SCEGGS Darlinghurst

2005
Higher School Certificate
Trial Examination

Mathematics

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Attempt Questions $1-10$
- Write using black or blue pen
- Diagrams should be drawn in pencil
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120
Attempt Questions 1-10
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find the value of $\frac{1-0.46^{2}}{1+0.46^{2}}$ correct to 3 significant figures.
(b) Write $\frac{1}{\sqrt{6}-2}$ with a rational denominator.
(c) If α and β are the roots of $2 x^{2}-6 x+3=0$, find the values of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
(d) Graph the solution of $|2 x+1| \leq 7$ on a number line.
(e) Solve $4^{x}+3\left(2^{x}\right)-28=0$ for x. 3

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a)

(i) Find the co-ordinates of M, the midpoint of $B D$.
(ii) Find the co-ordinates of C so that $A B C D$ is a parallelogram.
(iii) Show that the line $A B$ has equation $4 x-3 y-9=0$.
(iv) Find the perpendicular distance between D and the line $A B$.
(v) Find the area of parallelogram $A B C D$.
(b) A

Copy the diagram above into your answer booklet. Find the value of x giving reasons.
(c) Find the equation of the tangent to the curve $y=\cos 2 x$ at $(\pi, 1)$.

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) Differentiate:
(i) $y=7 \sqrt{x}-\frac{2}{x^{3}}$
(ii) $\quad f(x)=\frac{2 x-1}{3 x+1}$
(b) Beryl does the following solution to solve the equation $2 \cos \theta=1$ for $-\pi \leq \theta \leq \pi$.

Line 1

$$
2 \cos \theta=1
$$

Line 2

$$
\cos \theta=\frac{1}{2}
$$

Line 3

$$
\theta=60^{\circ}
$$

(i) Beryl has made at least one mistake in her working. State the line(s) in which the mistake(s) occurred and describe the mistake(s).
(ii) Show the correct solution to the equation.
(c) On a visit to Sydney Harbour, Mary and Frederik sail on their yacht, the Dannebrog, from point A on a course of 077° for 20 nautical miles to point B. They then change course to 130° and continue sailing for 30 nautical miles to point C.
(i) Draw a neat sketch (at least $\frac{1}{3}$ page) depicting this information.
(ii) Show that $\angle A B C=127^{\circ}$
(iii) Given that point A and point C are 45 nautical miles apart find the bearing of point C from their starting point. (Answer correct to the nearest degree.)

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) Given the function:

$$
f(x)=\left\{\begin{array}{lll}
x-5 & \text { for } & x \leq 5 \\
(x-5)^{2} & \text { for } & x>5
\end{array}\right.
$$

Find:
(i) $\quad f(-2)$
(ii) $\quad f(a+5)$ when $a>0$
(b) Solve for x

$$
2 \log _{e} x=\log _{e}(6-5 x)
$$

(c) A plant is observed over a period of time. Its initial height is 20 cm . It grows 5 cm during the first week of observation. In each succeeding week the growth, in height, is 80% of the previous week's growth. Assuming this pattern continues, calculate the plant's ultimate height.
(d) A certain parabola has a focus of $(3,6)$ and a directrix $y=2$.
(i) Draw a diagram showing this information and the approximate position of the parabola.
(ii) State the co-ordinates of the vertex.
(iii) Write the equation of the parabola in the form $(x-h)^{2}=4 a(y-k)$.
(e) "Mrs Brimfield is having twins. She could have 2 boys, 2 girls or a boy and a girl. $\mathbf{1}$ Therefore, the probability that she has 2 boys is $\frac{1}{3}$."

Is this statement true or false? Give a reason for your answer.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Find the sum of 10 terms of the series

$$
\log _{m} 3+\log _{m} 6+\log _{m} 12+\ldots
$$

given that $\log _{m} 3=0.48$ and $\log _{m} 2=0.30$
(b) Consider the graph of the derivative $\frac{d y}{d x}$ given below.

