother cuts the end off each slice of the pizza as shown in the diagram.

How much pizza does Ben's mother cut off his pizza?
(c) Solve the equation $x-x e^{5 x+1}=0$ for x.
(d) Calculate the area between the curve $y=\ln (x-1)$, the line $x=4$ and the x-axis.
(e) (i) Show that $x=\frac{\pi}{3}, \frac{2 \pi}{3}$ are the solutions of the equation

$$
\begin{equation*}
1+2 \cos 2 x=0 \text { for } 0 \leq x \leq \pi \tag{1}
\end{equation*}
$$

(ii) Draw a graph of $y=1+2 \cos 2 x$ for $0 \leq x \leq \pi$
(iii) Find the area between the curve $y=1+2 \cos 2 x$ and the x-axis for $\frac{\pi}{3} \leq x \leq \frac{2 \pi}{3}$.
(a) Simon collects Olympic pins at the rate given by the formula $R=3+\frac{4}{t+1}$, where R is the number of Olympic pins collected per day.

If Simon has 4 pins to start with, how many pins does he have after 16 days?
(b) In her training for the Olympics, Susie swims 800 m on the first day of training. She increases her distance swum by 20 m each day. She continues her training for 200 days in total.
(i) How far does Susie swim on the $200^{\text {th }}$ day of training? 1
(ii) What is the total distance Susie swims in her 200 days of training?
(c) The formula for the sum of a series is given as $S_{n}=3 n+n^{2}$. Calculate the $15^{\text {th }}$ term of the series.
(d) Karen borrows $\$ 450000$ to buy a house. The loan is charged 9% p.a. interest, compounded monthly over 25 years. Karen makes monthly repayments of $\$ M$.
(i) Show that the amount owing after 2 months $\left(A_{2}\right)$ is

$$
A_{2}=450000(1.0075)^{2}-M(1.0075)-M
$$

(ii) Show that the amount of each repayment is $\$ 3776.38$.

After 10 years (i.e. 120 repayments) the interest rate is lowered to 6% p.a.
(iii) Calculate the amount that Karen still owes after 10 years.
(iv) Calculate the new repayment amount if the loan will still be paid in 2 the 25 year period.
(a) Consider the curve $y=x^{3}-12 x+4$.
(i) Find the coordinates of any stationary points and determine their nature.
(ii) Hence sketch the graph of the curve showing the stationary points and the y-intercept.
(b) A radioactive substance decays according to the formula $Q=Q_{0} e^{-k t}$. Initially there is 250 kg of the radioactive substance and it has a half-life of 150 years.
(i) Calculate the exact values of Q_{0} and k.
(ii) Find the amount of time to pass before there is only 50 kg remaining of the substance (leave your answer rounded to the nearest year).
(c) A pyramid with a square base is inscribed in a sphere of radius 4 cm . Let the base length of the pyramid be x and its height be h.

(i) If the diagonal of the base of the pyramid is $z \mathrm{~cm}$, show that

$$
z^{2}=2 x^{2}
$$

(ii) Hence show that $x^{2}=16 h-2 h^{2}$ and that the volume of the pyramid is

$$
V=\frac{1}{3}\left(16 h^{2}-2 h^{3}\right) .
$$

(iii) Show that the pyramid with largest volume that can be inscribed in this sphere has the height $h=\frac{16}{3} \mathrm{~cm}$.

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin \cos a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec { }^{2} a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & \frac{1}{\sqrt{x^{2}+a^{2}}} d x
\end{array}
$$

NOTE: $\quad \ln x=\log _{e} x, \quad x>0$

This paper has been prepared independently of the Board of Studies NSW to provide additional exam preparation for students. Although references have been reproduced with permission of the Board of Studies NSW, the publication is in no way connected with or endorsed by the Board of Studies NSW.

