SAINT IGNATIUS' COLLEGE

Trial Higher School Certificate

2013

MATHEMATICS

Directions to Students

\bullet	Reading Time $: 5$ minutes	\bullet
\bullet	Total Marks $\mathbf{1 0 0}$	
\bulletWrite using blue or black pen. (sketches in pencil).	\bulletThis paper contains two sections. Section 1 contains ten objective response questions. Section 2 contains six free response questions. All questions may be attempted.	
•Board approved calculators may be used	\bulletSection 1-all questions 1 mark each •	
\bulletA table of standard integrals is provided at the back of this paper.		
\bulletAll necessary working should be shown in every question.		
\bulletAnswer each question in the booklets provided and clearly label your name and teacher's name.		

This paper has been prepared independently of the Board of Studies NSW to provide additional exam preparation for students. Although references have been reproduced with permission of the Board of Studies NSW, the publication is in no way connected with or endorsed by the Board of Studies NSW.

This page is left blank

Section 10 Marks Answer on sheet provided.

1. What is the exact value of $\tan 330^{\circ}$?
(A) $-\sqrt{3}$
(B) $\sqrt{3}$
(C) $\frac{1}{\sqrt{3}}$
(D) $-\frac{1}{\sqrt{3}}$
2. What is the equation of the normal to the curve $y=x^{2}-4 x$ at $(1,-3)$?
(A) $x+2 y-7=0$
(B) $\quad x-2 y-7=0$
(C) $2 x-y-5=0$
(D) $2 x+y+5=0$
3. What is the value of $\sum_{n=1}^{4} n^{2}$?
(A) 576
(B) 120
(C) 30
(D) 16
4. What is the size of each interior angle in a regular octagon?
(A) $22 \frac{1}{2}^{\circ}$
(B) 80°
(C) 135°
(D) 180°
5. Which of the following is the point of intersection of the two lines

$$
3 x-4 y+6=0 \text { and } x-y-1=0 ?
$$

(A) $(0,0)$
(B) $(-2,-3)$
(C) $(10,9)$
(D) $(11,10)$
6. What are the solutions of the equation $4^{x}-5 \times 2^{x}+4=0$?
(A) $\quad x=0,2$
(B) $x=1,2$
(C) $x=1,4$
(D) $x=4,5$
7. Consider the series $\sqrt{5}+\sqrt{45}+\sqrt{125}+\ldots+z=225 \sqrt{5}$. How many terms are there in this series?
(A) 15
(B) 16
(C) 225
(D) 226
8. Which of the following is equal to $\sin \theta$?
(A) $\quad \tan \left(90^{\circ}-\theta\right)$
(B) $\cos \left(\theta-90^{\circ}\right)$
(C) $\sin \left(180^{\circ}-\theta\right)$
(D) $\quad \sin \left(360^{\circ}-\theta\right)$
9.

Which of the following describes the area given in the graph above?
(A) $\int_{\frac{\pi}{3}}^{\frac{4 \pi}{3}} \sin x-\cos x d x$
(B) $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \sin x-\cos x d x$
(C) $\int_{\frac{\pi}{3}}^{\frac{4 \pi}{3}} \cos x-\sin x d x$
(D) $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \cos x-\sin x d x$
10.

Which of the following describes the region given in the graph above?
(A) $y \geq e^{-2 x}, x+y \geq 4$
(B) $y \geq 2 e^{-x}, x+y \leq 4$
(C) $y \geq e^{-2 x}, x+y \leq 4$
(D) $y \geq 2 e^{-x}, x+y \geq 4$

Section 2

Question 11 (Start a new Booklet)
Marks
(a) Factorise completely $4 x^{3}-32$.
(b) Solve $|3 x+6|=12 \quad 2$
(c) Solve $10^{x}=178$, correct to 4 decimal places $\quad 2$
(d) Draw the graph of $x^{2}+4 x-21+y^{2}=0 \quad 3$
(e) $\quad A(-2,4)$ and $B(6,-2)$ are points on the number line.
(i) Calculate the gradient of the line $A B$. 1
(ii) Hence show that the equation of the line $A B$ is $3 x+4 y=10 \quad 1$
(iii) Find the distance between the x and y intercepts of the line $A B$. 2
(iv) On the same graph show the region described by 2

$$
3 x+4 y>10, x \geq 0, y \geq 0
$$

Question 12 (Start a new Booklet)

(a) Differentiate the following:
(i) $3 x e^{2 x^{2}}$
(ii) $\quad\left(3+\sin \left(x^{2}\right)\right)^{4}$
(ii) Evaluate $\int_{0}^{3} 2 \sqrt{x}+x^{3} d x$
(c) An AP has a first term of 2 and a last term of 126. If there are 32 terms in the series, find the sum of the series.
(d)

The angle of elevation of the top of tree $B T$ when viewed from point P is $10^{\circ} 12^{\prime}$.