(i) Comment on the sign of $\frac{d y}{d x}$ for all x except $x=1$.

What does this imply about the curve $y=f(x)$ for all x, except $x=1$?
(ii) What can you conclude about $y=f(x)$ when $x=1$?
(iii) Sketch a possible graph of $y=f(x)$

Question 5 (continued)
(c) A census was taken in 2005 of the population of a coalmining town called Blackrock. The population, P, after t years is given by the exponential equation

$$
P=50000 e^{-0.08 t}
$$

(i) What is the initial population of Blackrock in 2005?
(ii) Find the time in years it will take the initial population to halve.
(iii) At what rate is the population changing in 2010?

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows the area bounded by the graph $y=\ln x$, the co-ordinate axes and the line $y=\ln 8$.
(i) Find the shaded area.
(ii) Hence find the exact value at

$$
\int_{1}^{8} \ln x d x
$$

(b) (i) Solve $(k-1)(k-9)<0$
(ii) Find the value of k for which

$$
k x^{2}+(k+3) x+4
$$

is positive definite.
(iii) Explain why $k x^{2}+(k+3) x+4$ is never negative definite.

Question 6 (continued)
(c) (i) Explain why $\int_{-\pi}^{\pi} \sin x d x=0$.
(ii) Let m be a positive number. With the aid of a clear diagram, find the number of possible solutions for x, so that $\sin x+m x=0$ in the domain $-\pi \leq x \leq \pi$.

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) The sum of the first three terms of a geometric series is 19 and the sum to infinity is 27 .

Find:
(i) the value of the common ratio.
(ii) the value of the first term.
(iii) the value of the fifth term.
(b)

In the diagram $Q T \| R S$ and $T Q$ bisects $\angle P Q S$.
Copy the diagram into your answer booklet, showing this information.
(i) Explain why $\angle T Q S=\angle Q S R$.
(ii) Prove that $\triangle Q R S$ is isosceles.
(iii) Hence show that $P T: T S=P Q: Q S$.

Question 7 (continued)
(c) In a certain hospitality course all students sit for a theory examination in which 60% of the candidates pass.

Those who pass the theory examination then sit a practical test which is passed by 40% of those who sit the practical test. A student is chosen at random.

Find the probability that:
(i) the student passes both examinations.
(ii) the student passes just one of the examinations.

Question 8 (12 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows parts of the curves $y=\sin x$ and $y=\cos (2 x)$.
(i) The curves intersect at $x=\frac{\pi}{6}$. State the co-ordinates of the point P, the other point of intersection in the domain $0 \leq x \leq \pi$.
(ii) Find the shaded area, leaving your answer in exact form.
(b) Consider the function $f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
(i) Show that the curve represents an even function.
(ii) Show that the function only has one stationary point and determine its nature.
(iii) Show that the function has no points of inflexion.
(iv) Hence sketch the curve.

Question 9 (12 marks) Use a SEPARATE writing booklet.
(a) Heather invests $\$ 50000$ in an account that earns 8% p.a. interest, compounded annually. She intends to withdraw $\$ M$ at the end of each year, immediately after the interest has been paid. She wishes to be able to do this for exactly 20 years, so that the account will then be empty.
(i) Write an expression for the amount of money Heather has in the account immediately after she has made her first withdrawal.
(ii) Write an expression in terms of M for the amount of money in the account, immediately after her 20th withdrawal.
(iii) Calculate the value of M which leaves her account empty after the 20th withdrawal.
(b) (i) Copy and complete the table below, correct to 3 decimal places.

\boldsymbol{x}	2	3	4	5
$\ln 2 x$				

(ii) Use the table and the Trapezoidal rule to find an approximation for
$\int_{2}^{5} \ln 2 x d x$ correct to 2 decimal places.
(iii) Sketch a graph of $y=\ln 2 x$ and use it to explain whether your approximation in (ii) is an over or under estimate of the exact value of the integral.
(iv) Show that $\frac{d}{d x}(x \ln 2 x-x)=\ln 2 x$
(v) Hence, deduce the exact value of $\int_{2}^{5} \ln 2 x d x$.