Working for Multiple choice Answers
1.

$$
\begin{align*}
\operatorname{cosec} \frac{4 \pi}{3} & =\frac{1}{\sin \frac{4 \pi}{3}} \\
& =\frac{1}{-\frac{\sqrt{3}}{2}} \\
& =-\frac{2}{\sqrt{3}} \tag{D}
\end{align*}
$$

2. (C)

$$
\begin{aligned}
y & =x^{2}-4 x-4 \\
\Delta & =(-4)^{2}-4(1)(-4) \\
& =16+16 \\
& =32>0
\end{aligned}
$$

\therefore two real distinct roots.
3. $\begin{aligned} \sum_{r=1}^{3} r 2^{r} & =1 \times 2^{1}+2 \times 2^{2}+3 \times 2^{3} \\ & =34\end{aligned}$
4. $170+2 \times \frac{113 \frac{1}{3}}{1-\frac{2}{3}}=850 m$ (D)
5. $c \quad y=1+\ln x$. Asymptote on y-axis, passing through (1.1)
6. $\quad B C^{2}=24^{2}+18^{2}-2(24)(18) \cos 48^{\circ}$

$$
B C^{2}=321.8711 \ldots
$$

$B C=17.94 \ldots$

$$
\begin{equation*}
\therefore \quad B C=18 \tag{B}
\end{equation*}
$$

$$
\begin{aligned}
7 \quad A & =\frac{1}{2} \times \pi \times(2)^{2} \\
& =2 \pi
\end{aligned}
$$

(B)
8.. (D) Distance travelled is equivalent to area under curve. From 0 to 6., $A=\frac{1}{2} \times 2 \times 4+2 \times 4+\frac{1}{2} \times 2 \times 4=16 \mathrm{~m} \rightarrow$,
From 6 tol $10, A=\frac{1}{2} \times 2 \times 4+2 \times 4=12 \mathrm{~mL}$

$$
\therefore \text { displ }=-2+16-12
$$

$$
=2 \mathrm{~m} \rightarrow
$$

$\frac{\log 37}{\log 5}=2.24 \quad$ (B)
10.

$$
\begin{aligned}
\text { period }=4 \pi & =\frac{2 \pi}{n} \\
\therefore n & =\frac{2 \pi}{4 \pi} \\
& =\frac{1}{2}
\end{aligned}
$$

\therefore (A) $\quad y=1+2 \cos \frac{1}{2} x$
amplitade-

Sic Mathematic Trial Examination 2012

1. D.
2. B.
3. C
4. B
5. B.
6. D.
7. D. 9. B.

万. B 10. $\quad A$

Marker : MXF
Q 11:
(a) $1.80490 \ldots=1.805$
(b) $4 x-2=14$

$$
4 x=16
$$

$$
\begin{aligned}
4 x-2 & =-14 \\
4 x & =-12 \\
x & =-3 .
\end{aligned}
$$

(C)

$$
\begin{aligned}
\frac{2}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}} & =\frac{6-2 \sqrt{5}}{9-5} \\
& =\frac{6-2 \sqrt{5}}{4} \\
& =\frac{3-\sqrt{5}}{2} \quad \text { (Had to be simplified) }
\end{aligned}
$$

(d)

$$
\begin{array}{ll}
D: & x \in R, \quad x \neq-1 \\
R: & y \in R, y \neq 0
\end{array}
$$

Both conditions had to be right for full marls.
(e) (i)

$$
\begin{aligned}
m(A B) & =\frac{7-4}{5-1} \\
& =\frac{3}{4}
\end{aligned}
$$

\therefore equation

$$
\begin{aligned}
& y-4=\frac{3}{4}(x-1) \\
& 4 y-16=3 x-3 \\
& \therefore 3 x-4 y+13=0
\end{aligned}
$$

(ii)

$$
\begin{aligned}
d(A B) & =\sqrt{(1-5)^{2}+(4-7)^{2}} \\
& =\sqrt{25} \\
& =5 u
\end{aligned}
$$

(iii) $C(2,0)$
(iv) $d \equiv\left|\frac{3(-2)-4(-3)+13}{\sqrt{(3)^{2}+(-4)^{2}}}\right|$

$$
\begin{aligned}
& =\left|\frac{19}{5}\right| \\
& =\frac{19}{5} u .
\end{aligned}
$$