After walking 100m directly towards the tree one arrives at Q where the angle of elevation is $14^{\circ} 38^{\prime}$.

Find the height of the tree to the nearest centimetre.
(e) Copy the following graph into your answer booklet and on the same graph draw the function $y=f^{\prime}(x)$

(a) Solve $\cos 2 \theta=\frac{1}{\sqrt{2}}$ in the domain $0 \leq \theta \leq 2 \pi$
(b)

The graph given is in the form $y=A \sin (x+\alpha)$.

Find the values of A and α.
(c) Given the parabola $x^{2}+(m-2) x+4=0$, find the values of m for which the parabola has no real roots.
(d) If α and β are the roots of the quadratic equation $x^{2}+4 x-8=0$, calculate:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2} \beta+\alpha \beta^{2}$
(iv) $\alpha^{2}+\beta^{2}$
(e) In the triangle $A B C, M$ is the midpoint of $A C$. Prove that M is equidistant from all three vertices of the right angle triangle.

(a) Find the equation of the tangent to the curve $y=2 x e^{x}$ at the point $(1, e)$.
(b) Consider the parabola $y=x^{2}+12$
(i) Find the coordinates of the vertex and focus of the parabola.
(ii) The area between the parabola and the line $y=16$ is rotated about the y-axis. Calculate the volume of the solid formed by this rotation leaving your answer in terms of π.
(c) Calculate the approximate area (to two decimal places) between the curve $y=\ln 2 x$, the x-axis and the line $x=2$, using the Trapezoidal Rule with four function values.

Question 14 continues on page 12

Question 14 continued
(d)

(i) Calculate $\int_{0}^{4} f(x) d x$
(ii) Explain why $\int_{4}^{8} f(x) d x=0$
(iii) What is the value of a if $\int_{1}^{a} f(x) d x=-6$
(a) Radioactive material is decaying according the function $R=R_{0} e^{-k t}$. There is initially 1 kg of the material and after 20 years there is 0.95 kg of the material remaining.
(i) Calculate the value of R_{0} and k in exact form
(ii) Determine the half-life of the material
(b) A particle is traveling with the acceleration in terms of time given by the expression $\ddot{x}=4 e^{-2 t}$. The particle is initially at rest.
(i) Explain why the particle moves in a positive direction for $t>0$
(ii) Find an expression for the velocity of the particle.
(iii) Find the value of the velocity as the acceleration approaches zero.
(c) A couple is wishing to buy a home for $\$ 650000$. They take out a loan at 12% p.a. interest compounded monthly. The term of the loan is 25 years, with repayments paid monthly.
(i) Show that the after the second repayment has been made, the amount outstanding is given by the expression.

$$
A_{2}=650000(1.01)^{2}-M(1.01)-M
$$ where M is the amount of the monthly repayment.

(ii) Calculate the value of M. 2
(iii) Instead of paying the amount in (ii) for the loan repayment, the couple pays $\$ 250$ more on their loan so that they will pay the amount in less time. By paying this extra money per month, how many months does the couple save on their home loan?

This page is left blank
(a) Consider the curve $y=\frac{2}{3} x^{3}-\frac{5}{2} x^{2}-3 x+2$.
(i) Find the stationary points of the curve and determine their nature.
(ii) Show that there is an inflexion point at $x=1 \frac{1}{4}$
(iii) Sketch a graph of the function for the domain $-2 \leq x \leq 6$.
(b) A lot of land has the form of a right triangle, with perpendicular sides 60 and 80 metres long.

C

(i) Show that $r=\frac{3}{4} x$ and $s=\frac{4}{3} x$
(ii) Show that $y=100-\frac{25}{12} x$
(iii) Find the length and width of the largest rectangular building that can be erected, facing the hypotenuse of the triangle.
(c) The centres of two circles are 7 cm apart, with one circle having a radius of 3 5 cm and the other a radius of 3 cm . Find the area of their intersection.