Question 10 (12 marks) Use a SEPARATE writing booklet.
(a) A machine produces Mathomats of which 5\% are defective.
(i) What is the probability that a Mathomat is NOT defective?
(ii) A random sample of n items is taken from the machine.

Find the largest value of n that must be sampled so that the probability that none of the Mathomats are defective is at least 0.5 .
(b) Find the volume of the solid of revolution formed when the area bounded by

1

2

3 the curve $y=\frac{1}{\sqrt{2 x+1}}, x=0, x=1$ and the x axis is rotated about the x axis.
(c) $\triangle A B C$ is an isosceles triangle of constant perimeter $2 P$ and equal sides of length x.

NOT TO
SCALE

$$
A=(P-x) \sqrt{2 P x-P^{2}}
$$

(ii) Show that $\frac{d A}{d x}=\frac{P(P-x)}{\sqrt{2 P x-P^{2}}}-\sqrt{2 P x-P^{2}}$ perimeter $2 P$ occurs when $\triangle A B C$ is equilateral.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

2 Unit TRIAL 2005
la) $0.650709805 \div 0.651$
b) $\frac{1}{\sqrt{6-2}} \times \frac{\sqrt{6}+2}{\sqrt{6}+2}-\frac{\sqrt{6}+2}{6-4}=\frac{\sqrt{6}+2}{2}$
c) (i) $\alpha+\beta=\frac{6}{2}=3$
(ii) $\alpha \beta=\frac{3}{2}$
(iii) $\frac{\beta^{2}+\alpha^{2}}{\alpha^{2} \beta^{2}}=\frac{(\alpha+\beta)^{\alpha}-\alpha \alpha \beta}{(\alpha \beta)^{2}}$

$$
\begin{align*}
=\frac{3^{2}-2 \times \frac{3}{2}}{\left(\frac{3}{2}\right)^{2}}=\frac{9-3}{4} & =6 \times \frac{4}{9} \tag{1}\\
1 & =\frac{8}{3}=2 \frac{2}{3}
\end{align*}
$$

d)

$$
\begin{aligned}
& |2 x+1| \leq 7 \\
& -7 \leq 2 x+1 \leq 7 \\
& -8 \leq 2 x \leq 6 \\
& -4 \leq x \leq 3
\end{aligned}
$$

e) Let $m=2^{x}$

$$
\begin{gathered}
m^{2}+3 m-28=0 \\
(m+7)(m-4)=0 \\
m=-7, \quad 4 \\
\therefore \quad 2^{x}=-7 \quad 2^{x}=4
\end{gathered}
$$

$$
\text { no acth }+x=2
$$

2. a) (i) $M=(-1,3)$
(ii)

$$
\begin{array}{ll}
\frac{x+0}{2}=-1 & \frac{y-3}{2}=3 \\
x=-2 & y-3=6
\end{array}
$$

$$
\therefore c=(-2,9)
$$

1 comm

1 solution, mist have must have
booth
Reduce to a quadratic equation and you must state $x^{2}=-7$ has no solution
Many forgot how to do these questions
(iv)

$$
\begin{align*}
d & =\left|\frac{4 x-5-3 \times 5-9}{\sqrt{16+9}}\right| \\
& =\frac{44}{5} \tag{1}
\end{align*}
$$

(v)

$$
\text { J) } \begin{aligned}
& A B=\sqrt{(3-0)^{2}+(1+3)^{2}} \\
&=\sqrt{9+16}=5 \\
& \therefore \text { andre } A B C D=\frac{44}{5} \times 5 \\
&=44 \mathrm{~m}^{2}(1)
\end{aligned}
$$

If using $A=1 h \times b$ the base is $A B$, many students used AD.