(V)

$$
\begin{aligned}
A & =5 \times \frac{19}{5} \\
& =19 u^{2}
\end{aligned}
$$

Marker: GJF.
Q12.
(a) (i)

$$
\begin{aligned}
& 5\left(6 e^{2 x}+2\right)^{4} \times 12 e^{2 x} \\
= & 60 e^{2 x}\left(6 e^{2 x}+2\right)^{4}
\end{aligned}
$$

(ii) $6 x \cos 2 x+3 x^{2} \times-2 \sin 2 x$

$$
=6 x \cos 2 x-6 x^{2} \sin 2 x
$$

(b) (i) $\frac{3}{4} \tan 4 x+c$

Q12 a) i) $12 e^{2 x} 1$ mask
OR $5\left(6 e^{2 x}+2\right)^{4} \mathrm{imank}$

$$
60 e^{2 x}\left(6 e^{2 x}+2\right)^{4} 2 m
$$

ii) $6 x \cos 2 x$
$O R-6 x^{2} \sin 2 x \quad 1 \mathrm{~m}$
b) ii) $\frac{1}{4}(\ln 23-\ln 7) 2 \mathrm{~m}$
c) i) shortest side opposite smallest angle. Waste time
(ii)

$$
\begin{aligned}
\frac{1}{4} \int_{1}^{3} \frac{4 x}{2 x^{2}+5} d x & =\frac{1}{4}\left[\ln \left(2 x^{2}+5\right)\right]_{1}^{3} \text { finding } B C \\
& =\frac{1}{4}\left\{\left[\ln \left(2(3)^{2}+5\right)\right]-\left[\ln \left(2(1)^{2}+5\right)\right]\right\} \\
& =\frac{1}{4}[\ln 23-\ln 7]
\end{aligned}
$$

$$
=0.30
$$

(c) (i)

$$
\begin{aligned}
\frac{A B}{\sin 41^{\circ}} & =\frac{12}{\sin 63^{\circ}} \\
A B & =\frac{12 \sin 41^{\circ}}{\sin 63^{\circ}} \\
& =8.84 \mathrm{~cm} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A & =\frac{1}{2}(8.84)(12) \sin 76^{\circ} \\
& =51.5 \mathrm{~cm}^{2}
\end{aligned}
$$

(d) at x-axis,$y=0$

$$
\begin{aligned}
0 & =27-x^{3} \\
x^{3} & =27 \\
x & =3
\end{aligned}
$$

$\therefore y^{\prime}=-3 x^{2}$
at $x=3$

$$
M=-3(3)^{2}
$$

$$
=-27
$$

Q12 c) ii) Cannot use $\frac{1}{2}$ base heist because not a right angled \triangle

a) $x=3$ (n working $\begin{gathered}\text { firm } \\ \text { form }\end{gathered}$ | from |
| :---: |
| $x^{3}=27$ |

needed)
Any working is waste of time

Name:..Q13 \qquad

Teacher:...... GT A

Suggested Solution o

ai) $\left.\begin{array}{rl}x & =-b / 2 a=\frac{-8}{2(2)}=\frac{-8}{4}=-2 \\ y & =2(-2)^{2}+8(-2)+16=8\end{array}\right\}$
OR
$\frac{1}{2} y-8=x^{2}+4 x$
$\frac{1}{2} y-4=x^{2}+4 x+4$
$\frac{1}{2}(y-8)=(x+2)^{2}$
Veto $x=(-2,8)$

OR
$\frac{d y}{d x}=4 x+8=0 \quad x=-2$

$$
y=2(-2)^{2}+8(-2)+16=8
$$

ii) Wing the "completing the square" Tectrivuue

$$
\begin{aligned}
4 a & =\frac{1}{2} \\
a & =1 / 8
\end{aligned}
$$

form $\left(-2,8 \frac{1}{8}\right)$

Mans Mockers Comments.