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \tan -\frac{x}{a}, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x &
\end{array}
$$

NOTE: $\quad \ln x=\log _{e} x, \quad x>0$

Saint Ignatius' College, Riverview
Year 12 Mathematics
Trial HSC 2013
Suggested
Solutions

Section ((10 marks)

1. D
2. A
3. B
4. A
5. C
6. C
7. C
8. B
9. C
10. B

Markers Comments

* well done on the whole...
* Qu 9 tripped up many students who doit look at graph accurately POI was $\frac{\pi}{4}$ not $\frac{\pi}{3}$!
x.

$$
\begin{aligned}
& 4 x^{3}-32 \\
= & 4\left(x^{3}-8\right) \\
= & 4(x-2)\left(x^{2}+2 x+4\right)
\end{aligned}
$$

b.

$$
\begin{aligned}
|3 x+6| & =12 \\
3 x+6 & =12 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

$$
-3 x-6=12
$$

$$
-3 x=18
$$

$$
x=-6
$$

$$
\begin{array}{rlrl}
x & =2 & x & =-6 \\
\text { Check: } \begin{aligned}
\text { LHS } & =|3 \times 2+6| \\
& =|12| \\
& =12 \\
& =\text { RMS }
\end{aligned} & \text { Check LHS } & =|3 x-6+6| \\
& =|-12| \\
& =12 \\
& & =\text { RHS }
\end{array}
$$

$$
\therefore \text { solution } x=2, x=-6
$$

c. $\quad 10^{x}=176$

$$
\begin{aligned}
\log _{10} 10^{x} & =\log _{10} 178 \\
x & =2.250420002 \\
x & =2.2504 \quad(4 \mathrm{~d} . \mathrm{p})
\end{aligned}
$$

d.

$$
\begin{aligned}
& x^{2}+4 x-21+y^{2}=0 \\
& x^{2}+4 x+y^{2}=21 \\
& x^{2}+4 x+4+y^{2}=25 \\
& (x+2)^{2}+y^{2}=25
\end{aligned}
$$

\therefore centre $(-2,0)$ radius $=5$ units

$$
\text { e.(i) } \begin{aligned}
m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-2-4}{6+2} \\
& =\frac{-6}{8} \\
& =-\frac{3}{4}
\end{aligned}
$$

1 mark factorising 1 mark for diff. of two choc

1 mark e for end correct solutum. ic (2marb)

1 mark for \log both
1 answer to 4d.p.

1 mark for eyprercorrectly 1 identify centre.

1 correct sketch.
USE a TEMPLATE or COMPASS

(iv)

Question 14
(a)

$$
\text { (i) } \begin{aligned}
& \frac{d}{d x}\left(3 x e^{2 x^{2}}\right) \\
= & 3 x+4 x e^{2 x^{2}}+e^{2 x^{2}} \times 3 \\
= & 12 x^{2} e^{2 x^{2}}+3 e^{2 x^{2}}
\end{aligned}
$$

$$
\text { (i) } \begin{aligned}
& \frac{d}{d x}\left(3+\sin \left(x^{2}\right)\right)^{4} \\
= & 4 \times 2 x \cos \left(x^{2}\right)\left(3+\sin \left(x^{2}\right)\right)^{3} \\
= & 8 x \cos \left(x^{2}\right)\left(3+\sin \left(x^{2}\right)\right)^{3}
\end{aligned}
$$

(b)

$$
\text { (i) } \begin{aligned}
& \int_{1}^{e} \frac{5}{x} d x=5 \ln x+c \\
&(d s)=5(\ln e-\ln 1) \\
&\left(2 x^{\frac{1}{2}}+x^{3}\right) d x \\
& 0=5 \\
&=\left.2 \times \frac{2}{3} x^{\frac{3}{2}}+\frac{1}{4} x^{4}\right]_{0}^{3} \\
&=\left[\frac{4}{3} x^{\frac{3}{2}}+\frac{1}{4} x^{4}\right]_{0}^{3} \\
&= \frac{4}{3} \times 3 \sqrt{3}+\frac{1}{4} \times 81-0 \\
&=4 \sqrt{3}+\frac{81}{4}=\frac{(6 \sqrt{3}+81}{4}=27.1782
\end{aligned}
$$