$\angle A D C=180^{\circ}-20^{\circ}-36^{\circ}$
(1) You most give clear and $=124^{\circ}\left(\angle\right.$ sum u of $\Delta=180^{\circ}$) accurate reasons for every $x^{\circ}=124^{\circ}-64^{\circ}=60^{\circ}$ (esct. L step in your working of $\Delta=\operatorname{sim} 2 \operatorname{int}$ off $L^{\prime} 5$) (1)
c) $\frac{d y}{d x}=-2 \sin 2 x \quad$ Don't forget the negative when $x=\pi, m_{\text {tom }}=-2 \sin 2 \pi$ evaluate $-2 \sin 2 \pi$ to get

$$
\begin{align*}
\therefore y-1 & =0(x-\pi) \tag{1}\\
\therefore y & =1
\end{align*}
$$ 0.

3 a) (i) $y=7 x^{\frac{1}{2}}-2 x^{-3}$ Learn and

$$
\begin{aligned}
\frac{d y}{d x} & =7 \cdot \frac{1}{2} x^{-\frac{1}{2}}+6 x^{-4} \\
& =\frac{7}{2 \sqrt{x}}+\frac{6}{x^{4}}
\end{aligned}
$$

practise video
Cabs

$$
14 \text { (ii) } f^{\prime}(x)=\frac{2(3 x+1)-3(2 x-1)}{(3 x+1)^{2}}
$$ laws.

$$
=\frac{6 x+2-6 x+3}{(3 x+1)^{2}}=\frac{5}{(3 x+1)^{2}}
$$

b) (i) Line 3. a must be in comm radioing

Lire 3 . Shire are 2 solutions

Be brief with your explanations
(ii) $\theta=-\frac{\pi}{3}, \frac{\pi}{3}$
c) (i)

(ii) $\angle A B N=180^{\circ}-77^{\circ}=103^{\circ}$
(cont \angle^{\prime} 's on 11^{\prime} lines add
lo 180°)

$$
\begin{aligned}
\therefore \angle A B C & =360^{\circ}-130^{\circ}-103^{\circ} \\
& =127^{\circ}\left(\angle^{\prime} s \text { at } \not \mathrm{AH} .\right.
\end{aligned}
$$

add to 360°)
(iii) $\cos \angle B A C=120^{2}+45^{2}$ - You can also we the

$$
\begin{equation*}
30^{2} \div 2 \times 20 \times 45 \tag{1}
\end{equation*}
$$ sine rule to fund $\angle B A$.

$\therefore \angle B A C \doteq 32^{\circ}$ many did not then
\therefore She beaning of C from A state the bearing. is $109^{\circ} \mathrm{T}$ of C from A.

4 a) (i) $4(-2)=-2-5=-7$
(ii) $f(a+5)=(a+5-5)^{2}=a^{2}$ well done Simplify in brackets first
b) $\quad \ln x^{2}=\ln (6-5 x)$ know \log rules.

$$
\therefore x^{2}=6-5 x
$$

$$
x^{2}+5 x-6=0
$$

$$
\begin{align*}
& (x-1)(x+6)=0 \tag{1}\\
& \because x=1,-6
\end{align*}
$$

$$
\therefore x=6 \text { is not a sols. }
$$

$$
\therefore x=1
$$

$$
\therefore x=1 \quad \text { (1) }
$$

$$
\begin{equation*}
\text { c) } 20+5+5 \times 0 \cdot 8+5 \times 0.8^{2}+\ldots \text { for } S_{\infty}|r| \text { must be }<1 \text {. } \tag{0}
\end{equation*}
$$

Revs $\quad S_{\infty}=\frac{5}{1-0.8}=25$
3. Sotal height $=20+25=45 \mathrm{~cm}$