Nate: you can' just show that $(-2,8)$ lies on the parabola you must show that the co-ordenates are the Venter.
b) $\angle \angle A O B=\angle C O D{ }^{=}$(vertically opposite anglo pase equal) $\}$

$$
\text { 2. } A O=B O=D O=C O(\text { radii })=r
$$

$3 . \therefore \triangle A O B \equiv \triangle D O C$ (SAC)

$4 . \therefore A B=C D$ (coneoponding ride o of conguat triangles) \backslash		
$O R$		
we steps (1) and (2)		
$L=r \theta$		
arc $A B=\operatorname{arC} C D$		

(so $A B=C D$) (equal arco cut off equal chords)
\qquad
\qquad
\qquad
Marks Markers Comments
c) $\triangle A C B$ III $\triangle A E D$
[lar triangles)

$$
x=3
$$

$\frac{2+4}{2}=\frac{7}{3}$ (ratio of sides in similar tipangles).

$$
\begin{aligned}
6+3 y & =14 \\
3 y & =8 \\
y & =8 / 3
\end{aligned}
$$

d) Volume around the " y-axis"

$$
\begin{aligned}
V & =\pi \int_{a}^{b} x^{2} d y \\
y & =\frac{x^{2}}{3} \\
& x^{2}=3 y \\
V & =\pi \int_{0}^{4 / 3} 3 y d y \\
& =\pi\left[\frac{3 y^{2}}{2}\right]_{0}^{4 / 3} \\
& =\frac{3 \pi}{2}\left[y^{2}\right]_{0}^{4 / 3} \\
& =3 / 2[16 / 9-0]=\frac{8 \pi}{3} \text { units }^{3} .
\end{aligned}
$$

e	x	1	2	3	4	5
	y	0	0.69	1.10	1.39	1.61

$$
\begin{align*}
\int_{1}^{5} \log _{e} x d x & \left.\div \frac{1}{3}[0+1.61+4(0.69+1) 39)+2(1.10)\right] \\
& \doteq 4.04
\end{align*}
$$

when $x=2 \quad y=4 / 3$
Nate: Many forgot to change the ordinates

Simpsons Rule.:

Marker : MXF
QU.
(a)

$$
\begin{aligned}
& \sin x=-\frac{1}{2} \\
& x=\frac{7 \pi}{6} \frac{11 \pi}{6}
\end{aligned}
$$

(b)

$$
\left.\theta=\frac{2 \pi}{3}=\frac{\pi}{4} \quad \pi r^{2}=36 \pi\right]
$$

$$
\begin{aligned}
A(\operatorname{segman}) & =\frac{1}{2}(6)^{2}\left[\frac{\pi}{4} \sin \frac{\pi}{4}\right] \\
& =\left(\frac{9 \pi}{2}-\frac{18}{\sqrt{2}}\right) \mathrm{cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Some missed }=3677-\frac{3 \times 15 \times \sqrt{2}}{2} \\
& \text { ont on tue }
\end{aligned}
$$

(C)
\rightarrow common error, forgot about the $x=0$

$$
\begin{aligned}
\therefore 5 x+1 & =\ln 1 \\
5 x+1 & =0 \\
5 x & =-1 \\
x & =-45
\end{aligned}
$$

(d)

Worked ont this area. Some used simpor's rule, accepted if answers was right:

$$
\begin{aligned}
& y=\ln (x-1) \\
& e^{y}=x-1 \\
& x=e^{y}+1
\end{aligned}
$$

$$
\therefore A=\int_{0}^{4 x} \ln 3-e^{y}+i d y
$$

$$
=4 \ln 3-\left[e^{y}+y\right]_{0}^{\ln 3}
$$

$$
=4 \ln 3-\left\{\left[e^{\ln 3}+\ln 3\right]-\left[e^{0}+0\right]\right\}
$$

$$
=4 \ln 3=(3+\ln 3-1)
$$

$$
=(3 \ln \cdot 3-2) u^{2}
$$

$$
\begin{aligned}
& x-x e^{5 x+1}=0 \\
& x\left(1-e^{5 x+i}\right)=? \\
& x=0 \quad \cdots \quad e^{5 x+1}=1 \\
& 5 x+1=0 \\
& \begin{array}{c}
5 x=-1 \\
x=-1 / 5
\end{array} \\
& \begin{aligned}
5 x & =-1 \\
x & =-4 / 5
\end{aligned}
\end{aligned}
$$