(c)

$$
\begin{aligned}
T_{R} & =2, \quad T_{32}=126 \\
S_{1} & =\frac{n}{2}(a+\ell) \\
& =\frac{32}{2}(2+126)
\end{aligned}
$$

Markers Comments

* be careful, quite a few thought it was $\frac{1}{5} \ln x!$ No!
* answers here many \& varied accepted most...
* more care needed when $\int 2 \sqrt{x}$.
* well done
* some need to relearn formula!
(d) $\angle P T Q=14^{\circ} 38^{\prime}-10^{\prime \prime} 12^{\prime}=4^{\circ} 26^{\prime}$
in $\triangle P Q T$. using sine rub
* agar many varied ways

Q12
(d) $\angle P T Q=14^{\circ} 38^{\prime}-10^{\prime \prime} 12^{\prime}=4^{\circ} 26^{\prime}$
in $\triangle P Q T$. using sine rut

$$
\begin{aligned}
\frac{Q T}{\sin 10^{\circ} 12^{\prime}} & =\frac{100}{\sin 4^{\circ} 26^{\prime}} \\
Q T & =\frac{100 \sin 10^{\circ} 12^{\prime}}{\sin 4^{\circ} 26^{\prime}} \\
& =229.09037
\end{aligned}
$$

$$
\text { in } \triangle Q B T \quad \operatorname{Sin} 14 \rightarrow 3 \gamma^{\prime}=\frac{B T}{O T}
$$

$$
\begin{aligned}
\therefore B T & =\text { QTS } 14{ }^{\circ} 34^{\prime} \\
& =57.8756 \mathrm{~m} \\
& =5 \text { S7.88 }
\end{aligned}
$$

* agar many varied ways appeared. . .
* c.through marks awarded. . .
* errors in transferring angles in workings
* Be careful
-askso to nearest cm!

$$
57.88 \mathrm{~m}!
$$

Question 12
(e)

Marker Comments.

* Badly Drawn Graphs.
* Genesars marking here
* Students must label axis, curves etc proper
* smoother lines needed !

Ink - awarded for shaming curve going upwards through scorer zero pout (mix - showing curve come back

$$
\begin{aligned}
& \text { QUESTION } 13 \\
& \text { a. } \cos 2 \theta=\frac{1}{\sqrt{2}} \quad 0 \leqslant \theta \leqslant 2 \pi \\
& \therefore \quad 0 \leqslant 2 \theta \leqslant 4 \pi \\
& \therefore 2 \theta=\frac{\pi}{4}, \frac{7 \pi}{4}, \frac{9 \pi}{4}, \frac{15 \pi}{4} \\
& \theta=\frac{\pi}{8}, \frac{7 \pi}{8}, \frac{9 \pi}{8}, \frac{15 \pi}{8}
\end{aligned}
$$

(JPN) MARKER COMMENT
b. $A=3 \quad \alpha=\frac{\pi}{4}$
c.

$$
\begin{aligned}
& x^{2}+(m-2) x+4=0 \\
& \Delta^{n}=b^{2}-4 a c \\
& =(m-2)^{2}-4(1)(4) \\
& =m^{2}-4 m+4-16 \\
& \Delta=m^{2}-4 m-12
\end{aligned}
$$

$\Delta<0$ since no real roots. ie $m^{2}-4 m-12<0$

$$
(m-6)(m+2)<0
$$

$$
-2<m<6
$$

d.(i) $\alpha+\beta=-\frac{b}{a}=-4$
(ii) $\alpha \beta=\frac{c}{a}=-8$
(iii)

$$
\begin{aligned}
\alpha^{2} \beta+\alpha \beta^{2} & =\alpha \beta(\alpha+\beta) \\
& =-8 \times-4 \\
& =32
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =(-4)^{2}-2 \times-8 \\
& =16+16=32
\end{aligned}
$$

many forgot this and 80 didn'tget all 4 solution.
+2 marts needed angle in list $Q+4$ th G for 2 revolution.
fording solution
$A=$ amplitude
$\alpha=$ unit shifted \downarrow 1 mark C. ext.

1 merle calculates Δ.

1 mast quadrate inequaluy.
$\checkmark 1$ marts correct solution
$\begin{array}{cc}\text { answer only } \\ \text { " } & . .\end{array}$
armour only
arsing oily.

* Draw Diagram!!