(ii) $v=(3,4)$
(iii) $(x-3)^{2}=4.2(y-4)$

$$
(x-3)^{2}=8(y-4)
$$

e) false as there are 2 chances Probability tree helps. of having B or G.
(I) comm

5 a) $\log _{m} 3+\log _{m}(2 \times 3)+\log _{m}\left(2^{2} \times 3\right)+\ldots$
This is an AP nola GP Use log laws to break down each term, then you
Reg $\quad S_{10}=\frac{10}{2}\left(2 \times \log _{3}+9 \log _{m} 2\right)$
$3=5(2 \times 0.48+9 \times 0.3)$ will see the difference of $\log _{m} 2$
$b)^{18} \frac{d y}{d x}$ is +we for all x Cola
except when $x=1$ and it
2 marks and 2 parts to the question so 2 statements. must be made. 1-comment equals 0 . This imphes the curve on sign of ole,
does this imply.
is an increasing fro. copt when $x=1$.
(ii) When $x=1$, there is a stationary You must state that pent on $y=f(x)$ as $\frac{d y}{d x}=0$
and as $x<1$ dy >0
and as $x>1$ dy >0
hocrit of inflexion
(iii)

C) ${ }^{i}$
(ii)

$$
\begin{aligned}
2500 & =50000 e^{-0.8 t} \\
1) \frac{1}{2} & =e^{-0.08 t} \\
\ln \frac{1}{2} & =-0.08 t \\
t & =\ln \frac{1}{2} \div-0.08 \\
& \doteqdot 9 \text { y }
\end{aligned}
$$

(iii) $\frac{d P}{d t}=50000 \times-0.08 e^{-0.08 t}$
when $t=5=-2681.280$
ie. 2681 peofle/ys.
6.
cable
a) (i)

$$
\begin{aligned}
& \text {)i) } y=\log _{e} y x \\
& A=\int^{\ln 8} e^{y} d y=\left[e^{y}\right]_{0}^{\ln \delta}
\end{aligned}
$$

$$
4=e^{\ln 8}-e^{0}=8-1=7
$$

you must clearly show the horizata / POF at $x=1$

Be careful when transcribing numbers. A few used 5000 instead of 50000

$$
=8 \ln 8-7
$$

b) 0°)

$$
\therefore 1<k<9
$$

(ii) t we definite $a>0$ \& $\Delta<0$ ie. $k>0$ and

$$
\begin{gather*}
(k+3)^{2}-4 k-4<0 \tag{1}\\
k^{2}-10 k+9<0 \\
(h-9)(k-1)<0 \\
\therefore 1<k<9
\end{gather*}
$$

(iii) $+v e$ definite means the value of $k x^{2}+(k+3) x+4$ is a loons ${ }^{1}$ tue \therefore cant be - we definite.
c) (i) sine is an odd function

Cow $\begin{aligned} & \text { (ii) }+v e \text { definite } m \\ & \text { of } k x^{2}+(k+3) x+h \\ & +v e \therefore \text { cant be - } \\ & \text { c) (i) sine is an } \\ & \text { co } S \text { i }(x)=0\end{aligned}$

(ii)

Reds 2
\therefore only 1 possible solv.
7. a)

$$
\begin{align*}
& S_{3}=\frac{a\left(1-r^{3}\right)}{1-r}=19 \tag{t}\\
& S_{\infty}=\frac{a}{1-r}=27 \tag{2}
\end{align*}
$$

(1)
sub. (2) in (1) $27\left(1-t^{3}\right)=19$

$$
\begin{aligned}
1-r^{3} & =\frac{19}{27} \\
1-\frac{19}{27} & =r^{3} \\
\therefore r^{3} & =\frac{8}{27}
\end{aligned}
$$

If your calculations get out of hand stop and look for another method of solution it is only worth 1 monk.

$$
\therefore r=\frac{2}{3}
$$

(ii)

$$
\begin{aligned}
\frac{a}{1-\frac{2}{3}} & =27 \\
3 a & =27 \\
\therefore a & =9
\end{aligned}
$$