(e) (i)

$$
\begin{aligned}
2 \cos 2 x & =-1 \\
\cos 2 x & =-\frac{1}{2} \\
2 x & =\frac{2 \pi}{3}-\frac{4 \pi}{3} \\
\therefore \quad x & =\frac{\pi}{3} \frac{2 \pi}{3}
\end{aligned}
$$

Bomo values of xhied to be given
(ii)

(iii)

$$
\begin{aligned}
& \left|\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} 1+2 \cos 2 x d x\right| \\
& =\left|[x+\sin 2 x]_{-\frac{\pi}{3}}^{2 \pi / 3}\right| \\
& \left.=\left\lvert\,\left[\frac{2 \pi}{3}+\sin 2\left(\frac{2 \pi}{3}\right)\right]-1 \pi / 3+\sin \left(\frac{2 \pi}{3}\right)\right.\right] \\
& =\left|\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}-\frac{\pi}{3}-\frac{\sqrt{3}}{3}\right| \\
& =\left|\frac{\pi}{3}-\sqrt{3}\right| \\
& =\left(\sqrt{3}-\frac{\pi}{3}\right) u^{2} \\
& =0.63 u^{2}
\end{aligned}
$$

Marker: BDD.
Q15.
(a)

$$
\begin{aligned}
& R=3+\frac{4}{t+1} \\
& \begin{aligned}
\int R d t & =\int 3+\frac{4}{t+1} d t \\
& =3 t+4 \ln (t+1)+C
\end{aligned}
\end{aligned}
$$

(1) A number dis not realise this Was a rate ant dion'l integrate the function.
(2) Some tried to generate a Series by substuting $t=0,1,2$, ch.
(3) Some integrates but didint identity the log function.
\therefore After 16 days

$$
\begin{aligned}
\text { number of pins } & =3(16)+4 \ln (16+1)+4 \\
& \doteqdot 63.3 \ldots \\
& =63 \quad \sqrt{ } \quad \text { needed to count of 0 } \\
& =6 \text { nearest whale no. }
\end{aligned}
$$

(b.) (i)

$$
\begin{aligned}
T_{200} & =800+(200-1)(20) \\
& =4780
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{200} & =\frac{200}{2}[2(800)+(200-1)(20)] \mathrm{V} \\
& =558000 \mathrm{~m} J
\end{aligned}
$$

well dore
(C)

$$
\begin{aligned}
S_{15}-S_{14} & =\left(3(15)+15^{2}\right)-\left(3(14)+14^{2}\right) \checkmark \\
& =32
\end{aligned}
$$

well done
(d) (i)

$$
\begin{aligned}
A_{1} & =450000(1.0075)-M \\
A_{2} & =[450000(1.0075)-M](1.0075)-M \Delta \text { Must show } \\
& =450000(1.0075)^{2}-M(1.0075) \mathrm{m} \text {. }
\end{aligned}
$$

(ii)

$$
\text { ii) } \begin{aligned}
& A_{300}\left.=450000(1.0075)^{300}-M(1.0075)^{299}-M \| .0075\right)^{293} \cdots \cdots \\
& \therefore \quad=450000(1.0075)^{300}-M\left[1+1.0075+1.0075^{2}+\cdots+1.0075^{299}\right] \\
& M\left[\frac{1\left(1.0075^{300}-1\right)}{1.0075-1}\right]=450000(1.0075)^{300} \quad \text { wen done } \\
& M=\frac{450000(1.0075)^{300}(0.0075)}{} \\
&=\$ 3776.38
\end{aligned}
$$