$A M=M C \ldots(M$ is midpoint
In $\triangle C M N \& \triangle B M N$ $C \cdot N=N B \cdots$ (equal interaph ie ratios of interest on parallel limes are equal since $A M=M C$)
and $M N \| A B$ and $M N|\mid A B$

$$
\angle C N M=\angle C B A=90^{\circ}
$$

(corresponding L_{s} are equal as $M N \| A B$

$$
\left.\begin{array}{rl}
\angle B N M & =180^{\circ}-\angle C N M \text { (} \angle C N B B a \\
\text { straight }
\end{array}\right)
$$

Imark to prove

$$
\triangle C M N \equiv \triangle B M N
$$

and since $A M=M C$ and

$$
M C=M B
$$

$$
\therefore A M=B M=C M
$$

$\therefore M$ is equidistant from. all 3 vertices.

Q14 (d)

$$
\text { (i) } \begin{aligned}
\int_{0}^{4} f(x) \cdot d x & =\int_{0}^{4} 3 \cdot d x \\
& =[3 x]_{0}^{4} \\
& =12
\end{aligned}
$$

(ii) $\int_{4}^{8} f(x) d x=0$ as the area above the x axis is equal and opposite to the area below the
axis
(iii) $\int_{1}^{a} f(x) d x=-6$

Area $(x=1$ to $x=4)=9$
Area $x=4$ to $x-8=0$
Aria below axis from $x=8$ must. be -15 units? $^{2} \therefore$

$$
a=8+5
$$

Again, quickly copying the diagram helps. Many answers were just a jumble of numbers or the page -ward te follow $=12$

NB. $\begin{aligned} \int_{4}^{6} f(x) & =\frac{1}{2} \times 3 \times 2 \\ & =3 \\ \int_{b}^{8} f(x) & =\frac{2 x-3 \times 2}{x} \\ & =-3\end{aligned}$ $=-3$

Many missed that the lower Unit of integration wi 1

$$
=13
$$

Q14 (b(ii) Continved.

Large, clear cketches help. cormectable of values

$$
\left.\begin{array}{r|c|c|c|c|}
x & \frac{1}{2} & 1 & \frac{3}{2} & 2 \\
2 x & 1 & 2 & 3 & 4 \\
\hline \ln 2 x & 0 & 0.6931 .1 .0986 & 1.386 \\
\text { Anea } & =\frac{1}{2}[\ln 1+2(\ln 2+\ln 3)+\ln 4] \\
& =\frac{1}{4} \times 4.9698 \cdots 1 \\
& =1.2424 .19 \\
& =1.24 \text { unct }^{2}(2 \text { decinal p1. }
\end{array}\right)
$$

Cownon mistakes 1. Five Eunctuinvalue us $\sqrt{2} \cdot \ln 0=0 \quad$ us
$\ln 0$ is undefined (think - $-\infty$).
incorreetly:
xint: $\ln 2 x=0 \quad \begin{aligned} & \text { Many assumed that it was justa } \\ & 2 x\end{aligned}=0$

$$
\begin{aligned}
2 x & =e^{0} \\
& =1
\end{aligned}
$$

$$
=1
$$

"stondad" log graph \because cutsat $x=1$

$$
\therefore x=\frac{1}{2}
$$

$$
\begin{aligned}
& V_{0.1}=\pi\left[\frac{1}{2} y^{2}-12 y\right]_{12}^{16} \\
& \frac{1}{2} \cdot 16^{2}-12 \times 16-\left(\frac{1}{2} n^{2}\right. \\
& =\pi\left[\frac{1}{2}\left(16^{2}-12^{2}\right)-12(16-12)\right] \\
& 128-192-1-12 \\
& \left.=\pi\left[\frac{1}{2}(28) 4\right)-12(4)\right] \\
& =8 \pi \text { units }^{3} \text {. }
\end{aligned}
$$

d) (c) $\int_{0}^{4} f(x) d x+3 \times 4=12$
(i) Since $f(x) d x=-\int^{8} f(x) d x$

now

$$
\begin{aligned}
& \int_{\delta}^{13} f / f \\
& \int_{1} f(\pi) \\
& a=13
\end{aligned}
$$

Question 15
ㅊ). (c) $R=R_{0} e^{-k t}$
When $t=0, \quad R=1 \mathrm{~kg}$

$$
\begin{aligned}
& \therefore 1=R_{0} e^{0} \therefore R_{0}=1 \\
& R=e^{-k \epsilon}
\end{aligned}
$$