(iii) $T_{5}=9 \times\left(\frac{2}{3}\right)^{4}=\frac{16}{9}$
b) (i)

Comm
(i) $\angle T Q S=\angle Q S R$ (altar $\angle ' S=$ on I'lineo)
(ii) $\angle Q R S=\angle P Q F$ (correop $\angle \angle^{\prime}=O n$
$\therefore \angle Q R S=\angle Q S R$ from above $\therefore \triangle Q R 5$ is isosceles.
(iii) $\frac{P Q}{Q R}=\frac{P T}{T S}$ (1) 1 lines cut off $=$

Rear
2 but $Q R=Q S$ as $\triangle Q R S$ is inoscead

$$
\therefore \frac{P I}{T S}=\frac{P Q}{Q S}
$$

c)

$$
\begin{aligned}
& \frac{I}{0.6} \frac{1.4}{P} \frac{P}{P} \\
& 0.4^{\circ} \mathrm{F}
\end{aligned}
$$

(i)P(PP) $=0.6 \times 0.4=0.24 \operatorname{er} 24 \%$
(ii) $P(P$ one $)=0.6 \times 0.6=0.36$ or 36%
8.a) i) $^{i} x=\frac{\pi}{-\frac{x}{6}}=\frac{5 \pi}{6}$
$\frac{\operatorname{cote}}{12}+\left(\frac{5 \pi}{6}, \frac{1}{2}\right)$

If your $r>1$ then no C FFPE for parts (ii) and iii) as cant find S_{∞}

Again make sure your reasons are clear and accurate. Take care nines/ when writing out angles ie don't mix up $\angle Q S R$ \& $\angle Q R S$

Very well done! - 'She people who drew tree diag had the greater success

Use symmetry to find x. Many left out ${ }^{\prime} \frac{1}{2}$ '

$$
\text { (ii) } \begin{aligned}
& A=\int_{\frac{\pi}{6}}^{2} \sin x-\cos 2 x d x \\
& =\left[-\cos x-\frac{1}{2} \sin 2 x\right]_{1 / 6}^{2} \\
& =\left(0-\frac{1}{2} \times 0\right)-\left(-\frac{\sqrt{3}}{2}-\frac{1}{2} \times \frac{\sqrt{3}}{2}\right) \\
& =\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{4}=\frac{3 \sqrt{3}}{4}
\end{aligned}
$$

$$
\text { l) (i) } f(-x)=\frac{1}{2}\left(e^{-x}+e^{x}\right)=f(x)
$$

$$
\therefore \text { even of }
$$

$$
\text { (ii) } f^{\prime}(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)
$$

$$
\frac{1}{2}\left(e^{x}-e^{-x}\right)=0
$$

$$
e^{x}=e^{-x}
$$

$$
\begin{equation*}
\therefore x=0 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
& f^{\prime \prime}(0)=\frac{1}{2}(1+1)=1
\end{aligned}
$$

$$
f^{\prime \prime}(0)=\frac{1}{2}(1+1)=1
$$

\therefore min at $(0,1)$
(iii) $f^{\prime \prime}(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)=0$

$$
e^{x}=-e^{-x}
$$

no sold.
\therefore no $k t$, of infles (iv)

9 a)

$$
\text { (i) } A_{1}=50000 \times 1.08-m \text { (1) }
$$

(ii) $A_{2}=50000 \times 1.08^{2}-m(1.08+1)$
$A_{20}=50000 \times 1.08^{20}-m\left(1.08^{19}+\cdots+1\right)$
(iii)

$$
\begin{align*}
m & =\frac{50000 \times 1.08^{20}}{1.08^{19}+.+1} \tag{1}\\
& =\frac{50000 \times 1.08^{20}(1.08-1)}{1\left(1.08^{20}-1\right)}
\end{align*}
$$