(iii)

$$
\begin{aligned}
A_{120} & =450000(1.0075)^{120}-3776.38\left[\frac{1\left(1.0075^{120}-1\right)}{1.0075-1}\right] \\
& =\$ 372327.24 \quad \int \quad \text { well dore }
\end{aligned}
$$

(iv) $M=\frac{372327.24(1.005)^{180}(0.005)}{1.005^{180}-1}$ Some common

$$
=\$ 3141.91
$$

1. incorrect time. Jig $n=300$ instead of 180
2. incorrad interest rate. using 7.5% not 5

Question 16 Marker: NHM.
a) $y=x^{3}-12 x+4 \quad y^{\prime}=3 x^{2}-12 \quad y^{\prime \prime}=6 x$

1) Let $y^{\prime}=0$ for stat pts

$$
\begin{aligned}
& 3 x^{2}-12=0 \\
& x^{2}-4=0 \\
& (x-2)(x+2)=0
\end{aligned}
$$

at $x=-2 y^{\prime \prime}<0$

$$
x=2 y^{\prime \prime}>0
$$

11)

b) i)

$$
\begin{aligned}
& Q=Q_{0} e^{-k t} \\
& t=0 \quad 250=Q_{0} e^{0} \\
& 250=Q_{0} \\
& t=150 \quad Q=125 \\
& 125=250 e^{-k \cdot 150} \\
& \ln \frac{1}{2}=\ln e^{-k \cdot 150} \\
& -k \cdot 150=\ln \frac{1}{2} \\
& k=\frac{\ln \frac{1}{2}}{-150} \text { OR } \frac{\ln 2}{150}
\end{aligned}
$$

ii.)

$$
\left.\begin{aligned}
50 & =250 e^{-k \cdot t} \\
\frac{1}{5} & =e^{-k \cdot t} \\
-k t & =\ln \left(\frac{1}{5}\right) \\
t & =\frac{\ln \left(\frac{1}{5}\right)}{-k} \\
& =348.28 \quad \therefore 348 y r s
\end{aligned} \right\rvert\, \leftarrow \operatorname{lmk}
$$ drawn/lozy graphs. Ink cored

$\leftarrow \operatorname{lmk}$
$\longleftarrow \operatorname{lm} k$

Well done.
$\leftarrow \ln k$ intereppls Correct shape.

Question 16
e) 1)

$$
\begin{aligned}
z^{2} & =x x^{2}+x^{2} \text { (pythagoms) } \\
& =2 x^{2} .
\end{aligned}
$$

ii)

$$
\begin{aligned}
4^{2} & =(h-4)^{2}+\left(\frac{1}{2} z\right)^{2} \\
16 & =h^{2}-8 h+16+\frac{z^{2}}{4} \\
0 & =h^{2}-8 h+\frac{x^{2}}{2} \\
x^{2} & =16 h-2 h^{2} \\
V & =\frac{1}{3} x^{2} h \\
& =\frac{1}{3}\left(16 h-2 h^{2}\right) h \\
& =\frac{1}{3}\left(16 h^{2}-2 h^{3}\right)
\end{aligned}
$$

(ii)

$$
\begin{gathered}
V=\frac{1}{3}\left(16 h^{2}-2 h^{3}\right) \\
\frac{d V}{d h}=\frac{1}{3}\left(32 h-6 h^{2}\right) \text { Let } \frac{d V}{d h}=0 \\
\frac{2 h}{3}(16-3 h)=0 \\
3 h=16 \\
h=\frac{16}{3} \\
\frac{d^{2} v}{d h^{2}}=\frac{1}{3}(32-12 h)
\end{gathered}
$$

at $h=\frac{16}{3} \frac{d^{2} v}{d h^{2}}<0$
$\therefore V$ is a maximum
$\longleftarrow \operatorname{lm} k$
Well clone
$\longleftarrow \operatorname{lmk}$
Pretty poorly done.
Quite difficult 2 unit question.

$\longleftarrow \ln k$
Pretty well done by most. Some cordless errors.

Ink