$\longleftarrow \quad \operatorname{lm} k$

When $t=20, R=0.95$

$$
\therefore 0.95=e^{-20 k}
$$

take \log of foin Sides

$$
\begin{aligned}
\ln (0.95) & =\ln e^{-20 k} \\
-20 k & =\ln (0.95) \quad \ln k
\end{aligned}
$$

(7) For half life lat $R=0.5$

$$
\begin{align*}
\therefore 0.5 & =e^{-k t} \leftarrow \tag{lm}\\
\operatorname{cn} 0.5 & =\operatorname{cn} e^{-k t} \\
\therefore-k t & =(n 0.5 \\
t & =\frac{C-0.5}{-k} \\
& =\operatorname{cn} 0.5 \times \frac{20}{\ln 0.95}
\end{align*}
$$

Well done

$$
=270.3 \mathrm{ys}
$$

$\operatorname{lm} k$
b) (i) Since initially the particle is at rest but acceleration is acting in the positive direction.
(c)

$$
\begin{aligned}
& \ddot{x}=4 e^{-2 t} \\
& \therefore \dot{x}=4 \int e^{-2 t} d t \\
& \dot{x}=\frac{4}{-2} e^{-2 t}+\dot{c} \\
&=-2 e^{-2 t}+c \\
& \text { whin } f=0, \quad \bar{x}=0 \\
& \therefore 0=-2 e^{0}+c \\
& \therefore \dot{x}=-2 e^{-2 t}+2
\end{aligned}
$$

(iii)

Too many showed no reasoning.

Westion is (coăt)
(i) (c) let A_{n} be amount owed after inth repagment

$$
\begin{aligned}
A_{1} & =G 50000(1+0.01)-M \leftarrow \\
A_{2} & =A_{1}(1.01)-M \\
& =(650000(1.01)-M)(1.01)-M \\
& =650002(1.01)^{2}-\mu(1.01)-M
\end{aligned}
$$

$$
-\operatorname{lom} k
$$

as reáb.
Genarally Well done!
This is a Gie

$$
\therefore A_{300}=650030 \cdot(1.01)^{300}-\frac{M\left(1.01^{300}-1\right)}{0.01}
$$

But $A_{300}=0$

$$
\begin{aligned}
& \therefore 650000(1.01)^{300}-\frac{M\left(1.01^{300}-1\right)}{0.01}=0 \\
& M\left(\$.01^{30}-1\right)=650000(1.01)^{30.1} \\
& M=\frac{650020(1001)^{300}(0.01)}{\left(1.01^{300}-1\right)} \\
&=\$ 6845.96
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } \\
& \text { (b) } A_{3}=\left(650000(1.01)^{2}-M(1.01)-M\right)(1.01)-M \\
& =650000(1.00)^{3}-M(1.01)^{2}-M(1.01)-M \\
& =650000(1.01)^{3}-M\left(1+1.01+1.01^{2}\right) \\
& A_{300}=650000(1.01)^{300}-M\left(1+100+1.01^{2}+\cdots+101^{299}\right)
\end{aligned}
$$

㤟)

$$
\begin{aligned}
& \text { let } M=6845.96+250 \\
&=\$ 7095.96 \leftarrow \\
& 7095.96\left.=\frac{650000(1.01)^{n}(0.01)}{\left(1.01^{300}-1\right)}\right) \\
&\left.7095.96(1.01)^{300}-1\right)=65000(1.01)^{\wedge}(0.01) \\
&\left.7095.96(1.01)^{n}-7095.96=650061.01\right)^{n}
\end{aligned}
$$

$$
595.96(1.0 i)^{n}=7095.96
$$

$$
(1.01)^{n}=11.9 .07
$$

$$
n=\frac{\ln (11.907)}{\ln (1.01)}
$$

$$
=248.95 \mathrm{mts}
$$

Question 16
(a) (i)

$$
\begin{aligned}
& y^{\prime}=2 x^{2}-5 x-3 \\
& y^{\prime \prime}=4 x-5
\end{aligned}
$$

For s.e's let $y^{\prime}=0$

$$
\begin{aligned}
\therefore & 2 x^{2}-5 x-3=0 \\
& (2 x+1)(x-3)=0 \\
\therefore x=-\frac{1}{2}, x & =3
\end{aligned}
$$