with indices inside levevchels

$$
\begin{equation*}
M=\$ 5092 \cdot 60 \tag{1}
\end{equation*}
$$

Read the question. you were ashed to complete the late comect to $3 \mathrm{~d} . \mathrm{p}$.
iii) $A=\frac{1}{2} \times 11.432 \doteqdot 5.72$
(iii)

sure the eure is concave dover. all the trapezia with he under the curve \therefore the approx will be less than the excad value of the integral

$$
\text { (iv) } \begin{aligned}
& \frac{d}{d x}(x \ln 2 x-x) \\
&= \ln 2 x+\frac{2}{2 x} \cdot x-1 \\
&= \ln 2 x+1-1=\ln 2 x \\
& \text { (v) } \int_{2}^{5} \ln 2 x d x=[x \ln 2 x-x]^{5}
\end{aligned}
$$

frown

$$
\begin{aligned}
& =(5 \ln 10-5)-(2 \ln 4-2) \\
& =\ln 100000-\ln 16-3 \\
& =\ln \frac{100000}{16}-3 \\
& =\ln 6250-3
\end{aligned}
$$

Jo get the mark for the graph you needed to show the correct x intercept
\qquad

Many tried to fudge this answer you should show $\frac{\text { clearly especially }}{\frac{2}{2 x} \cdot x}$

Careful how you seimflefy this ansis
$10.9)^{i p}(n \Delta)=95 \%$
(ii)

$$
\begin{align*}
(0.95)^{n} & >0.5 \tag{1}\\
\ln \left(0.95^{n}\right) & >\ln 0.5 \\
n \ln 0.95 & >\ln 0.5 \\
x & <\frac{\ln 0.5}{\ln 0.95} \\
n & <13.51340733 \\
\therefore n & =13 \tag{1}
\end{align*}
$$

b) $v=\pi \int_{0}^{1} \frac{1}{2 x+1} d x$

Coba
3.

$$
\begin{aligned}
& =\frac{\pi}{2}[\ln (2 x+1)]_{0}^{1} \\
& =\frac{\pi}{2}(\ln 3-\ln 1) \\
& =\frac{\pi}{2} \ln 3 \quad \mu^{3}(1)
\end{aligned}
$$

c) (i)

$$
\begin{aligned}
& h^{2}=x^{2}-(p-x)^{2} \\
& =x^{2}-\left(p^{2}-2 P x+x^{2}\right) \\
& (1)=-p^{2}+2 P x \\
& \therefore h=\sqrt{2 P x-p^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore A & =\frac{1}{2}(2 P-2 x) \sqrt{2 P x-P^{2}} \\
& =(P-x) \sqrt{2 P x-D^{2}}
\end{aligned}
$$

(ii) $\frac{d A}{d x}=-1 \sqrt{2 P x-P^{2}}+(P-x) \frac{1}{2} 2 P\left(2 P x-P^{2}\right)^{-1}$

$$
\begin{aligned}
& d x(\\
= & \frac{P(P x)}{\sqrt{2 P x-P^{2}}}-\sqrt{2 P x-P^{2}}
\end{aligned}
$$

(iii)

$$
\begin{align*}
\sqrt{2 P x-p^{2}} & =\frac{p(p-x)}{\sqrt{2 P-p^{2}}} \\
2 P x-p^{2} & =p^{2}-P x \\
3 P x & =2 p^{2} \\
x & =\frac{2 p}{3} \tag{1}
\end{align*}
$$

\therefore sides are $\frac{2 P}{3}, \frac{2 P}{3}, 2 D-\frac{4 P}{3}=\frac{2 P}{3}$
\therefore primeter $=3 \times \frac{2 P}{3}=2 P$

x	$\frac{p}{3}$	$\frac{2 p}{3}$	p	on
$d x$	$+v e$	0	$-v e$	

$$
-0
$$

\therefore max area when $x=\frac{2 P}{3}$