When $x=-\frac{1}{2}, y=\frac{67}{24}$

$$
x=3, \quad y=-11 \frac{1}{2}
$$

\therefore Se's at $\left(-\frac{1}{2}, \frac{67}{2 f}\right)$ ans $\left(3,-11 \frac{1}{2}\right)$

Question 16
When $x=-\frac{1}{2} \quad y^{\prime \prime}=-7 \quad(<0)$
$\therefore\left(-\frac{1}{2}, \frac{67}{24}\right)$ Max Turning paint.
When $x=3, \quad y^{\prime \prime}=7(>0)$
(3,-112) mi-turnits point
(ii) Dossibk P. OT. where $y^{\prime \prime}=0$

$$
\begin{aligned}
\therefore 4 x-5 & =0 \\
x & =1 \frac{1}{4}
\end{aligned}
$$

t207:

x	1	$1 \frac{1}{4}$	15
$y^{\prime \prime}$	-1	0	1

Since change in conconity irstusion at $x=1 \frac{1}{4}$
(iii)

Marks Comments

* Most sha change of concavity to get the mark.

Mist show and points to set full marks. I mark deducted for not having correct and pin,

Question 16 (cont)
(6)

$$
\begin{aligned}
\text { (i) } \tan \alpha & =\frac{80}{60}, \quad \tan \beta=\frac{60}{80} \\
\therefore \tan \alpha & =\frac{4}{3}, \quad \tan \beta=\frac{3}{4}
\end{aligned}
$$

' $\operatorname{n} \triangle A F G$:

$$
\begin{aligned}
\tan \alpha & =\frac{x}{r} \\
\therefore r & =\frac{x}{\tan \alpha} \\
r & =\frac{3}{4} x
\end{aligned}
$$

Similarly in $\triangle C O E$:

$$
\begin{array}{r}
\tan \beta=\frac{x}{5} \\
\therefore S=x \div \frac{3}{4} \\
S=\frac{4}{3} x
\end{array}
$$

(ii) By pyttayaras $A C=100$
now $\quad A-C=y+5+r$

$$
\begin{array}{rl}
10 & y+\frac{4}{3} x+\frac{3}{4} x \\
y & =100-\left(\frac{4}{3} x+\frac{3}{4} x\right) \\
y & =100-\frac{25}{12} x
\end{array}
$$

(ii) $\quad y=100-\frac{25}{12} x$
largest sectargain building is one with largest area
$A=x y$

$$
\begin{aligned}
& =x\left(100-\frac{25}{12} x\right) \\
& =100 x-\frac{25}{12} x^{2} \\
A^{\prime} & =100-\frac{25}{6} x \\
A^{\prime \prime} & =-\frac{25}{6}(\Leftrightarrow)
\end{aligned}
$$

\therefore For max area $A^{\prime}=0$

Markers Comments

* Ming stuclats
used similarity to do this question.

Wuestion 16 (0 oit)
(iii)

$$
\text { ii) } \begin{aligned}
100-\frac{25}{6} x & =0 \\
x & =24 \\
y & =100-50=50 \\
\therefore \begin{array}{l}
\text { Breash }= \\
\text { legtin }
\end{array} & 24 \mathrm{~m}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \cos \alpha= \frac{5^{2}+7^{2}-3^{2}}{2-5 \times 5 \times 7} \quad \cos \beta=\frac{3^{2}+7^{2}-5^{2}}{2 \times-3 \times 7} \\
& \alpha=21.8^{\circ} \\
&=38.2^{\circ} \\
& A=\frac{1}{2}(5)^{2}\left[\frac{2\left(218^{\circ}\right) \times \pi}{180}-\sin \left(2 \times 218^{\circ}\right)\right]+ \\
& \frac{1}{2}(3)^{2}\left[2 \frac{\left(38.2^{\circ}\right) \times \pi}{(80}-\sin (2(33.2))\right] \\
&= 2.5\left(8 \mathrm{~cm}^{2}\right.
\end{aligned}
$$

Markes Comments

* Need to show thit this unlue is minimum ie using $A^{\prime \prime}>0$ or stating that it is a paributa with a>0
* Very fer sticlents were sucesstel aith thrs question. Nost stuctents scored no marks.
Thoue stucont who attompled to do the question integretion csuslly do not set ang morks with the occasional stuclent reciaing $1 / 3$ if all their working
was comect was correct.

